// Copyright (c) 2011 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // // // Deal with the differences between Microsoft and GNU implemenations // of hash_map. Allows all platforms to use |base::hash_map| and // |base::hash_set|. // eg: // base::hash_map<int> my_map; // base::hash_set<int> my_set; // // NOTE: It is an explicit non-goal of this class to provide a generic hash // function for pointers. If you want to hash a pointers to a particular class, // please define the template specialization elsewhere (for example, in its // header file) and keep it specific to just pointers to that class. This is // because identity hashes are not desirable for all types that might show up // in containers as pointers. #ifndef BASE_CONTAINERS_HASH_TABLES_H_ #define BASE_CONTAINERS_HASH_TABLES_H_ #include <stddef.h> #include <stdint.h> #include <utility> #include "base/strings/string16.h" #include "build/build_config.h" #if defined(COMPILER_MSVC) #include <unordered_map> #include <unordered_set> #define BASE_HASH_NAMESPACE std #elif defined(COMPILER_GCC) #define BASE_HASH_NAMESPACE base_hash // This is a hack to disable the gcc 4.4 warning about hash_map and hash_set // being deprecated. We can get rid of this when we upgrade to VS2008 and we // can use <tr1/unordered_map> and <tr1/unordered_set>. #ifdef __DEPRECATED #define CHROME_OLD__DEPRECATED __DEPRECATED #undef __DEPRECATED #endif #include <ext/hash_map> #include <ext/hash_set> #define BASE_HASH_IMPL_NAMESPACE __gnu_cxx #include <string> #ifdef CHROME_OLD__DEPRECATED #define __DEPRECATED CHROME_OLD__DEPRECATED #undef CHROME_OLD__DEPRECATED #endif namespace BASE_HASH_NAMESPACE { // The pre-standard hash behaves like C++11's std::hash, except around pointers. // const char* is specialized to hash the C string and hash functions for // general T* are missing. Define a BASE_HASH_NAMESPACE::hash which aligns with // the C++11 behavior. template<typename T> struct hash { std::size_t operator()(const T& value) const { return BASE_HASH_IMPL_NAMESPACE::hash<T>()(value); } }; template<typename T> struct hash<T*> { std::size_t operator()(T* value) const { return BASE_HASH_IMPL_NAMESPACE::hash<uintptr_t>()( reinterpret_cast<uintptr_t>(value)); } }; // The GNU C++ library provides identity hash functions for many integral types, // but not for |long long|. This hash function will truncate if |size_t| is // narrower than |long long|. This is probably good enough for what we will // use it for. #define DEFINE_TRIVIAL_HASH(integral_type) \ template<> \ struct hash<integral_type> { \ std::size_t operator()(integral_type value) const { \ return static_cast<std::size_t>(value); \ } \ } DEFINE_TRIVIAL_HASH(long long); DEFINE_TRIVIAL_HASH(unsigned long long); #undef DEFINE_TRIVIAL_HASH // Implement string hash functions so that strings of various flavors can // be used as keys in STL maps and sets. The hash algorithm comes from the // GNU C++ library, in <tr1/functional>. It is duplicated here because GCC // versions prior to 4.3.2 are unable to compile <tr1/functional> when RTTI // is disabled, as it is in our build. #define DEFINE_STRING_HASH(string_type) \ template<> \ struct hash<string_type> { \ std::size_t operator()(const string_type& s) const { \ std::size_t result = 0; \ for (string_type::const_iterator i = s.begin(); i != s.end(); ++i) \ result = (result * 131) + *i; \ return result; \ } \ } DEFINE_STRING_HASH(std::string); DEFINE_STRING_HASH(base::string16); #undef DEFINE_STRING_HASH } // namespace BASE_HASH_NAMESPACE #else // COMPILER #error define BASE_HASH_NAMESPACE for your compiler #endif // COMPILER namespace base { // On MSVC, use the C++11 containers. #if defined(COMPILER_MSVC) template<class Key, class T, class Hash = std::hash<Key>, class Pred = std::equal_to<Key>, class Alloc = std::allocator<std::pair<const Key, T>>> using hash_map = std::unordered_map<Key, T, Hash, Pred, Alloc>; template<class Key, class T, class Hash = std::hash<Key>, class Pred = std::equal_to<Key>, class Alloc = std::allocator<std::pair<const Key, T>>> using hash_multimap = std::unordered_multimap<Key, T, Hash, Pred, Alloc>; template<class Key, class Hash = std::hash<Key>, class Pred = std::equal_to<Key>, class Alloc = std::allocator<Key>> using hash_multiset = std::unordered_multiset<Key, Hash, Pred, Alloc>; template<class Key, class Hash = std::hash<Key>, class Pred = std::equal_to<Key>, class Alloc = std::allocator<Key>> using hash_set = std::unordered_set<Key, Hash, Pred, Alloc>; #else // !COMPILER_MSVC // Otherwise, use the pre-standard ones, but override the default hash to match // C++11. template<class Key, class T, class Hash = BASE_HASH_NAMESPACE::hash<Key>, class Pred = std::equal_to<Key>, class Alloc = std::allocator<std::pair<const Key, T>>> using hash_map = BASE_HASH_IMPL_NAMESPACE::hash_map<Key, T, Hash, Pred, Alloc>; template<class Key, class T, class Hash = BASE_HASH_NAMESPACE::hash<Key>, class Pred = std::equal_to<Key>, class Alloc = std::allocator<std::pair<const Key, T>>> using hash_multimap = BASE_HASH_IMPL_NAMESPACE::hash_multimap<Key, T, Hash, Pred, Alloc>; template<class Key, class Hash = BASE_HASH_NAMESPACE::hash<Key>, class Pred = std::equal_to<Key>, class Alloc = std::allocator<Key>> using hash_multiset = BASE_HASH_IMPL_NAMESPACE::hash_multiset<Key, Hash, Pred, Alloc>; template<class Key, class Hash = BASE_HASH_NAMESPACE::hash<Key>, class Pred = std::equal_to<Key>, class Alloc = std::allocator<Key>> using hash_set = BASE_HASH_IMPL_NAMESPACE::hash_set<Key, Hash, Pred, Alloc>; #undef BASE_HASH_IMPL_NAMESPACE #endif // COMPILER_MSVC // Implement hashing for pairs of at-most 32 bit integer values. // When size_t is 32 bits, we turn the 64-bit hash code into 32 bits by using // multiply-add hashing. This algorithm, as described in // Theorem 4.3.3 of the thesis "Über die Komplexität der Multiplikation in // eingeschränkten Branchingprogrammmodellen" by Woelfel, is: // // h32(x32, y32) = (h64(x32, y32) * rand_odd64 + rand16 * 2^16) % 2^64 / 2^32 // // Contact danakj@chromium.org for any questions. inline std::size_t HashInts32(uint32_t value1, uint32_t value2) { uint64_t value1_64 = value1; uint64_t hash64 = (value1_64 << 32) | value2; if (sizeof(std::size_t) >= sizeof(uint64_t)) return static_cast<std::size_t>(hash64); uint64_t odd_random = 481046412LL << 32 | 1025306955LL; uint32_t shift_random = 10121U << 16; hash64 = hash64 * odd_random + shift_random; std::size_t high_bits = static_cast<std::size_t>( hash64 >> (8 * (sizeof(uint64_t) - sizeof(std::size_t)))); return high_bits; } // Implement hashing for pairs of up-to 64-bit integer values. // We use the compound integer hash method to produce a 64-bit hash code, by // breaking the two 64-bit inputs into 4 32-bit values: // http://opendatastructures.org/versions/edition-0.1d/ods-java/node33.html#SECTION00832000000000000000 // Then we reduce our result to 32 bits if required, similar to above. inline std::size_t HashInts64(uint64_t value1, uint64_t value2) { uint32_t short_random1 = 842304669U; uint32_t short_random2 = 619063811U; uint32_t short_random3 = 937041849U; uint32_t short_random4 = 3309708029U; uint32_t value1a = static_cast<uint32_t>(value1 & 0xffffffff); uint32_t value1b = static_cast<uint32_t>((value1 >> 32) & 0xffffffff); uint32_t value2a = static_cast<uint32_t>(value2 & 0xffffffff); uint32_t value2b = static_cast<uint32_t>((value2 >> 32) & 0xffffffff); uint64_t product1 = static_cast<uint64_t>(value1a) * short_random1; uint64_t product2 = static_cast<uint64_t>(value1b) * short_random2; uint64_t product3 = static_cast<uint64_t>(value2a) * short_random3; uint64_t product4 = static_cast<uint64_t>(value2b) * short_random4; uint64_t hash64 = product1 + product2 + product3 + product4; if (sizeof(std::size_t) >= sizeof(uint64_t)) return static_cast<std::size_t>(hash64); uint64_t odd_random = 1578233944LL << 32 | 194370989LL; uint32_t shift_random = 20591U << 16; hash64 = hash64 * odd_random + shift_random; std::size_t high_bits = static_cast<std::size_t>( hash64 >> (8 * (sizeof(uint64_t) - sizeof(std::size_t)))); return high_bits; } template<typename T1, typename T2> inline std::size_t HashPair(T1 value1, T2 value2) { // This condition is expected to be compile-time evaluated and optimised away // in release builds. if (sizeof(T1) > sizeof(uint32_t) || (sizeof(T2) > sizeof(uint32_t))) return HashInts64(value1, value2); return HashInts32(value1, value2); } } // namespace base namespace BASE_HASH_NAMESPACE { // Implement methods for hashing a pair of integers, so they can be used as // keys in STL containers. template<typename Type1, typename Type2> struct hash<std::pair<Type1, Type2> > { std::size_t operator()(std::pair<Type1, Type2> value) const { return base::HashPair(value.first, value.second); } }; } // namespace BASE_HASH_NAMESPACE #undef DEFINE_PAIR_HASH_FUNCTION_START #undef DEFINE_PAIR_HASH_FUNCTION_END #endif // BASE_CONTAINERS_HASH_TABLES_H_