// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef BASE_MEMORY_REF_COUNTED_H_ #define BASE_MEMORY_REF_COUNTED_H_ #include <cassert> #include <iosfwd> #include "base/atomic_ref_count.h" #include "base/base_export.h" #include "base/compiler_specific.h" #include "base/macros.h" #ifndef NDEBUG #include "base/logging.h" #endif #include "base/threading/thread_collision_warner.h" #include "build/build_config.h" namespace base { namespace subtle { class BASE_EXPORT RefCountedBase { public: bool HasOneRef() const { return ref_count_ == 1; } protected: RefCountedBase() : ref_count_(0) #ifndef NDEBUG , in_dtor_(false) #endif { } ~RefCountedBase() { #ifndef NDEBUG DCHECK(in_dtor_) << "RefCounted object deleted without calling Release()"; #endif } void AddRef() const { // TODO(maruel): Add back once it doesn't assert 500 times/sec. // Current thread books the critical section "AddRelease" // without release it. // DFAKE_SCOPED_LOCK_THREAD_LOCKED(add_release_); #ifndef NDEBUG DCHECK(!in_dtor_); #endif ++ref_count_; } // Returns true if the object should self-delete. bool Release() const { // TODO(maruel): Add back once it doesn't assert 500 times/sec. // Current thread books the critical section "AddRelease" // without release it. // DFAKE_SCOPED_LOCK_THREAD_LOCKED(add_release_); #ifndef NDEBUG DCHECK(!in_dtor_); #endif if (--ref_count_ == 0) { #ifndef NDEBUG in_dtor_ = true; #endif return true; } return false; } private: mutable int ref_count_; #ifndef NDEBUG mutable bool in_dtor_; #endif DFAKE_MUTEX(add_release_); DISALLOW_COPY_AND_ASSIGN(RefCountedBase); }; class BASE_EXPORT RefCountedThreadSafeBase { public: bool HasOneRef() const; protected: RefCountedThreadSafeBase(); ~RefCountedThreadSafeBase(); void AddRef() const; // Returns true if the object should self-delete. bool Release() const; private: mutable AtomicRefCount ref_count_; #ifndef NDEBUG mutable bool in_dtor_; #endif DISALLOW_COPY_AND_ASSIGN(RefCountedThreadSafeBase); }; } // namespace subtle // // A base class for reference counted classes. Otherwise, known as a cheap // knock-off of WebKit's RefCounted<T> class. To use this guy just extend your // class from it like so: // // class MyFoo : public base::RefCounted<MyFoo> { // ... // private: // friend class base::RefCounted<MyFoo>; // ~MyFoo(); // }; // // You should always make your destructor non-public, to avoid any code deleting // the object accidently while there are references to it. template <class T> class RefCounted : public subtle::RefCountedBase { public: RefCounted() {} void AddRef() const { subtle::RefCountedBase::AddRef(); } void Release() const { if (subtle::RefCountedBase::Release()) { delete static_cast<const T*>(this); } } protected: ~RefCounted() {} private: DISALLOW_COPY_AND_ASSIGN(RefCounted<T>); }; // Forward declaration. template <class T, typename Traits> class RefCountedThreadSafe; // Default traits for RefCountedThreadSafe<T>. Deletes the object when its ref // count reaches 0. Overload to delete it on a different thread etc. template<typename T> struct DefaultRefCountedThreadSafeTraits { static void Destruct(const T* x) { // Delete through RefCountedThreadSafe to make child classes only need to be // friend with RefCountedThreadSafe instead of this struct, which is an // implementation detail. RefCountedThreadSafe<T, DefaultRefCountedThreadSafeTraits>::DeleteInternal(x); } }; // // A thread-safe variant of RefCounted<T> // // class MyFoo : public base::RefCountedThreadSafe<MyFoo> { // ... // }; // // If you're using the default trait, then you should add compile time // asserts that no one else is deleting your object. i.e. // private: // friend class base::RefCountedThreadSafe<MyFoo>; // ~MyFoo(); template <class T, typename Traits = DefaultRefCountedThreadSafeTraits<T> > class RefCountedThreadSafe : public subtle::RefCountedThreadSafeBase { public: RefCountedThreadSafe() {} void AddRef() const { subtle::RefCountedThreadSafeBase::AddRef(); } void Release() const { if (subtle::RefCountedThreadSafeBase::Release()) { Traits::Destruct(static_cast<const T*>(this)); } } protected: ~RefCountedThreadSafe() {} private: friend struct DefaultRefCountedThreadSafeTraits<T>; static void DeleteInternal(const T* x) { delete x; } DISALLOW_COPY_AND_ASSIGN(RefCountedThreadSafe); }; // // A thread-safe wrapper for some piece of data so we can place other // things in scoped_refptrs<>. // template<typename T> class RefCountedData : public base::RefCountedThreadSafe< base::RefCountedData<T> > { public: RefCountedData() : data() {} RefCountedData(const T& in_value) : data(in_value) {} T data; private: friend class base::RefCountedThreadSafe<base::RefCountedData<T> >; ~RefCountedData() {} }; } // namespace base // // A smart pointer class for reference counted objects. Use this class instead // of calling AddRef and Release manually on a reference counted object to // avoid common memory leaks caused by forgetting to Release an object // reference. Sample usage: // // class MyFoo : public RefCounted<MyFoo> { // ... // }; // // void some_function() { // scoped_refptr<MyFoo> foo = new MyFoo(); // foo->Method(param); // // |foo| is released when this function returns // } // // void some_other_function() { // scoped_refptr<MyFoo> foo = new MyFoo(); // ... // foo = NULL; // explicitly releases |foo| // ... // if (foo) // foo->Method(param); // } // // The above examples show how scoped_refptr<T> acts like a pointer to T. // Given two scoped_refptr<T> classes, it is also possible to exchange // references between the two objects, like so: // // { // scoped_refptr<MyFoo> a = new MyFoo(); // scoped_refptr<MyFoo> b; // // b.swap(a); // // now, |b| references the MyFoo object, and |a| references NULL. // } // // To make both |a| and |b| in the above example reference the same MyFoo // object, simply use the assignment operator: // // { // scoped_refptr<MyFoo> a = new MyFoo(); // scoped_refptr<MyFoo> b; // // b = a; // // now, |a| and |b| each own a reference to the same MyFoo object. // } // template <class T> class scoped_refptr { public: typedef T element_type; scoped_refptr() : ptr_(NULL) { } scoped_refptr(T* p) : ptr_(p) { if (ptr_) AddRef(ptr_); } // Copy constructor. scoped_refptr(const scoped_refptr<T>& r) : ptr_(r.ptr_) { if (ptr_) AddRef(ptr_); } // Copy conversion constructor. template <typename U> scoped_refptr(const scoped_refptr<U>& r) : ptr_(r.get()) { if (ptr_) AddRef(ptr_); } // Move constructor. This is required in addition to the conversion // constructor below in order for clang to warn about pessimizing moves. scoped_refptr(scoped_refptr&& r) : ptr_(r.get()) { r.ptr_ = nullptr; } // Move conversion constructor. template <typename U> scoped_refptr(scoped_refptr<U>&& r) : ptr_(r.get()) { r.ptr_ = nullptr; } ~scoped_refptr() { if (ptr_) Release(ptr_); } T* get() const { return ptr_; } T& operator*() const { assert(ptr_ != NULL); return *ptr_; } T* operator->() const { assert(ptr_ != NULL); return ptr_; } scoped_refptr<T>& operator=(T* p) { // AddRef first so that self assignment should work if (p) AddRef(p); T* old_ptr = ptr_; ptr_ = p; if (old_ptr) Release(old_ptr); return *this; } scoped_refptr<T>& operator=(const scoped_refptr<T>& r) { return *this = r.ptr_; } template <typename U> scoped_refptr<T>& operator=(const scoped_refptr<U>& r) { return *this = r.get(); } scoped_refptr<T>& operator=(scoped_refptr<T>&& r) { scoped_refptr<T>(std::move(r)).swap(*this); return *this; } template <typename U> scoped_refptr<T>& operator=(scoped_refptr<U>&& r) { scoped_refptr<T>(std::move(r)).swap(*this); return *this; } void swap(T** pp) { T* p = ptr_; ptr_ = *pp; *pp = p; } void swap(scoped_refptr<T>& r) { swap(&r.ptr_); } private: template <typename U> friend class scoped_refptr; // Allow scoped_refptr<T> to be used in boolean expressions, but not // implicitly convertible to a real bool (which is dangerous). // // Note that this trick is only safe when the == and != operators // are declared explicitly, as otherwise "refptr1 == refptr2" // will compile but do the wrong thing (i.e., convert to Testable // and then do the comparison). typedef T* scoped_refptr::*Testable; public: operator Testable() const { return ptr_ ? &scoped_refptr::ptr_ : nullptr; } template <typename U> bool operator==(const scoped_refptr<U>& rhs) const { return ptr_ == rhs.get(); } template <typename U> bool operator!=(const scoped_refptr<U>& rhs) const { return !operator==(rhs); } template <typename U> bool operator<(const scoped_refptr<U>& rhs) const { return ptr_ < rhs.get(); } protected: T* ptr_; private: // Non-inline helpers to allow: // class Opaque; // extern template class scoped_refptr<Opaque>; // Otherwise the compiler will complain that Opaque is an incomplete type. static void AddRef(T* ptr); static void Release(T* ptr); }; template <typename T> void scoped_refptr<T>::AddRef(T* ptr) { ptr->AddRef(); } template <typename T> void scoped_refptr<T>::Release(T* ptr) { ptr->Release(); } // Handy utility for creating a scoped_refptr<T> out of a T* explicitly without // having to retype all the template arguments template <typename T> scoped_refptr<T> make_scoped_refptr(T* t) { return scoped_refptr<T>(t); } // Temporary operator overloads to facilitate the transition. See // https://crbug.com/110610. template <typename T, typename U> bool operator==(const scoped_refptr<T>& lhs, const U* rhs) { return lhs.get() == rhs; } template <typename T, typename U> bool operator==(const T* lhs, const scoped_refptr<U>& rhs) { return lhs == rhs.get(); } template <typename T, typename U> bool operator!=(const scoped_refptr<T>& lhs, const U* rhs) { return !operator==(lhs, rhs); } template <typename T, typename U> bool operator!=(const T* lhs, const scoped_refptr<U>& rhs) { return !operator==(lhs, rhs); } template <typename T> std::ostream& operator<<(std::ostream& out, const scoped_refptr<T>& p) { return out << p.get(); } #endif // BASE_MEMORY_REF_COUNTED_H_