// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // Scopers help you manage ownership of a pointer, helping you easily manage a // pointer within a scope, and automatically destroying the pointer at the end // of a scope. There are two main classes you will use, which correspond to the // operators new/delete and new[]/delete[]. // // Example usage (scoped_ptr<T>): // { // scoped_ptr<Foo> foo(new Foo("wee")); // } // foo goes out of scope, releasing the pointer with it. // // { // scoped_ptr<Foo> foo; // No pointer managed. // foo.reset(new Foo("wee")); // Now a pointer is managed. // foo.reset(new Foo("wee2")); // Foo("wee") was destroyed. // foo.reset(new Foo("wee3")); // Foo("wee2") was destroyed. // foo->Method(); // Foo::Method() called. // foo.get()->Method(); // Foo::Method() called. // SomeFunc(foo.release()); // SomeFunc takes ownership, foo no longer // // manages a pointer. // foo.reset(new Foo("wee4")); // foo manages a pointer again. // foo.reset(); // Foo("wee4") destroyed, foo no longer // // manages a pointer. // } // foo wasn't managing a pointer, so nothing was destroyed. // // Example usage (scoped_ptr<T[]>): // { // scoped_ptr<Foo[]> foo(new Foo[100]); // foo.get()->Method(); // Foo::Method on the 0th element. // foo[10].Method(); // Foo::Method on the 10th element. // } // // These scopers also implement part of the functionality of C++11 unique_ptr // in that they are "movable but not copyable." You can use the scopers in // the parameter and return types of functions to signify ownership transfer // in to and out of a function. When calling a function that has a scoper // as the argument type, it must be called with an rvalue of a scoper, which // can be created by using std::move(), or the result of another function that // generates a temporary; passing by copy will NOT work. Here is an example // using scoped_ptr: // // void TakesOwnership(scoped_ptr<Foo> arg) { // // Do something with arg. // } // scoped_ptr<Foo> CreateFoo() { // // No need for calling std::move() for returning a move-only value, or // // when you already have an rvalue as we do here. // return scoped_ptr<Foo>(new Foo("new")); // } // scoped_ptr<Foo> PassThru(scoped_ptr<Foo> arg) { // return arg; // } // // { // scoped_ptr<Foo> ptr(new Foo("yay")); // ptr manages Foo("yay"). // TakesOwnership(std::move(ptr)); // ptr no longer owns Foo("yay"). // scoped_ptr<Foo> ptr2 = CreateFoo(); // ptr2 owns the return Foo. // scoped_ptr<Foo> ptr3 = // ptr3 now owns what was in ptr2. // PassThru(std::move(ptr2)); // ptr2 is correspondingly nullptr. // } // // Notice that if you do not call std::move() when returning from PassThru(), or // when invoking TakesOwnership(), the code will not compile because scopers // are not copyable; they only implement move semantics which require calling // the std::move() function to signify a destructive transfer of state. // CreateFoo() is different though because we are constructing a temporary on // the return line and thus can avoid needing to call std::move(). // // The conversion move-constructor properly handles upcast in initialization, // i.e. you can use a scoped_ptr<Child> to initialize a scoped_ptr<Parent>: // // scoped_ptr<Foo> foo(new Foo()); // scoped_ptr<FooParent> parent(std::move(foo)); #ifndef BASE_MEMORY_SCOPED_PTR_H_ #define BASE_MEMORY_SCOPED_PTR_H_ // This is an implementation designed to match the anticipated future TR2 // implementation of the scoped_ptr class. #include <assert.h> #include <stddef.h> #include <stdlib.h> #include <iosfwd> #include <memory> #include <type_traits> #include <utility> #include "base/compiler_specific.h" #include "base/macros.h" #include "base/move.h" #include "base/template_util.h" namespace base { namespace subtle { class RefCountedBase; class RefCountedThreadSafeBase; } // namespace subtle // Function object which invokes 'free' on its parameter, which must be // a pointer. Can be used to store malloc-allocated pointers in scoped_ptr: // // scoped_ptr<int, base::FreeDeleter> foo_ptr( // static_cast<int*>(malloc(sizeof(int)))); struct FreeDeleter { inline void operator()(void* ptr) const { free(ptr); } }; namespace internal { template <typename T> struct IsNotRefCounted { enum { value = !base::is_convertible<T*, base::subtle::RefCountedBase*>::value && !base::is_convertible<T*, base::subtle::RefCountedThreadSafeBase*>:: value }; }; // Minimal implementation of the core logic of scoped_ptr, suitable for // reuse in both scoped_ptr and its specializations. template <class T, class D> class scoped_ptr_impl { public: explicit scoped_ptr_impl(T* p) : data_(p) {} // Initializer for deleters that have data parameters. scoped_ptr_impl(T* p, const D& d) : data_(p, d) {} // Templated constructor that destructively takes the value from another // scoped_ptr_impl. template <typename U, typename V> scoped_ptr_impl(scoped_ptr_impl<U, V>* other) : data_(other->release(), other->get_deleter()) { // We do not support move-only deleters. We could modify our move // emulation to have base::subtle::move() and base::subtle::forward() // functions that are imperfect emulations of their C++11 equivalents, // but until there's a requirement, just assume deleters are copyable. } template <typename U, typename V> void TakeState(scoped_ptr_impl<U, V>* other) { // See comment in templated constructor above regarding lack of support // for move-only deleters. reset(other->release()); get_deleter() = other->get_deleter(); } ~scoped_ptr_impl() { // Match libc++, which calls reset() in its destructor. // Use nullptr as the new value for three reasons: // 1. libc++ does it. // 2. Avoids infinitely recursing into destructors if two classes are owned // in a reference cycle (see ScopedPtrTest.ReferenceCycle). // 3. If |this| is accessed in the future, in a use-after-free bug, attempts // to dereference |this|'s pointer should cause either a failure or a // segfault closer to the problem. If |this| wasn't reset to nullptr, // the access would cause the deleted memory to be read or written // leading to other more subtle issues. reset(nullptr); } void reset(T* p) { // Match C++11's definition of unique_ptr::reset(), which requires changing // the pointer before invoking the deleter on the old pointer. This prevents // |this| from being accessed after the deleter is run, which may destroy // |this|. T* old = data_.ptr; data_.ptr = p; if (old != nullptr) static_cast<D&>(data_)(old); } T* get() const { return data_.ptr; } D& get_deleter() { return data_; } const D& get_deleter() const { return data_; } void swap(scoped_ptr_impl& p2) { // Standard swap idiom: 'using std::swap' ensures that std::swap is // present in the overload set, but we call swap unqualified so that // any more-specific overloads can be used, if available. using std::swap; swap(static_cast<D&>(data_), static_cast<D&>(p2.data_)); swap(data_.ptr, p2.data_.ptr); } T* release() { T* old_ptr = data_.ptr; data_.ptr = nullptr; return old_ptr; } private: // Needed to allow type-converting constructor. template <typename U, typename V> friend class scoped_ptr_impl; // Use the empty base class optimization to allow us to have a D // member, while avoiding any space overhead for it when D is an // empty class. See e.g. http://www.cantrip.org/emptyopt.html for a good // discussion of this technique. struct Data : public D { explicit Data(T* ptr_in) : ptr(ptr_in) {} Data(T* ptr_in, const D& other) : D(other), ptr(ptr_in) {} T* ptr; }; Data data_; DISALLOW_COPY_AND_ASSIGN(scoped_ptr_impl); }; } // namespace internal } // namespace base // A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T> // automatically deletes the pointer it holds (if any). // That is, scoped_ptr<T> owns the T object that it points to. // Like a T*, a scoped_ptr<T> may hold either nullptr or a pointer to a T // object. Also like T*, scoped_ptr<T> is thread-compatible, and once you // dereference it, you get the thread safety guarantees of T. // // The size of scoped_ptr is small. On most compilers, when using the // std::default_delete, sizeof(scoped_ptr<T>) == sizeof(T*). Custom deleters // will increase the size proportional to whatever state they need to have. See // comments inside scoped_ptr_impl<> for details. // // Current implementation targets having a strict subset of C++11's // unique_ptr<> features. Known deficiencies include not supporting move-only // deleteres, function pointers as deleters, and deleters with reference // types. template <class T, class D = std::default_delete<T>> class scoped_ptr { DISALLOW_COPY_AND_ASSIGN_WITH_MOVE_FOR_BIND(scoped_ptr) static_assert(!std::is_array<T>::value, "scoped_ptr doesn't support array with size"); static_assert(base::internal::IsNotRefCounted<T>::value, "T is a refcounted type and needs a scoped_refptr"); public: // The element and deleter types. using element_type = T; using deleter_type = D; // Constructor. Defaults to initializing with nullptr. scoped_ptr() : impl_(nullptr) {} // Constructor. Takes ownership of p. explicit scoped_ptr(element_type* p) : impl_(p) {} // Constructor. Allows initialization of a stateful deleter. scoped_ptr(element_type* p, const D& d) : impl_(p, d) {} // Constructor. Allows construction from a nullptr. scoped_ptr(std::nullptr_t) : impl_(nullptr) {} // Move constructor. // // IMPLEMENTATION NOTE: Clang requires a move constructor to be defined (and // not just the conversion constructor) in order to warn on pessimizing moves. // The requirements for the move constructor are specified in C++11 // 20.7.1.2.1.15-17, which has some subtleties around reference deleters. As // we don't support reference (or move-only) deleters, the post conditions are // trivially true: we always copy construct the deleter from other's deleter. scoped_ptr(scoped_ptr&& other) : impl_(&other.impl_) {} // Conversion constructor. Allows construction from a scoped_ptr rvalue for a // convertible type and deleter. // // IMPLEMENTATION NOTE: C++ 20.7.1.2.1.19 requires this constructor to only // participate in overload resolution if all the following are true: // - U is implicitly convertible to T: this is important for 2 reasons: // 1. So type traits don't incorrectly return true, e.g. // std::is_convertible<scoped_ptr<Base>, scoped_ptr<Derived>>::value // should be false. // 2. To make sure code like this compiles: // void F(scoped_ptr<int>); // void F(scoped_ptr<Base>); // // Ambiguous since both conversion constructors match. // F(scoped_ptr<Derived>()); // - U is not an array type: to prevent conversions from scoped_ptr<T[]> to // scoped_ptr<T>. // - D is a reference type and E is the same type, or D is not a reference // type and E is implicitly convertible to D: again, we don't support // reference deleters, so we only worry about the latter requirement. template <typename U, typename E, typename std::enable_if<!std::is_array<U>::value && std::is_convertible<U*, T*>::value && std::is_convertible<E, D>::value>::type* = nullptr> scoped_ptr(scoped_ptr<U, E>&& other) : impl_(&other.impl_) {} // operator=. // // IMPLEMENTATION NOTE: Unlike the move constructor, Clang does not appear to // require a move assignment operator to trigger the pessimizing move warning: // in this case, the warning triggers when moving a temporary. For consistency // with the move constructor, we define it anyway. C++11 20.7.1.2.3.1-3 // defines several requirements around this: like the move constructor, the // requirements are simplified by the fact that we don't support move-only or // reference deleters. scoped_ptr& operator=(scoped_ptr&& rhs) { impl_.TakeState(&rhs.impl_); return *this; } // operator=. Allows assignment from a scoped_ptr rvalue for a convertible // type and deleter. // // IMPLEMENTATION NOTE: C++11 unique_ptr<> keeps this operator= distinct from // the normal move assignment operator. C++11 20.7.1.2.3.4-7 contains the // requirement for this operator, but like the conversion constructor, the // requirements are greatly simplified by not supporting move-only or // reference deleters. template <typename U, typename E, typename std::enable_if<!std::is_array<U>::value && std::is_convertible<U*, T*>::value && // Note that this really should be // std::is_assignable, but <type_traits> // appears to be missing this on some // platforms. This is close enough (though // it's not the same). std::is_convertible<D, E>::value>::type* = nullptr> scoped_ptr& operator=(scoped_ptr<U, E>&& rhs) { impl_.TakeState(&rhs.impl_); return *this; } // operator=. Allows assignment from a nullptr. Deletes the currently owned // object, if any. scoped_ptr& operator=(std::nullptr_t) { reset(); return *this; } // Reset. Deletes the currently owned object, if any. // Then takes ownership of a new object, if given. void reset(element_type* p = nullptr) { impl_.reset(p); } // Accessors to get the owned object. // operator* and operator-> will assert() if there is no current object. element_type& operator*() const { assert(impl_.get() != nullptr); return *impl_.get(); } element_type* operator->() const { assert(impl_.get() != nullptr); return impl_.get(); } element_type* get() const { return impl_.get(); } // Access to the deleter. deleter_type& get_deleter() { return impl_.get_deleter(); } const deleter_type& get_deleter() const { return impl_.get_deleter(); } // Allow scoped_ptr<element_type> to be used in boolean expressions, but not // implicitly convertible to a real bool (which is dangerous). // // Note that this trick is only safe when the == and != operators // are declared explicitly, as otherwise "scoped_ptr1 == // scoped_ptr2" will compile but do the wrong thing (i.e., convert // to Testable and then do the comparison). private: typedef base::internal::scoped_ptr_impl<element_type, deleter_type> scoped_ptr::*Testable; public: operator Testable() const { return impl_.get() ? &scoped_ptr::impl_ : nullptr; } // Swap two scoped pointers. void swap(scoped_ptr& p2) { impl_.swap(p2.impl_); } // Release a pointer. // The return value is the current pointer held by this object. If this object // holds a nullptr, the return value is nullptr. After this operation, this // object will hold a nullptr, and will not own the object any more. element_type* release() WARN_UNUSED_RESULT { return impl_.release(); } private: // Needed to reach into |impl_| in the constructor. template <typename U, typename V> friend class scoped_ptr; base::internal::scoped_ptr_impl<element_type, deleter_type> impl_; // Forbidden for API compatibility with std::unique_ptr. explicit scoped_ptr(int disallow_construction_from_null); }; template <class T, class D> class scoped_ptr<T[], D> { DISALLOW_COPY_AND_ASSIGN_WITH_MOVE_FOR_BIND(scoped_ptr) public: // The element and deleter types. using element_type = T; using deleter_type = D; // Constructor. Defaults to initializing with nullptr. scoped_ptr() : impl_(nullptr) {} // Constructor. Stores the given array. Note that the argument's type // must exactly match T*. In particular: // - it cannot be a pointer to a type derived from T, because it is // inherently unsafe in the general case to access an array through a // pointer whose dynamic type does not match its static type (eg., if // T and the derived types had different sizes access would be // incorrectly calculated). Deletion is also always undefined // (C++98 [expr.delete]p3). If you're doing this, fix your code. // - it cannot be const-qualified differently from T per unique_ptr spec // (http://cplusplus.github.com/LWG/lwg-active.html#2118). Users wanting // to work around this may use const_cast<const T*>(). explicit scoped_ptr(element_type* array) : impl_(array) {} // Constructor. Allows construction from a nullptr. scoped_ptr(std::nullptr_t) : impl_(nullptr) {} // Constructor. Allows construction from a scoped_ptr rvalue. scoped_ptr(scoped_ptr&& other) : impl_(&other.impl_) {} // operator=. Allows assignment from a scoped_ptr rvalue. scoped_ptr& operator=(scoped_ptr&& rhs) { impl_.TakeState(&rhs.impl_); return *this; } // operator=. Allows assignment from a nullptr. Deletes the currently owned // array, if any. scoped_ptr& operator=(std::nullptr_t) { reset(); return *this; } // Reset. Deletes the currently owned array, if any. // Then takes ownership of a new object, if given. void reset(element_type* array = nullptr) { impl_.reset(array); } // Accessors to get the owned array. element_type& operator[](size_t i) const { assert(impl_.get() != nullptr); return impl_.get()[i]; } element_type* get() const { return impl_.get(); } // Access to the deleter. deleter_type& get_deleter() { return impl_.get_deleter(); } const deleter_type& get_deleter() const { return impl_.get_deleter(); } // Allow scoped_ptr<element_type> to be used in boolean expressions, but not // implicitly convertible to a real bool (which is dangerous). private: typedef base::internal::scoped_ptr_impl<element_type, deleter_type> scoped_ptr::*Testable; public: operator Testable() const { return impl_.get() ? &scoped_ptr::impl_ : nullptr; } // Swap two scoped pointers. void swap(scoped_ptr& p2) { impl_.swap(p2.impl_); } // Release a pointer. // The return value is the current pointer held by this object. If this object // holds a nullptr, the return value is nullptr. After this operation, this // object will hold a nullptr, and will not own the object any more. element_type* release() WARN_UNUSED_RESULT { return impl_.release(); } private: // Force element_type to be a complete type. enum { type_must_be_complete = sizeof(element_type) }; // Actually hold the data. base::internal::scoped_ptr_impl<element_type, deleter_type> impl_; // Disable initialization from any type other than element_type*, by // providing a constructor that matches such an initialization, but is // private and has no definition. This is disabled because it is not safe to // call delete[] on an array whose static type does not match its dynamic // type. template <typename U> explicit scoped_ptr(U* array); explicit scoped_ptr(int disallow_construction_from_null); // Disable reset() from any type other than element_type*, for the same // reasons as the constructor above. template <typename U> void reset(U* array); void reset(int disallow_reset_from_null); }; // Free functions template <class T, class D> void swap(scoped_ptr<T, D>& p1, scoped_ptr<T, D>& p2) { p1.swap(p2); } template <class T1, class D1, class T2, class D2> bool operator==(const scoped_ptr<T1, D1>& p1, const scoped_ptr<T2, D2>& p2) { return p1.get() == p2.get(); } template <class T, class D> bool operator==(const scoped_ptr<T, D>& p, std::nullptr_t) { return p.get() == nullptr; } template <class T, class D> bool operator==(std::nullptr_t, const scoped_ptr<T, D>& p) { return p.get() == nullptr; } template <class T1, class D1, class T2, class D2> bool operator!=(const scoped_ptr<T1, D1>& p1, const scoped_ptr<T2, D2>& p2) { return !(p1 == p2); } template <class T, class D> bool operator!=(const scoped_ptr<T, D>& p, std::nullptr_t) { return !(p == nullptr); } template <class T, class D> bool operator!=(std::nullptr_t, const scoped_ptr<T, D>& p) { return !(p == nullptr); } template <class T1, class D1, class T2, class D2> bool operator<(const scoped_ptr<T1, D1>& p1, const scoped_ptr<T2, D2>& p2) { return p1.get() < p2.get(); } template <class T, class D> bool operator<(const scoped_ptr<T, D>& p, std::nullptr_t) { auto* ptr = p.get(); return ptr < static_cast<decltype(ptr)>(nullptr); } template <class T, class D> bool operator<(std::nullptr_t, const scoped_ptr<T, D>& p) { auto* ptr = p.get(); return static_cast<decltype(ptr)>(nullptr) < ptr; } template <class T1, class D1, class T2, class D2> bool operator>(const scoped_ptr<T1, D1>& p1, const scoped_ptr<T2, D2>& p2) { return p2 < p1; } template <class T, class D> bool operator>(const scoped_ptr<T, D>& p, std::nullptr_t) { return nullptr < p; } template <class T, class D> bool operator>(std::nullptr_t, const scoped_ptr<T, D>& p) { return p < nullptr; } template <class T1, class D1, class T2, class D2> bool operator<=(const scoped_ptr<T1, D1>& p1, const scoped_ptr<T2, D2>& p2) { return !(p1 > p2); } template <class T, class D> bool operator<=(const scoped_ptr<T, D>& p, std::nullptr_t) { return !(p > nullptr); } template <class T, class D> bool operator<=(std::nullptr_t, const scoped_ptr<T, D>& p) { return !(nullptr > p); } template <class T1, class D1, class T2, class D2> bool operator>=(const scoped_ptr<T1, D1>& p1, const scoped_ptr<T2, D2>& p2) { return !(p1 < p2); } template <class T, class D> bool operator>=(const scoped_ptr<T, D>& p, std::nullptr_t) { return !(p < nullptr); } template <class T, class D> bool operator>=(std::nullptr_t, const scoped_ptr<T, D>& p) { return !(nullptr < p); } // A function to convert T* into scoped_ptr<T> // Doing e.g. make_scoped_ptr(new FooBarBaz<type>(arg)) is a shorter notation // for scoped_ptr<FooBarBaz<type> >(new FooBarBaz<type>(arg)) template <typename T> scoped_ptr<T> make_scoped_ptr(T* ptr) { return scoped_ptr<T>(ptr); } template <typename T> std::ostream& operator<<(std::ostream& out, const scoped_ptr<T>& p) { return out << p.get(); } #endif // BASE_MEMORY_SCOPED_PTR_H_