// Copyright (c) 2011 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef BASE_BIND_INTERNAL_H_ #define BASE_BIND_INTERNAL_H_ #include <stddef.h> #include <type_traits> #include "base/bind_helpers.h" #include "base/callback_internal.h" #include "base/memory/raw_scoped_refptr_mismatch_checker.h" #include "base/memory/weak_ptr.h" #include "base/template_util.h" #include "base/tuple.h" #include "build/build_config.h" #if defined(OS_WIN) #include "base/bind_internal_win.h" #endif namespace base { namespace internal { // See base/callback.h for user documentation. // // // CONCEPTS: // Runnable -- A type (really a type class) that has a single Run() method // and a RunType typedef that corresponds to the type of Run(). // A Runnable can declare that it should treated like a method // call by including a typedef named IsMethod. The value of // this typedef is NOT inspected, only the existence. When a // Runnable declares itself a method, Bind() will enforce special // refcounting + WeakPtr handling semantics for the first // parameter which is expected to be an object. // Functor -- A copyable type representing something that should be called. // All function pointers, Callback<>, and Runnables are functors // even if the invocation syntax differs. // RunType -- A function type (as opposed to function _pointer_ type) for // a Run() function. Usually just a convenience typedef. // (Bound)Args -- A set of types that stores the arguments. // // Types: // RunnableAdapter<> -- Wraps the various "function" pointer types into an // object that adheres to the Runnable interface. // ForceVoidReturn<> -- Helper class for translating function signatures to // equivalent forms with a "void" return type. // FunctorTraits<> -- Type traits used determine the correct RunType and // RunnableType for a Functor. This is where function // signature adapters are applied. // MakeRunnable<> -- Takes a Functor and returns an object in the Runnable // type class that represents the underlying Functor. // InvokeHelper<> -- Take a Runnable + arguments and actully invokes it. // Handle the differing syntaxes needed for WeakPtr<> // support, and for ignoring return values. This is separate // from Invoker to avoid creating multiple version of // Invoker<>. // Invoker<> -- Unwraps the curried parameters and executes the Runnable. // BindState<> -- Stores the curried parameters, and is the main entry point // into the Bind() system, doing most of the type resolution. // There are ARITY BindState types. // HasNonConstReferenceParam selects true_type when any of the parameters in // |Sig| is a non-const reference. // Implementation note: This non-specialized case handles zero-arity case only. // Non-zero-arity cases should be handled by the specialization below. template <typename List> struct HasNonConstReferenceItem : false_type {}; // Implementation note: Select true_type if the first parameter is a non-const // reference. Otherwise, skip the first parameter and check rest of parameters // recursively. template <typename T, typename... Args> struct HasNonConstReferenceItem<TypeList<T, Args...>> : std::conditional<is_non_const_reference<T>::value, true_type, HasNonConstReferenceItem<TypeList<Args...>>>::type {}; // HasRefCountedTypeAsRawPtr selects true_type when any of the |Args| is a raw // pointer to a RefCounted type. // Implementation note: This non-specialized case handles zero-arity case only. // Non-zero-arity cases should be handled by the specialization below. template <typename... Args> struct HasRefCountedTypeAsRawPtr : false_type {}; // Implementation note: Select true_type if the first parameter is a raw pointer // to a RefCounted type. Otherwise, skip the first parameter and check rest of // parameters recursively. template <typename T, typename... Args> struct HasRefCountedTypeAsRawPtr<T, Args...> : std::conditional<NeedsScopedRefptrButGetsRawPtr<T>::value, true_type, HasRefCountedTypeAsRawPtr<Args...>>::type {}; // BindsArrayToFirstArg selects true_type when |is_method| is true and the first // item of |Args| is an array type. // Implementation note: This non-specialized case handles !is_method case and // zero-arity case only. Other cases should be handled by the specialization // below. template <bool is_method, typename... Args> struct BindsArrayToFirstArg : false_type {}; template <typename T, typename... Args> struct BindsArrayToFirstArg<true, T, Args...> : is_array<T> {}; // HasRefCountedParamAsRawPtr is the same to HasRefCountedTypeAsRawPtr except // when |is_method| is true HasRefCountedParamAsRawPtr skips the first argument. // Implementation note: This non-specialized case handles !is_method case and // zero-arity case only. Other cases should be handled by the specialization // below. template <bool is_method, typename... Args> struct HasRefCountedParamAsRawPtr : HasRefCountedTypeAsRawPtr<Args...> {}; template <typename T, typename... Args> struct HasRefCountedParamAsRawPtr<true, T, Args...> : HasRefCountedTypeAsRawPtr<Args...> {}; // RunnableAdapter<> // // The RunnableAdapter<> templates provide a uniform interface for invoking // a function pointer, method pointer, or const method pointer. The adapter // exposes a Run() method with an appropriate signature. Using this wrapper // allows for writing code that supports all three pointer types without // undue repetition. Without it, a lot of code would need to be repeated 3 // times. // // For method pointers and const method pointers the first argument to Run() // is considered to be the received of the method. This is similar to STL's // mem_fun(). // // This class also exposes a RunType typedef that is the function type of the // Run() function. // // If and only if the wrapper contains a method or const method pointer, an // IsMethod typedef is exposed. The existence of this typedef (NOT the value) // marks that the wrapper should be considered a method wrapper. template <typename Functor> class RunnableAdapter; // Function. template <typename R, typename... Args> class RunnableAdapter<R(*)(Args...)> { public: // MSVC 2013 doesn't support Type Alias of function types. // Revisit this after we update it to newer version. typedef R RunType(Args...); explicit RunnableAdapter(R(*function)(Args...)) : function_(function) { } R Run(typename CallbackParamTraits<Args>::ForwardType... args) { return function_(CallbackForward(args)...); } private: R (*function_)(Args...); }; // Method. template <typename R, typename T, typename... Args> class RunnableAdapter<R(T::*)(Args...)> { public: // MSVC 2013 doesn't support Type Alias of function types. // Revisit this after we update it to newer version. typedef R RunType(T*, Args...); using IsMethod = true_type; explicit RunnableAdapter(R(T::*method)(Args...)) : method_(method) { } R Run(T* object, typename CallbackParamTraits<Args>::ForwardType... args) { return (object->*method_)(CallbackForward(args)...); } private: R (T::*method_)(Args...); }; // Const Method. template <typename R, typename T, typename... Args> class RunnableAdapter<R(T::*)(Args...) const> { public: using RunType = R(const T*, Args...); using IsMethod = true_type; explicit RunnableAdapter(R(T::*method)(Args...) const) : method_(method) { } R Run(const T* object, typename CallbackParamTraits<Args>::ForwardType... args) { return (object->*method_)(CallbackForward(args)...); } private: R (T::*method_)(Args...) const; }; // ForceVoidReturn<> // // Set of templates that support forcing the function return type to void. template <typename Sig> struct ForceVoidReturn; template <typename R, typename... Args> struct ForceVoidReturn<R(Args...)> { // MSVC 2013 doesn't support Type Alias of function types. // Revisit this after we update it to newer version. typedef void RunType(Args...); }; // FunctorTraits<> // // See description at top of file. template <typename T> struct FunctorTraits { using RunnableType = RunnableAdapter<T>; using RunType = typename RunnableType::RunType; }; template <typename T> struct FunctorTraits<IgnoreResultHelper<T>> { using RunnableType = typename FunctorTraits<T>::RunnableType; using RunType = typename ForceVoidReturn<typename RunnableType::RunType>::RunType; }; template <typename T> struct FunctorTraits<Callback<T>> { using RunnableType = Callback<T> ; using RunType = typename Callback<T>::RunType; }; // MakeRunnable<> // // Converts a passed in functor to a RunnableType using type inference. template <typename T> typename FunctorTraits<T>::RunnableType MakeRunnable(const T& t) { return RunnableAdapter<T>(t); } template <typename T> typename FunctorTraits<T>::RunnableType MakeRunnable(const IgnoreResultHelper<T>& t) { return MakeRunnable(t.functor_); } template <typename T> const typename FunctorTraits<Callback<T>>::RunnableType& MakeRunnable(const Callback<T>& t) { DCHECK(!t.is_null()); return t; } // InvokeHelper<> // // There are 3 logical InvokeHelper<> specializations: normal, void-return, // WeakCalls. // // The normal type just calls the underlying runnable. // // We need a InvokeHelper to handle void return types in order to support // IgnoreResult(). Normally, if the Runnable's RunType had a void return, // the template system would just accept "return functor.Run()" ignoring // the fact that a void function is being used with return. This piece of // sugar breaks though when the Runnable's RunType is not void. Thus, we // need a partial specialization to change the syntax to drop the "return" // from the invocation call. // // WeakCalls similarly need special syntax that is applied to the first // argument to check if they should no-op themselves. template <bool IsWeakCall, typename ReturnType, typename Runnable, typename ArgsType> struct InvokeHelper; template <typename ReturnType, typename Runnable, typename... Args> struct InvokeHelper<false, ReturnType, Runnable, TypeList<Args...>> { static ReturnType MakeItSo(Runnable runnable, Args... args) { return runnable.Run(CallbackForward(args)...); } }; template <typename Runnable, typename... Args> struct InvokeHelper<false, void, Runnable, TypeList<Args...>> { static void MakeItSo(Runnable runnable, Args... args) { runnable.Run(CallbackForward(args)...); } }; template <typename Runnable, typename BoundWeakPtr, typename... Args> struct InvokeHelper<true, void, Runnable, TypeList<BoundWeakPtr, Args...>> { static void MakeItSo(Runnable runnable, BoundWeakPtr weak_ptr, Args... args) { if (!weak_ptr.get()) { return; } runnable.Run(weak_ptr.get(), CallbackForward(args)...); } }; #if !defined(_MSC_VER) template <typename ReturnType, typename Runnable, typename ArgsType> struct InvokeHelper<true, ReturnType, Runnable, ArgsType> { // WeakCalls are only supported for functions with a void return type. // Otherwise, the function result would be undefined if the the WeakPtr<> // is invalidated. static_assert(is_void<ReturnType>::value, "weak_ptrs can only bind to methods without return values"); }; #endif // Invoker<> // // See description at the top of the file. template <typename BoundIndices, typename StorageType, typename Unwrappers, typename InvokeHelperType, typename UnboundForwardRunType> struct Invoker; template <size_t... bound_indices, typename StorageType, typename... Unwrappers, typename InvokeHelperType, typename R, typename... UnboundForwardArgs> struct Invoker<IndexSequence<bound_indices...>, StorageType, TypeList<Unwrappers...>, InvokeHelperType, R(UnboundForwardArgs...)> { static R Run(BindStateBase* base, UnboundForwardArgs... unbound_args) { StorageType* storage = static_cast<StorageType*>(base); // Local references to make debugger stepping easier. If in a debugger, // you really want to warp ahead and step through the // InvokeHelper<>::MakeItSo() call below. return InvokeHelperType::MakeItSo( storage->runnable_, Unwrappers::Unwrap(get<bound_indices>(storage->bound_args_))..., CallbackForward(unbound_args)...); } }; // BindState<> // // This stores all the state passed into Bind() and is also where most // of the template resolution magic occurs. // // Runnable is the functor we are binding arguments to. // RunType is type of the Run() function that the Invoker<> should use. // Normally, this is the same as the RunType of the Runnable, but it can // be different if an adapter like IgnoreResult() has been used. // // BoundArgs contains the storage type for all the bound arguments. template <typename Runnable, typename RunType, typename... BoundArgs> struct BindState; template <typename Runnable, typename R, typename... Args, typename... BoundArgs> struct BindState<Runnable, R(Args...), BoundArgs...> final : public BindStateBase { private: using StorageType = BindState<Runnable, R(Args...), BoundArgs...>; using RunnableType = Runnable; // true_type if Runnable is a method invocation and the first bound argument // is a WeakPtr. using IsWeakCall = IsWeakMethod<HasIsMethodTag<Runnable>::value, BoundArgs...>; using BoundIndices = MakeIndexSequence<sizeof...(BoundArgs)>; using Unwrappers = TypeList<UnwrapTraits<BoundArgs>...>; using UnboundForwardArgs = DropTypeListItem< sizeof...(BoundArgs), TypeList<typename CallbackParamTraits<Args>::ForwardType...>>; using UnboundForwardRunType = MakeFunctionType<R, UnboundForwardArgs>; using InvokeHelperArgs = ConcatTypeLists< TypeList<typename UnwrapTraits<BoundArgs>::ForwardType...>, UnboundForwardArgs>; using InvokeHelperType = InvokeHelper<IsWeakCall::value, R, Runnable, InvokeHelperArgs>; using UnboundArgs = DropTypeListItem<sizeof...(BoundArgs), TypeList<Args...>>; public: using InvokerType = Invoker<BoundIndices, StorageType, Unwrappers, InvokeHelperType, UnboundForwardRunType>; using UnboundRunType = MakeFunctionType<R, UnboundArgs>; BindState(const Runnable& runnable, const BoundArgs&... bound_args) : BindStateBase(&Destroy), runnable_(runnable), ref_(bound_args...), bound_args_(bound_args...) {} RunnableType runnable_; MaybeScopedRefPtr<HasIsMethodTag<Runnable>::value, BoundArgs...> ref_; Tuple<BoundArgs...> bound_args_; private: ~BindState() {} static void Destroy(BindStateBase* self) { delete static_cast<BindState*>(self); } }; } // namespace internal } // namespace base #endif // BASE_BIND_INTERNAL_H_