// Copyright (c) 2011 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // This defines a set of argument wrappers and related factory methods that // can be used specify the refcounting and reference semantics of arguments // that are bound by the Bind() function in base/bind.h. // // It also defines a set of simple functions and utilities that people want // when using Callback<> and Bind(). // // // ARGUMENT BINDING WRAPPERS // // The wrapper functions are base::Unretained(), base::Owned(), base::Passed(), // base::ConstRef(), and base::IgnoreResult(). // // Unretained() allows Bind() to bind a non-refcounted class, and to disable // refcounting on arguments that are refcounted objects. // // Owned() transfers ownership of an object to the Callback resulting from // bind; the object will be deleted when the Callback is deleted. // // Passed() is for transferring movable-but-not-copyable types (eg. scoped_ptr) // through a Callback. Logically, this signifies a destructive transfer of // the state of the argument into the target function. Invoking // Callback::Run() twice on a Callback that was created with a Passed() // argument will CHECK() because the first invocation would have already // transferred ownership to the target function. // // ConstRef() allows binding a constant reference to an argument rather // than a copy. // // IgnoreResult() is used to adapt a function or Callback with a return type to // one with a void return. This is most useful if you have a function with, // say, a pesky ignorable bool return that you want to use with PostTask or // something else that expect a Callback with a void return. // // EXAMPLE OF Unretained(): // // class Foo { // public: // void func() { cout << "Foo:f" << endl; } // }; // // // In some function somewhere. // Foo foo; // Closure foo_callback = // Bind(&Foo::func, Unretained(&foo)); // foo_callback.Run(); // Prints "Foo:f". // // Without the Unretained() wrapper on |&foo|, the above call would fail // to compile because Foo does not support the AddRef() and Release() methods. // // // EXAMPLE OF Owned(): // // void foo(int* arg) { cout << *arg << endl } // // int* pn = new int(1); // Closure foo_callback = Bind(&foo, Owned(pn)); // // foo_callback.Run(); // Prints "1" // foo_callback.Run(); // Prints "1" // *n = 2; // foo_callback.Run(); // Prints "2" // // foo_callback.Reset(); // |pn| is deleted. Also will happen when // // |foo_callback| goes out of scope. // // Without Owned(), someone would have to know to delete |pn| when the last // reference to the Callback is deleted. // // // EXAMPLE OF ConstRef(): // // void foo(int arg) { cout << arg << endl } // // int n = 1; // Closure no_ref = Bind(&foo, n); // Closure has_ref = Bind(&foo, ConstRef(n)); // // no_ref.Run(); // Prints "1" // has_ref.Run(); // Prints "1" // // n = 2; // no_ref.Run(); // Prints "1" // has_ref.Run(); // Prints "2" // // Note that because ConstRef() takes a reference on |n|, |n| must outlive all // its bound callbacks. // // // EXAMPLE OF IgnoreResult(): // // int DoSomething(int arg) { cout << arg << endl; } // // // Assign to a Callback with a void return type. // Callback<void(int)> cb = Bind(IgnoreResult(&DoSomething)); // cb->Run(1); // Prints "1". // // // Prints "1" on |ml|. // ml->PostTask(FROM_HERE, Bind(IgnoreResult(&DoSomething), 1); // // // EXAMPLE OF Passed(): // // void TakesOwnership(scoped_ptr<Foo> arg) { } // scoped_ptr<Foo> CreateFoo() { return scoped_ptr<Foo>(new Foo()); } // // scoped_ptr<Foo> f(new Foo()); // // // |cb| is given ownership of Foo(). |f| is now NULL. // // You can use std::move(f) in place of &f, but it's more verbose. // Closure cb = Bind(&TakesOwnership, Passed(&f)); // // // Run was never called so |cb| still owns Foo() and deletes // // it on Reset(). // cb.Reset(); // // // |cb| is given a new Foo created by CreateFoo(). // cb = Bind(&TakesOwnership, Passed(CreateFoo())); // // // |arg| in TakesOwnership() is given ownership of Foo(). |cb| // // no longer owns Foo() and, if reset, would not delete Foo(). // cb.Run(); // Foo() is now transferred to |arg| and deleted. // cb.Run(); // This CHECK()s since Foo() already been used once. // // Passed() is particularly useful with PostTask() when you are transferring // ownership of an argument into a task, but don't necessarily know if the // task will always be executed. This can happen if the task is cancellable // or if it is posted to a TaskRunner. // // // SIMPLE FUNCTIONS AND UTILITIES. // // DoNothing() - Useful for creating a Closure that does nothing when called. // DeletePointer<T>() - Useful for creating a Closure that will delete a // pointer when invoked. Only use this when necessary. // In most cases MessageLoop::DeleteSoon() is a better // fit. #ifndef BASE_BIND_HELPERS_H_ #define BASE_BIND_HELPERS_H_ #include <stddef.h> #include <map> #include <memory> #include <type_traits> #include <utility> #include <vector> #include "base/callback.h" #include "base/memory/weak_ptr.h" #include "base/template_util.h" #include "build/build_config.h" namespace base { namespace internal { // Use the Substitution Failure Is Not An Error (SFINAE) trick to inspect T // for the existence of AddRef() and Release() functions of the correct // signature. // // http://en.wikipedia.org/wiki/Substitution_failure_is_not_an_error // http://stackoverflow.com/questions/257288/is-it-possible-to-write-a-c-template-to-check-for-a-functions-existence // http://stackoverflow.com/questions/4358584/sfinae-approach-comparison // http://stackoverflow.com/questions/1966362/sfinae-to-check-for-inherited-member-functions // // The last link in particular show the method used below. // // For SFINAE to work with inherited methods, we need to pull some extra tricks // with multiple inheritance. In the more standard formulation, the overloads // of Check would be: // // template <typename C> // Yes NotTheCheckWeWant(Helper<&C::TargetFunc>*); // // template <typename C> // No NotTheCheckWeWant(...); // // static const bool value = sizeof(NotTheCheckWeWant<T>(0)) == sizeof(Yes); // // The problem here is that template resolution will not match // C::TargetFunc if TargetFunc does not exist directly in C. That is, if // TargetFunc in inherited from an ancestor, &C::TargetFunc will not match, // |value| will be false. This formulation only checks for whether or // not TargetFunc exist directly in the class being introspected. // // To get around this, we play a dirty trick with multiple inheritance. // First, We create a class BaseMixin that declares each function that we // want to probe for. Then we create a class Base that inherits from both T // (the class we wish to probe) and BaseMixin. Note that the function // signature in BaseMixin does not need to match the signature of the function // we are probing for; thus it's easiest to just use void(). // // Now, if TargetFunc exists somewhere in T, then &Base::TargetFunc has an // ambiguous resolution between BaseMixin and T. This lets us write the // following: // // template <typename C> // No GoodCheck(Helper<&C::TargetFunc>*); // // template <typename C> // Yes GoodCheck(...); // // static const bool value = sizeof(GoodCheck<Base>(0)) == sizeof(Yes); // // Notice here that the variadic version of GoodCheck() returns Yes here // instead of No like the previous one. Also notice that we calculate |value| // by specializing GoodCheck() on Base instead of T. // // We've reversed the roles of the variadic, and Helper overloads. // GoodCheck(Helper<&C::TargetFunc>*), when C = Base, fails to be a valid // substitution if T::TargetFunc exists. Thus GoodCheck<Base>(0) will resolve // to the variadic version if T has TargetFunc. If T::TargetFunc does not // exist, then &C::TargetFunc is not ambiguous, and the overload resolution // will prefer GoodCheck(Helper<&C::TargetFunc>*). // // This method of SFINAE will correctly probe for inherited names, but it cannot // typecheck those names. It's still a good enough sanity check though. // // Works on gcc-4.2, gcc-4.4, and Visual Studio 2008. // // TODO(ajwong): Move to ref_counted.h or template_util.h when we've vetted // this works well. // // TODO(ajwong): Make this check for Release() as well. // See http://crbug.com/82038. template <typename T> class SupportsAddRefAndRelease { using Yes = char[1]; using No = char[2]; struct BaseMixin { void AddRef(); }; // MSVC warns when you try to use Base if T has a private destructor, the // common pattern for refcounted types. It does this even though no attempt to // instantiate Base is made. We disable the warning for this definition. #if defined(OS_WIN) #pragma warning(push) #pragma warning(disable:4624) #endif struct Base : public T, public BaseMixin { }; #if defined(OS_WIN) #pragma warning(pop) #endif template <void(BaseMixin::*)()> struct Helper {}; template <typename C> static No& Check(Helper<&C::AddRef>*); template <typename > static Yes& Check(...); public: enum { value = sizeof(Check<Base>(0)) == sizeof(Yes) }; }; // Helpers to assert that arguments of a recounted type are bound with a // scoped_refptr. template <bool IsClasstype, typename T> struct UnsafeBindtoRefCountedArgHelper : false_type { }; template <typename T> struct UnsafeBindtoRefCountedArgHelper<true, T> : integral_constant<bool, SupportsAddRefAndRelease<T>::value> { }; template <typename T> struct UnsafeBindtoRefCountedArg : false_type { }; template <typename T> struct UnsafeBindtoRefCountedArg<T*> : UnsafeBindtoRefCountedArgHelper<is_class<T>::value, T> { }; template <typename T> class HasIsMethodTag { using Yes = char[1]; using No = char[2]; template <typename U> static Yes& Check(typename U::IsMethod*); template <typename U> static No& Check(...); public: enum { value = sizeof(Check<T>(0)) == sizeof(Yes) }; }; template <typename T> class UnretainedWrapper { public: explicit UnretainedWrapper(T* o) : ptr_(o) {} T* get() const { return ptr_; } private: T* ptr_; }; template <typename T> class ConstRefWrapper { public: explicit ConstRefWrapper(const T& o) : ptr_(&o) {} const T& get() const { return *ptr_; } private: const T* ptr_; }; template <typename T> struct IgnoreResultHelper { explicit IgnoreResultHelper(T functor) : functor_(functor) {} T functor_; }; template <typename T> struct IgnoreResultHelper<Callback<T> > { explicit IgnoreResultHelper(const Callback<T>& functor) : functor_(functor) {} const Callback<T>& functor_; }; // An alternate implementation is to avoid the destructive copy, and instead // specialize ParamTraits<> for OwnedWrapper<> to change the StorageType to // a class that is essentially a scoped_ptr<>. // // The current implementation has the benefit though of leaving ParamTraits<> // fully in callback_internal.h as well as avoiding type conversions during // storage. template <typename T> class OwnedWrapper { public: explicit OwnedWrapper(T* o) : ptr_(o) {} ~OwnedWrapper() { delete ptr_; } T* get() const { return ptr_; } OwnedWrapper(const OwnedWrapper& other) { ptr_ = other.ptr_; other.ptr_ = NULL; } private: mutable T* ptr_; }; // PassedWrapper is a copyable adapter for a scoper that ignores const. // // It is needed to get around the fact that Bind() takes a const reference to // all its arguments. Because Bind() takes a const reference to avoid // unnecessary copies, it is incompatible with movable-but-not-copyable // types; doing a destructive "move" of the type into Bind() would violate // the const correctness. // // This conundrum cannot be solved without either C++11 rvalue references or // a O(2^n) blowup of Bind() templates to handle each combination of regular // types and movable-but-not-copyable types. Thus we introduce a wrapper type // that is copyable to transmit the correct type information down into // BindState<>. Ignoring const in this type makes sense because it is only // created when we are explicitly trying to do a destructive move. // // Two notes: // 1) PassedWrapper supports any type that has a move constructor, however // the type will need to be specifically whitelisted in order for it to be // bound to a Callback. We guard this explicitly at the call of Passed() // to make for clear errors. Things not given to Passed() will be forwarded // and stored by value which will not work for general move-only types. // 2) is_valid_ is distinct from NULL because it is valid to bind a "NULL" // scoper to a Callback and allow the Callback to execute once. template <typename T> class PassedWrapper { public: explicit PassedWrapper(T&& scoper) : is_valid_(true), scoper_(std::move(scoper)) {} PassedWrapper(const PassedWrapper& other) : is_valid_(other.is_valid_), scoper_(std::move(other.scoper_)) {} T Pass() const { CHECK(is_valid_); is_valid_ = false; return std::move(scoper_); } private: mutable bool is_valid_; mutable T scoper_; }; // Specialize PassedWrapper for std::unique_ptr used by base::Passed(). // Use std::move() to transfer the data from one storage to another. template <typename T, typename D> class PassedWrapper<std::unique_ptr<T, D>> { public: explicit PassedWrapper(std::unique_ptr<T, D> scoper) : is_valid_(true), scoper_(std::move(scoper)) {} PassedWrapper(const PassedWrapper& other) : is_valid_(other.is_valid_), scoper_(std::move(other.scoper_)) {} std::unique_ptr<T, D> Pass() const { CHECK(is_valid_); is_valid_ = false; return std::move(scoper_); } private: mutable bool is_valid_; mutable std::unique_ptr<T, D> scoper_; }; // Specialize PassedWrapper for std::vector<std::unique_ptr<T>>. template <typename T, typename D, typename A> class PassedWrapper<std::vector<std::unique_ptr<T, D>, A>> { public: explicit PassedWrapper(std::vector<std::unique_ptr<T, D>, A> scoper) : is_valid_(true), scoper_(std::move(scoper)) {} PassedWrapper(const PassedWrapper& other) : is_valid_(other.is_valid_), scoper_(std::move(other.scoper_)) {} std::vector<std::unique_ptr<T, D>, A> Pass() const { CHECK(is_valid_); is_valid_ = false; return std::move(scoper_); } private: mutable bool is_valid_; mutable std::vector<std::unique_ptr<T, D>, A> scoper_; }; // Specialize PassedWrapper for std::map<K, std::unique_ptr<T>>. template <typename K, typename T, typename D, typename C, typename A> class PassedWrapper<std::map<K, std::unique_ptr<T, D>, C, A>> { public: explicit PassedWrapper(std::map<K, std::unique_ptr<T, D>, C, A> scoper) : is_valid_(true), scoper_(std::move(scoper)) {} PassedWrapper(const PassedWrapper& other) : is_valid_(other.is_valid_), scoper_(std::move(other.scoper_)) {} std::map<K, std::unique_ptr<T, D>, C, A> Pass() const { CHECK(is_valid_); is_valid_ = false; return std::move(scoper_); } private: mutable bool is_valid_; mutable std::map<K, std::unique_ptr<T, D>, C, A> scoper_; }; // Unwrap the stored parameters for the wrappers above. template <typename T> struct UnwrapTraits { using ForwardType = const T&; static ForwardType Unwrap(const T& o) { return o; } }; template <typename T> struct UnwrapTraits<UnretainedWrapper<T> > { using ForwardType = T*; static ForwardType Unwrap(UnretainedWrapper<T> unretained) { return unretained.get(); } }; template <typename T> struct UnwrapTraits<ConstRefWrapper<T> > { using ForwardType = const T&; static ForwardType Unwrap(ConstRefWrapper<T> const_ref) { return const_ref.get(); } }; template <typename T> struct UnwrapTraits<scoped_refptr<T> > { using ForwardType = T*; static ForwardType Unwrap(const scoped_refptr<T>& o) { return o.get(); } }; template <typename T> struct UnwrapTraits<WeakPtr<T> > { using ForwardType = const WeakPtr<T>&; static ForwardType Unwrap(const WeakPtr<T>& o) { return o; } }; template <typename T> struct UnwrapTraits<OwnedWrapper<T> > { using ForwardType = T*; static ForwardType Unwrap(const OwnedWrapper<T>& o) { return o.get(); } }; template <typename T> struct UnwrapTraits<PassedWrapper<T> > { using ForwardType = T; static T Unwrap(PassedWrapper<T>& o) { return o.Pass(); } }; // Utility for handling different refcounting semantics in the Bind() // function. template <bool is_method, typename... T> struct MaybeScopedRefPtr; template <bool is_method> struct MaybeScopedRefPtr<is_method> { MaybeScopedRefPtr() {} }; template <typename T, typename... Rest> struct MaybeScopedRefPtr<false, T, Rest...> { MaybeScopedRefPtr(const T&, const Rest&...) {} }; template <typename T, size_t n, typename... Rest> struct MaybeScopedRefPtr<false, T[n], Rest...> { MaybeScopedRefPtr(const T*, const Rest&...) {} }; template <typename T, typename... Rest> struct MaybeScopedRefPtr<true, T, Rest...> { MaybeScopedRefPtr(const T& /* o */, const Rest&...) {} }; template <typename T, typename... Rest> struct MaybeScopedRefPtr<true, T*, Rest...> { MaybeScopedRefPtr(T* o, const Rest&...) : ref_(o) {} scoped_refptr<T> ref_; }; // No need to additionally AddRef() and Release() since we are storing a // scoped_refptr<> inside the storage object already. template <typename T, typename... Rest> struct MaybeScopedRefPtr<true, scoped_refptr<T>, Rest...> { MaybeScopedRefPtr(const scoped_refptr<T>&, const Rest&...) {} }; template <typename T, typename... Rest> struct MaybeScopedRefPtr<true, const T*, Rest...> { MaybeScopedRefPtr(const T* o, const Rest&...) : ref_(o) {} scoped_refptr<const T> ref_; }; // IsWeakMethod is a helper that determine if we are binding a WeakPtr<> to a // method. It is used internally by Bind() to select the correct // InvokeHelper that will no-op itself in the event the WeakPtr<> for // the target object is invalidated. // // The first argument should be the type of the object that will be received by // the method. template <bool IsMethod, typename... Args> struct IsWeakMethod : public false_type {}; template <typename T, typename... Args> struct IsWeakMethod<true, WeakPtr<T>, Args...> : public true_type {}; template <typename T, typename... Args> struct IsWeakMethod<true, ConstRefWrapper<WeakPtr<T>>, Args...> : public true_type {}; // Packs a list of types to hold them in a single type. template <typename... Types> struct TypeList {}; // Used for DropTypeListItem implementation. template <size_t n, typename List> struct DropTypeListItemImpl; // Do not use enable_if and SFINAE here to avoid MSVC2013 compile failure. template <size_t n, typename T, typename... List> struct DropTypeListItemImpl<n, TypeList<T, List...>> : DropTypeListItemImpl<n - 1, TypeList<List...>> {}; template <typename T, typename... List> struct DropTypeListItemImpl<0, TypeList<T, List...>> { using Type = TypeList<T, List...>; }; template <> struct DropTypeListItemImpl<0, TypeList<>> { using Type = TypeList<>; }; // A type-level function that drops |n| list item from given TypeList. template <size_t n, typename List> using DropTypeListItem = typename DropTypeListItemImpl<n, List>::Type; // Used for TakeTypeListItem implementation. template <size_t n, typename List, typename... Accum> struct TakeTypeListItemImpl; // Do not use enable_if and SFINAE here to avoid MSVC2013 compile failure. template <size_t n, typename T, typename... List, typename... Accum> struct TakeTypeListItemImpl<n, TypeList<T, List...>, Accum...> : TakeTypeListItemImpl<n - 1, TypeList<List...>, Accum..., T> {}; template <typename T, typename... List, typename... Accum> struct TakeTypeListItemImpl<0, TypeList<T, List...>, Accum...> { using Type = TypeList<Accum...>; }; template <typename... Accum> struct TakeTypeListItemImpl<0, TypeList<>, Accum...> { using Type = TypeList<Accum...>; }; // A type-level function that takes first |n| list item from given TypeList. // E.g. TakeTypeListItem<3, TypeList<A, B, C, D>> is evaluated to // TypeList<A, B, C>. template <size_t n, typename List> using TakeTypeListItem = typename TakeTypeListItemImpl<n, List>::Type; // Used for ConcatTypeLists implementation. template <typename List1, typename List2> struct ConcatTypeListsImpl; template <typename... Types1, typename... Types2> struct ConcatTypeListsImpl<TypeList<Types1...>, TypeList<Types2...>> { using Type = TypeList<Types1..., Types2...>; }; // A type-level function that concats two TypeLists. template <typename List1, typename List2> using ConcatTypeLists = typename ConcatTypeListsImpl<List1, List2>::Type; // Used for MakeFunctionType implementation. template <typename R, typename ArgList> struct MakeFunctionTypeImpl; template <typename R, typename... Args> struct MakeFunctionTypeImpl<R, TypeList<Args...>> { // MSVC 2013 doesn't support Type Alias of function types. // Revisit this after we update it to newer version. typedef R Type(Args...); }; // A type-level function that constructs a function type that has |R| as its // return type and has TypeLists items as its arguments. template <typename R, typename ArgList> using MakeFunctionType = typename MakeFunctionTypeImpl<R, ArgList>::Type; // Used for ExtractArgs. template <typename Signature> struct ExtractArgsImpl; template <typename R, typename... Args> struct ExtractArgsImpl<R(Args...)> { using Type = TypeList<Args...>; }; // A type-level function that extracts function arguments into a TypeList. // E.g. ExtractArgs<R(A, B, C)> is evaluated to TypeList<A, B, C>. template <typename Signature> using ExtractArgs = typename ExtractArgsImpl<Signature>::Type; } // namespace internal template <typename T> static inline internal::UnretainedWrapper<T> Unretained(T* o) { return internal::UnretainedWrapper<T>(o); } template <typename T> static inline internal::ConstRefWrapper<T> ConstRef(const T& o) { return internal::ConstRefWrapper<T>(o); } template <typename T> static inline internal::OwnedWrapper<T> Owned(T* o) { return internal::OwnedWrapper<T>(o); } // We offer 2 syntaxes for calling Passed(). The first takes an rvalue and // is best suited for use with the return value of a function or other temporary // rvalues. The second takes a pointer to the scoper and is just syntactic sugar // to avoid having to write Passed(std::move(scoper)). // // Both versions of Passed() prevent T from being an lvalue reference. The first // via use of enable_if, and the second takes a T* which will not bind to T&. template <typename T, typename std::enable_if<internal::IsMoveOnlyType<T>::value && !std::is_lvalue_reference<T>::value>::type* = nullptr> static inline internal::PassedWrapper<T> Passed(T&& scoper) { return internal::PassedWrapper<T>(std::move(scoper)); } template <typename T, typename std::enable_if<internal::IsMoveOnlyType<T>::value>::type* = nullptr> static inline internal::PassedWrapper<T> Passed(T* scoper) { return internal::PassedWrapper<T>(std::move(*scoper)); } template <typename T> static inline internal::IgnoreResultHelper<T> IgnoreResult(T data) { return internal::IgnoreResultHelper<T>(data); } template <typename T> static inline internal::IgnoreResultHelper<Callback<T> > IgnoreResult(const Callback<T>& data) { return internal::IgnoreResultHelper<Callback<T> >(data); } BASE_EXPORT void DoNothing(); template<typename T> void DeletePointer(T* obj) { delete obj; } } // namespace base #endif // BASE_BIND_HELPERS_H_