#define JEMALLOC_PROF_C_ #include "jemalloc/internal/jemalloc_internal.h" /******************************************************************************/ #ifdef JEMALLOC_PROF_LIBUNWIND #define UNW_LOCAL_ONLY #include <libunwind.h> #endif #ifdef JEMALLOC_PROF_LIBGCC #include <unwind.h> #endif /******************************************************************************/ /* Data. */ bool opt_prof = false; bool opt_prof_active = true; bool opt_prof_thread_active_init = true; size_t opt_lg_prof_sample = LG_PROF_SAMPLE_DEFAULT; ssize_t opt_lg_prof_interval = LG_PROF_INTERVAL_DEFAULT; bool opt_prof_gdump = false; bool opt_prof_final = false; bool opt_prof_leak = false; bool opt_prof_accum = false; char opt_prof_prefix[ /* Minimize memory bloat for non-prof builds. */ #ifdef JEMALLOC_PROF PATH_MAX + #endif 1]; /* * Initialized as opt_prof_active, and accessed via * prof_active_[gs]et{_unlocked,}(). */ bool prof_active; static malloc_mutex_t prof_active_mtx; /* * Initialized as opt_prof_thread_active_init, and accessed via * prof_thread_active_init_[gs]et(). */ static bool prof_thread_active_init; static malloc_mutex_t prof_thread_active_init_mtx; /* * Initialized as opt_prof_gdump, and accessed via * prof_gdump_[gs]et{_unlocked,}(). */ bool prof_gdump_val; static malloc_mutex_t prof_gdump_mtx; uint64_t prof_interval = 0; size_t lg_prof_sample; /* * Table of mutexes that are shared among gctx's. These are leaf locks, so * there is no problem with using them for more than one gctx at the same time. * The primary motivation for this sharing though is that gctx's are ephemeral, * and destroying mutexes causes complications for systems that allocate when * creating/destroying mutexes. */ static malloc_mutex_t *gctx_locks; static unsigned cum_gctxs; /* Atomic counter. */ /* * Table of mutexes that are shared among tdata's. No operations require * holding multiple tdata locks, so there is no problem with using them for more * than one tdata at the same time, even though a gctx lock may be acquired * while holding a tdata lock. */ static malloc_mutex_t *tdata_locks; /* * Global hash of (prof_bt_t *)-->(prof_gctx_t *). This is the master data * structure that knows about all backtraces currently captured. */ static ckh_t bt2gctx; static malloc_mutex_t bt2gctx_mtx; /* * Tree of all extant prof_tdata_t structures, regardless of state, * {attached,detached,expired}. */ static prof_tdata_tree_t tdatas; static malloc_mutex_t tdatas_mtx; static uint64_t next_thr_uid; static malloc_mutex_t next_thr_uid_mtx; static malloc_mutex_t prof_dump_seq_mtx; static uint64_t prof_dump_seq; static uint64_t prof_dump_iseq; static uint64_t prof_dump_mseq; static uint64_t prof_dump_useq; /* * This buffer is rather large for stack allocation, so use a single buffer for * all profile dumps. */ static malloc_mutex_t prof_dump_mtx; static char prof_dump_buf[ /* Minimize memory bloat for non-prof builds. */ #ifdef JEMALLOC_PROF PROF_DUMP_BUFSIZE #else 1 #endif ]; static size_t prof_dump_buf_end; static int prof_dump_fd; /* Do not dump any profiles until bootstrapping is complete. */ static bool prof_booted = false; /******************************************************************************/ /* * Function prototypes for static functions that are referenced prior to * definition. */ static bool prof_tctx_should_destroy(prof_tctx_t *tctx); static void prof_tctx_destroy(tsd_t *tsd, prof_tctx_t *tctx); static bool prof_tdata_should_destroy(prof_tdata_t *tdata, bool even_if_attached); static void prof_tdata_destroy(tsd_t *tsd, prof_tdata_t *tdata, bool even_if_attached); static char *prof_thread_name_alloc(tsd_t *tsd, const char *thread_name); /******************************************************************************/ /* Red-black trees. */ JEMALLOC_INLINE_C int prof_tctx_comp(const prof_tctx_t *a, const prof_tctx_t *b) { uint64_t a_thr_uid = a->thr_uid; uint64_t b_thr_uid = b->thr_uid; int ret = (a_thr_uid > b_thr_uid) - (a_thr_uid < b_thr_uid); if (ret == 0) { uint64_t a_thr_discrim = a->thr_discrim; uint64_t b_thr_discrim = b->thr_discrim; ret = (a_thr_discrim > b_thr_discrim) - (a_thr_discrim < b_thr_discrim); if (ret == 0) { uint64_t a_tctx_uid = a->tctx_uid; uint64_t b_tctx_uid = b->tctx_uid; ret = (a_tctx_uid > b_tctx_uid) - (a_tctx_uid < b_tctx_uid); } } return (ret); } rb_gen(static UNUSED, tctx_tree_, prof_tctx_tree_t, prof_tctx_t, tctx_link, prof_tctx_comp) JEMALLOC_INLINE_C int prof_gctx_comp(const prof_gctx_t *a, const prof_gctx_t *b) { unsigned a_len = a->bt.len; unsigned b_len = b->bt.len; unsigned comp_len = (a_len < b_len) ? a_len : b_len; int ret = memcmp(a->bt.vec, b->bt.vec, comp_len * sizeof(void *)); if (ret == 0) ret = (a_len > b_len) - (a_len < b_len); return (ret); } rb_gen(static UNUSED, gctx_tree_, prof_gctx_tree_t, prof_gctx_t, dump_link, prof_gctx_comp) JEMALLOC_INLINE_C int prof_tdata_comp(const prof_tdata_t *a, const prof_tdata_t *b) { int ret; uint64_t a_uid = a->thr_uid; uint64_t b_uid = b->thr_uid; ret = ((a_uid > b_uid) - (a_uid < b_uid)); if (ret == 0) { uint64_t a_discrim = a->thr_discrim; uint64_t b_discrim = b->thr_discrim; ret = ((a_discrim > b_discrim) - (a_discrim < b_discrim)); } return (ret); } rb_gen(static UNUSED, tdata_tree_, prof_tdata_tree_t, prof_tdata_t, tdata_link, prof_tdata_comp) /******************************************************************************/ void prof_alloc_rollback(tsd_t *tsd, prof_tctx_t *tctx, bool updated) { prof_tdata_t *tdata; cassert(config_prof); if (updated) { /* * Compute a new sample threshold. This isn't very important in * practice, because this function is rarely executed, so the * potential for sample bias is minimal except in contrived * programs. */ tdata = prof_tdata_get(tsd, true); if (tdata != NULL) prof_sample_threshold_update(tdata); } if ((uintptr_t)tctx > (uintptr_t)1U) { malloc_mutex_lock(tctx->tdata->lock); tctx->prepared = false; if (prof_tctx_should_destroy(tctx)) prof_tctx_destroy(tsd, tctx); else malloc_mutex_unlock(tctx->tdata->lock); } } void prof_malloc_sample_object(const void *ptr, size_t usize, prof_tctx_t *tctx) { prof_tctx_set(ptr, usize, tctx); malloc_mutex_lock(tctx->tdata->lock); tctx->cnts.curobjs++; tctx->cnts.curbytes += usize; if (opt_prof_accum) { tctx->cnts.accumobjs++; tctx->cnts.accumbytes += usize; } tctx->prepared = false; malloc_mutex_unlock(tctx->tdata->lock); } void prof_free_sampled_object(tsd_t *tsd, size_t usize, prof_tctx_t *tctx) { malloc_mutex_lock(tctx->tdata->lock); assert(tctx->cnts.curobjs > 0); assert(tctx->cnts.curbytes >= usize); tctx->cnts.curobjs--; tctx->cnts.curbytes -= usize; if (prof_tctx_should_destroy(tctx)) prof_tctx_destroy(tsd, tctx); else malloc_mutex_unlock(tctx->tdata->lock); } void bt_init(prof_bt_t *bt, void **vec) { cassert(config_prof); bt->vec = vec; bt->len = 0; } JEMALLOC_INLINE_C void prof_enter(tsd_t *tsd, prof_tdata_t *tdata) { cassert(config_prof); assert(tdata == prof_tdata_get(tsd, false)); if (tdata != NULL) { assert(!tdata->enq); tdata->enq = true; } malloc_mutex_lock(&bt2gctx_mtx); } JEMALLOC_INLINE_C void prof_leave(tsd_t *tsd, prof_tdata_t *tdata) { cassert(config_prof); assert(tdata == prof_tdata_get(tsd, false)); malloc_mutex_unlock(&bt2gctx_mtx); if (tdata != NULL) { bool idump, gdump; assert(tdata->enq); tdata->enq = false; idump = tdata->enq_idump; tdata->enq_idump = false; gdump = tdata->enq_gdump; tdata->enq_gdump = false; if (idump) prof_idump(); if (gdump) prof_gdump(); } } #ifdef JEMALLOC_PROF_LIBUNWIND void prof_backtrace(prof_bt_t *bt) { int nframes; cassert(config_prof); assert(bt->len == 0); assert(bt->vec != NULL); nframes = unw_backtrace(bt->vec, PROF_BT_MAX); if (nframes <= 0) return; bt->len = nframes; } #elif (defined(JEMALLOC_PROF_LIBGCC)) static _Unwind_Reason_Code prof_unwind_init_callback(struct _Unwind_Context *context, void *arg) { cassert(config_prof); return (_URC_NO_REASON); } static _Unwind_Reason_Code prof_unwind_callback(struct _Unwind_Context *context, void *arg) { prof_unwind_data_t *data = (prof_unwind_data_t *)arg; void *ip; cassert(config_prof); ip = (void *)_Unwind_GetIP(context); if (ip == NULL) return (_URC_END_OF_STACK); data->bt->vec[data->bt->len] = ip; data->bt->len++; if (data->bt->len == data->max) return (_URC_END_OF_STACK); return (_URC_NO_REASON); } void prof_backtrace(prof_bt_t *bt) { prof_unwind_data_t data = {bt, PROF_BT_MAX}; cassert(config_prof); _Unwind_Backtrace(prof_unwind_callback, &data); } #elif (defined(JEMALLOC_PROF_GCC)) void prof_backtrace(prof_bt_t *bt) { #define BT_FRAME(i) \ if ((i) < PROF_BT_MAX) { \ void *p; \ if (__builtin_frame_address(i) == 0) \ return; \ p = __builtin_return_address(i); \ if (p == NULL) \ return; \ bt->vec[(i)] = p; \ bt->len = (i) + 1; \ } else \ return; cassert(config_prof); BT_FRAME(0) BT_FRAME(1) BT_FRAME(2) BT_FRAME(3) BT_FRAME(4) BT_FRAME(5) BT_FRAME(6) BT_FRAME(7) BT_FRAME(8) BT_FRAME(9) BT_FRAME(10) BT_FRAME(11) BT_FRAME(12) BT_FRAME(13) BT_FRAME(14) BT_FRAME(15) BT_FRAME(16) BT_FRAME(17) BT_FRAME(18) BT_FRAME(19) BT_FRAME(20) BT_FRAME(21) BT_FRAME(22) BT_FRAME(23) BT_FRAME(24) BT_FRAME(25) BT_FRAME(26) BT_FRAME(27) BT_FRAME(28) BT_FRAME(29) BT_FRAME(30) BT_FRAME(31) BT_FRAME(32) BT_FRAME(33) BT_FRAME(34) BT_FRAME(35) BT_FRAME(36) BT_FRAME(37) BT_FRAME(38) BT_FRAME(39) BT_FRAME(40) BT_FRAME(41) BT_FRAME(42) BT_FRAME(43) BT_FRAME(44) BT_FRAME(45) BT_FRAME(46) BT_FRAME(47) BT_FRAME(48) BT_FRAME(49) BT_FRAME(50) BT_FRAME(51) BT_FRAME(52) BT_FRAME(53) BT_FRAME(54) BT_FRAME(55) BT_FRAME(56) BT_FRAME(57) BT_FRAME(58) BT_FRAME(59) BT_FRAME(60) BT_FRAME(61) BT_FRAME(62) BT_FRAME(63) BT_FRAME(64) BT_FRAME(65) BT_FRAME(66) BT_FRAME(67) BT_FRAME(68) BT_FRAME(69) BT_FRAME(70) BT_FRAME(71) BT_FRAME(72) BT_FRAME(73) BT_FRAME(74) BT_FRAME(75) BT_FRAME(76) BT_FRAME(77) BT_FRAME(78) BT_FRAME(79) BT_FRAME(80) BT_FRAME(81) BT_FRAME(82) BT_FRAME(83) BT_FRAME(84) BT_FRAME(85) BT_FRAME(86) BT_FRAME(87) BT_FRAME(88) BT_FRAME(89) BT_FRAME(90) BT_FRAME(91) BT_FRAME(92) BT_FRAME(93) BT_FRAME(94) BT_FRAME(95) BT_FRAME(96) BT_FRAME(97) BT_FRAME(98) BT_FRAME(99) BT_FRAME(100) BT_FRAME(101) BT_FRAME(102) BT_FRAME(103) BT_FRAME(104) BT_FRAME(105) BT_FRAME(106) BT_FRAME(107) BT_FRAME(108) BT_FRAME(109) BT_FRAME(110) BT_FRAME(111) BT_FRAME(112) BT_FRAME(113) BT_FRAME(114) BT_FRAME(115) BT_FRAME(116) BT_FRAME(117) BT_FRAME(118) BT_FRAME(119) BT_FRAME(120) BT_FRAME(121) BT_FRAME(122) BT_FRAME(123) BT_FRAME(124) BT_FRAME(125) BT_FRAME(126) BT_FRAME(127) #undef BT_FRAME } #else void prof_backtrace(prof_bt_t *bt) { cassert(config_prof); not_reached(); } #endif static malloc_mutex_t * prof_gctx_mutex_choose(void) { unsigned ngctxs = atomic_add_u(&cum_gctxs, 1); return (&gctx_locks[(ngctxs - 1) % PROF_NCTX_LOCKS]); } static malloc_mutex_t * prof_tdata_mutex_choose(uint64_t thr_uid) { return (&tdata_locks[thr_uid % PROF_NTDATA_LOCKS]); } static prof_gctx_t * prof_gctx_create(tsd_t *tsd, prof_bt_t *bt) { /* * Create a single allocation that has space for vec of length bt->len. */ size_t size = offsetof(prof_gctx_t, vec) + (bt->len * sizeof(void *)); prof_gctx_t *gctx = (prof_gctx_t *)iallocztm(tsd, size, size2index(size), false, tcache_get(tsd, true), true, NULL, true); if (gctx == NULL) return (NULL); gctx->lock = prof_gctx_mutex_choose(); /* * Set nlimbo to 1, in order to avoid a race condition with * prof_tctx_destroy()/prof_gctx_try_destroy(). */ gctx->nlimbo = 1; tctx_tree_new(&gctx->tctxs); /* Duplicate bt. */ memcpy(gctx->vec, bt->vec, bt->len * sizeof(void *)); gctx->bt.vec = gctx->vec; gctx->bt.len = bt->len; return (gctx); } static void prof_gctx_try_destroy(tsd_t *tsd, prof_tdata_t *tdata_self, prof_gctx_t *gctx, prof_tdata_t *tdata) { cassert(config_prof); /* * Check that gctx is still unused by any thread cache before destroying * it. prof_lookup() increments gctx->nlimbo in order to avoid a race * condition with this function, as does prof_tctx_destroy() in order to * avoid a race between the main body of prof_tctx_destroy() and entry * into this function. */ prof_enter(tsd, tdata_self); malloc_mutex_lock(gctx->lock); assert(gctx->nlimbo != 0); if (tctx_tree_empty(&gctx->tctxs) && gctx->nlimbo == 1) { /* Remove gctx from bt2gctx. */ if (ckh_remove(tsd, &bt2gctx, &gctx->bt, NULL, NULL)) not_reached(); prof_leave(tsd, tdata_self); /* Destroy gctx. */ malloc_mutex_unlock(gctx->lock); idalloctm(tsd, gctx, tcache_get(tsd, false), true, true); } else { /* * Compensate for increment in prof_tctx_destroy() or * prof_lookup(). */ gctx->nlimbo--; malloc_mutex_unlock(gctx->lock); prof_leave(tsd, tdata_self); } } /* tctx->tdata->lock must be held. */ static bool prof_tctx_should_destroy(prof_tctx_t *tctx) { if (opt_prof_accum) return (false); if (tctx->cnts.curobjs != 0) return (false); if (tctx->prepared) return (false); return (true); } static bool prof_gctx_should_destroy(prof_gctx_t *gctx) { if (opt_prof_accum) return (false); if (!tctx_tree_empty(&gctx->tctxs)) return (false); if (gctx->nlimbo != 0) return (false); return (true); } /* tctx->tdata->lock is held upon entry, and released before return. */ static void prof_tctx_destroy(tsd_t *tsd, prof_tctx_t *tctx) { prof_tdata_t *tdata = tctx->tdata; prof_gctx_t *gctx = tctx->gctx; bool destroy_tdata, destroy_tctx, destroy_gctx; assert(tctx->cnts.curobjs == 0); assert(tctx->cnts.curbytes == 0); assert(!opt_prof_accum); assert(tctx->cnts.accumobjs == 0); assert(tctx->cnts.accumbytes == 0); ckh_remove(tsd, &tdata->bt2tctx, &gctx->bt, NULL, NULL); destroy_tdata = prof_tdata_should_destroy(tdata, false); malloc_mutex_unlock(tdata->lock); malloc_mutex_lock(gctx->lock); switch (tctx->state) { case prof_tctx_state_nominal: tctx_tree_remove(&gctx->tctxs, tctx); destroy_tctx = true; if (prof_gctx_should_destroy(gctx)) { /* * Increment gctx->nlimbo in order to keep another * thread from winning the race to destroy gctx while * this one has gctx->lock dropped. Without this, it * would be possible for another thread to: * * 1) Sample an allocation associated with gctx. * 2) Deallocate the sampled object. * 3) Successfully prof_gctx_try_destroy(gctx). * * The result would be that gctx no longer exists by the * time this thread accesses it in * prof_gctx_try_destroy(). */ gctx->nlimbo++; destroy_gctx = true; } else destroy_gctx = false; break; case prof_tctx_state_dumping: /* * A dumping thread needs tctx to remain valid until dumping * has finished. Change state such that the dumping thread will * complete destruction during a late dump iteration phase. */ tctx->state = prof_tctx_state_purgatory; destroy_tctx = false; destroy_gctx = false; break; default: not_reached(); destroy_tctx = false; destroy_gctx = false; } malloc_mutex_unlock(gctx->lock); if (destroy_gctx) { prof_gctx_try_destroy(tsd, prof_tdata_get(tsd, false), gctx, tdata); } if (destroy_tdata) prof_tdata_destroy(tsd, tdata, false); if (destroy_tctx) idalloctm(tsd, tctx, tcache_get(tsd, false), true, true); } static bool prof_lookup_global(tsd_t *tsd, prof_bt_t *bt, prof_tdata_t *tdata, void **p_btkey, prof_gctx_t **p_gctx, bool *p_new_gctx) { union { prof_gctx_t *p; void *v; } gctx; union { prof_bt_t *p; void *v; } btkey; bool new_gctx; prof_enter(tsd, tdata); if (ckh_search(&bt2gctx, bt, &btkey.v, &gctx.v)) { /* bt has never been seen before. Insert it. */ gctx.p = prof_gctx_create(tsd, bt); if (gctx.v == NULL) { prof_leave(tsd, tdata); return (true); } btkey.p = &gctx.p->bt; if (ckh_insert(tsd, &bt2gctx, btkey.v, gctx.v)) { /* OOM. */ prof_leave(tsd, tdata); idalloctm(tsd, gctx.v, tcache_get(tsd, false), true, true); return (true); } new_gctx = true; } else { /* * Increment nlimbo, in order to avoid a race condition with * prof_tctx_destroy()/prof_gctx_try_destroy(). */ malloc_mutex_lock(gctx.p->lock); gctx.p->nlimbo++; malloc_mutex_unlock(gctx.p->lock); new_gctx = false; } prof_leave(tsd, tdata); *p_btkey = btkey.v; *p_gctx = gctx.p; *p_new_gctx = new_gctx; return (false); } prof_tctx_t * prof_lookup(tsd_t *tsd, prof_bt_t *bt) { union { prof_tctx_t *p; void *v; } ret; prof_tdata_t *tdata; bool not_found; cassert(config_prof); tdata = prof_tdata_get(tsd, false); if (tdata == NULL) return (NULL); malloc_mutex_lock(tdata->lock); not_found = ckh_search(&tdata->bt2tctx, bt, NULL, &ret.v); if (!not_found) /* Note double negative! */ ret.p->prepared = true; malloc_mutex_unlock(tdata->lock); if (not_found) { tcache_t *tcache; void *btkey; prof_gctx_t *gctx; bool new_gctx, error; /* * This thread's cache lacks bt. Look for it in the global * cache. */ if (prof_lookup_global(tsd, bt, tdata, &btkey, &gctx, &new_gctx)) return (NULL); /* Link a prof_tctx_t into gctx for this thread. */ tcache = tcache_get(tsd, true); ret.v = iallocztm(tsd, sizeof(prof_tctx_t), size2index(sizeof(prof_tctx_t)), false, tcache, true, NULL, true); if (ret.p == NULL) { if (new_gctx) prof_gctx_try_destroy(tsd, tdata, gctx, tdata); return (NULL); } ret.p->tdata = tdata; ret.p->thr_uid = tdata->thr_uid; ret.p->thr_discrim = tdata->thr_discrim; memset(&ret.p->cnts, 0, sizeof(prof_cnt_t)); ret.p->gctx = gctx; ret.p->tctx_uid = tdata->tctx_uid_next++; ret.p->prepared = true; ret.p->state = prof_tctx_state_initializing; malloc_mutex_lock(tdata->lock); error = ckh_insert(tsd, &tdata->bt2tctx, btkey, ret.v); malloc_mutex_unlock(tdata->lock); if (error) { if (new_gctx) prof_gctx_try_destroy(tsd, tdata, gctx, tdata); idalloctm(tsd, ret.v, tcache, true, true); return (NULL); } malloc_mutex_lock(gctx->lock); ret.p->state = prof_tctx_state_nominal; tctx_tree_insert(&gctx->tctxs, ret.p); gctx->nlimbo--; malloc_mutex_unlock(gctx->lock); } return (ret.p); } void prof_sample_threshold_update(prof_tdata_t *tdata) { /* * The body of this function is compiled out unless heap profiling is * enabled, so that it is possible to compile jemalloc with floating * point support completely disabled. Avoiding floating point code is * important on memory-constrained systems, but it also enables a * workaround for versions of glibc that don't properly save/restore * floating point registers during dynamic lazy symbol loading (which * internally calls into whatever malloc implementation happens to be * integrated into the application). Note that some compilers (e.g. * gcc 4.8) may use floating point registers for fast memory moves, so * jemalloc must be compiled with such optimizations disabled (e.g. * -mno-sse) in order for the workaround to be complete. */ #ifdef JEMALLOC_PROF uint64_t r; double u; if (!config_prof) return; if (lg_prof_sample == 0) { tdata->bytes_until_sample = 0; return; } /* * Compute sample interval as a geometrically distributed random * variable with mean (2^lg_prof_sample). * * __ __ * | log(u) | 1 * tdata->bytes_until_sample = | -------- |, where p = --------------- * | log(1-p) | lg_prof_sample * 2 * * For more information on the math, see: * * Non-Uniform Random Variate Generation * Luc Devroye * Springer-Verlag, New York, 1986 * pp 500 * (http://luc.devroye.org/rnbookindex.html) */ r = prng_lg_range(&tdata->prng_state, 53); u = (double)r * (1.0/9007199254740992.0L); tdata->bytes_until_sample = (uint64_t)(log(u) / log(1.0 - (1.0 / (double)((uint64_t)1U << lg_prof_sample)))) + (uint64_t)1U; #endif } #ifdef JEMALLOC_JET static prof_tdata_t * prof_tdata_count_iter(prof_tdata_tree_t *tdatas, prof_tdata_t *tdata, void *arg) { size_t *tdata_count = (size_t *)arg; (*tdata_count)++; return (NULL); } size_t prof_tdata_count(void) { size_t tdata_count = 0; malloc_mutex_lock(&tdatas_mtx); tdata_tree_iter(&tdatas, NULL, prof_tdata_count_iter, (void *)&tdata_count); malloc_mutex_unlock(&tdatas_mtx); return (tdata_count); } #endif #ifdef JEMALLOC_JET size_t prof_bt_count(void) { size_t bt_count; tsd_t *tsd; prof_tdata_t *tdata; tsd = tsd_fetch(); tdata = prof_tdata_get(tsd, false); if (tdata == NULL) return (0); malloc_mutex_lock(&bt2gctx_mtx); bt_count = ckh_count(&bt2gctx); malloc_mutex_unlock(&bt2gctx_mtx); return (bt_count); } #endif #ifdef JEMALLOC_JET #undef prof_dump_open #define prof_dump_open JEMALLOC_N(prof_dump_open_impl) #endif static int prof_dump_open(bool propagate_err, const char *filename) { int fd; fd = creat(filename, 0644); if (fd == -1 && !propagate_err) { malloc_printf("<jemalloc>: creat(\"%s\"), 0644) failed\n", filename); if (opt_abort) abort(); } return (fd); } #ifdef JEMALLOC_JET #undef prof_dump_open #define prof_dump_open JEMALLOC_N(prof_dump_open) prof_dump_open_t *prof_dump_open = JEMALLOC_N(prof_dump_open_impl); #endif static bool prof_dump_flush(bool propagate_err) { bool ret = false; ssize_t err; cassert(config_prof); err = write(prof_dump_fd, prof_dump_buf, prof_dump_buf_end); if (err == -1) { if (!propagate_err) { malloc_write("<jemalloc>: write() failed during heap " "profile flush\n"); if (opt_abort) abort(); } ret = true; } prof_dump_buf_end = 0; return (ret); } static bool prof_dump_close(bool propagate_err) { bool ret; assert(prof_dump_fd != -1); ret = prof_dump_flush(propagate_err); close(prof_dump_fd); prof_dump_fd = -1; return (ret); } static bool prof_dump_write(bool propagate_err, const char *s) { size_t i, slen, n; cassert(config_prof); i = 0; slen = strlen(s); while (i < slen) { /* Flush the buffer if it is full. */ if (prof_dump_buf_end == PROF_DUMP_BUFSIZE) if (prof_dump_flush(propagate_err) && propagate_err) return (true); if (prof_dump_buf_end + slen <= PROF_DUMP_BUFSIZE) { /* Finish writing. */ n = slen - i; } else { /* Write as much of s as will fit. */ n = PROF_DUMP_BUFSIZE - prof_dump_buf_end; } memcpy(&prof_dump_buf[prof_dump_buf_end], &s[i], n); prof_dump_buf_end += n; i += n; } return (false); } JEMALLOC_FORMAT_PRINTF(2, 3) static bool prof_dump_printf(bool propagate_err, const char *format, ...) { bool ret; va_list ap; char buf[PROF_PRINTF_BUFSIZE]; va_start(ap, format); malloc_vsnprintf(buf, sizeof(buf), format, ap); va_end(ap); ret = prof_dump_write(propagate_err, buf); return (ret); } /* tctx->tdata->lock is held. */ static void prof_tctx_merge_tdata(prof_tctx_t *tctx, prof_tdata_t *tdata) { malloc_mutex_lock(tctx->gctx->lock); switch (tctx->state) { case prof_tctx_state_initializing: malloc_mutex_unlock(tctx->gctx->lock); return; case prof_tctx_state_nominal: tctx->state = prof_tctx_state_dumping; malloc_mutex_unlock(tctx->gctx->lock); memcpy(&tctx->dump_cnts, &tctx->cnts, sizeof(prof_cnt_t)); tdata->cnt_summed.curobjs += tctx->dump_cnts.curobjs; tdata->cnt_summed.curbytes += tctx->dump_cnts.curbytes; if (opt_prof_accum) { tdata->cnt_summed.accumobjs += tctx->dump_cnts.accumobjs; tdata->cnt_summed.accumbytes += tctx->dump_cnts.accumbytes; } break; case prof_tctx_state_dumping: case prof_tctx_state_purgatory: not_reached(); } } /* gctx->lock is held. */ static void prof_tctx_merge_gctx(prof_tctx_t *tctx, prof_gctx_t *gctx) { gctx->cnt_summed.curobjs += tctx->dump_cnts.curobjs; gctx->cnt_summed.curbytes += tctx->dump_cnts.curbytes; if (opt_prof_accum) { gctx->cnt_summed.accumobjs += tctx->dump_cnts.accumobjs; gctx->cnt_summed.accumbytes += tctx->dump_cnts.accumbytes; } } /* tctx->gctx is held. */ static prof_tctx_t * prof_tctx_merge_iter(prof_tctx_tree_t *tctxs, prof_tctx_t *tctx, void *arg) { switch (tctx->state) { case prof_tctx_state_nominal: /* New since dumping started; ignore. */ break; case prof_tctx_state_dumping: case prof_tctx_state_purgatory: prof_tctx_merge_gctx(tctx, tctx->gctx); break; default: not_reached(); } return (NULL); } /* gctx->lock is held. */ static prof_tctx_t * prof_tctx_dump_iter(prof_tctx_tree_t *tctxs, prof_tctx_t *tctx, void *arg) { bool propagate_err = *(bool *)arg; switch (tctx->state) { case prof_tctx_state_initializing: case prof_tctx_state_nominal: /* Not captured by this dump. */ break; case prof_tctx_state_dumping: case prof_tctx_state_purgatory: if (prof_dump_printf(propagate_err, " t%"FMTu64": %"FMTu64": %"FMTu64" [%"FMTu64": " "%"FMTu64"]\n", tctx->thr_uid, tctx->dump_cnts.curobjs, tctx->dump_cnts.curbytes, tctx->dump_cnts.accumobjs, tctx->dump_cnts.accumbytes)) return (tctx); break; default: not_reached(); } return (NULL); } /* tctx->gctx is held. */ static prof_tctx_t * prof_tctx_finish_iter(prof_tctx_tree_t *tctxs, prof_tctx_t *tctx, void *arg) { prof_tctx_t *ret; switch (tctx->state) { case prof_tctx_state_nominal: /* New since dumping started; ignore. */ break; case prof_tctx_state_dumping: tctx->state = prof_tctx_state_nominal; break; case prof_tctx_state_purgatory: ret = tctx; goto label_return; default: not_reached(); } ret = NULL; label_return: return (ret); } static void prof_dump_gctx_prep(prof_gctx_t *gctx, prof_gctx_tree_t *gctxs) { cassert(config_prof); malloc_mutex_lock(gctx->lock); /* * Increment nlimbo so that gctx won't go away before dump. * Additionally, link gctx into the dump list so that it is included in * prof_dump()'s second pass. */ gctx->nlimbo++; gctx_tree_insert(gctxs, gctx); memset(&gctx->cnt_summed, 0, sizeof(prof_cnt_t)); malloc_mutex_unlock(gctx->lock); } static prof_gctx_t * prof_gctx_merge_iter(prof_gctx_tree_t *gctxs, prof_gctx_t *gctx, void *arg) { size_t *leak_ngctx = (size_t *)arg; malloc_mutex_lock(gctx->lock); tctx_tree_iter(&gctx->tctxs, NULL, prof_tctx_merge_iter, NULL); if (gctx->cnt_summed.curobjs != 0) (*leak_ngctx)++; malloc_mutex_unlock(gctx->lock); return (NULL); } static void prof_gctx_finish(tsd_t *tsd, prof_gctx_tree_t *gctxs) { prof_tdata_t *tdata = prof_tdata_get(tsd, false); prof_gctx_t *gctx; /* * Standard tree iteration won't work here, because as soon as we * decrement gctx->nlimbo and unlock gctx, another thread can * concurrently destroy it, which will corrupt the tree. Therefore, * tear down the tree one node at a time during iteration. */ while ((gctx = gctx_tree_first(gctxs)) != NULL) { gctx_tree_remove(gctxs, gctx); malloc_mutex_lock(gctx->lock); { prof_tctx_t *next; next = NULL; do { prof_tctx_t *to_destroy = tctx_tree_iter(&gctx->tctxs, next, prof_tctx_finish_iter, NULL); if (to_destroy != NULL) { next = tctx_tree_next(&gctx->tctxs, to_destroy); tctx_tree_remove(&gctx->tctxs, to_destroy); idalloctm(tsd, to_destroy, tcache_get(tsd, false), true, true); } else next = NULL; } while (next != NULL); } gctx->nlimbo--; if (prof_gctx_should_destroy(gctx)) { gctx->nlimbo++; malloc_mutex_unlock(gctx->lock); prof_gctx_try_destroy(tsd, tdata, gctx, tdata); } else malloc_mutex_unlock(gctx->lock); } } static prof_tdata_t * prof_tdata_merge_iter(prof_tdata_tree_t *tdatas, prof_tdata_t *tdata, void *arg) { prof_cnt_t *cnt_all = (prof_cnt_t *)arg; malloc_mutex_lock(tdata->lock); if (!tdata->expired) { size_t tabind; union { prof_tctx_t *p; void *v; } tctx; tdata->dumping = true; memset(&tdata->cnt_summed, 0, sizeof(prof_cnt_t)); for (tabind = 0; !ckh_iter(&tdata->bt2tctx, &tabind, NULL, &tctx.v);) prof_tctx_merge_tdata(tctx.p, tdata); cnt_all->curobjs += tdata->cnt_summed.curobjs; cnt_all->curbytes += tdata->cnt_summed.curbytes; if (opt_prof_accum) { cnt_all->accumobjs += tdata->cnt_summed.accumobjs; cnt_all->accumbytes += tdata->cnt_summed.accumbytes; } } else tdata->dumping = false; malloc_mutex_unlock(tdata->lock); return (NULL); } static prof_tdata_t * prof_tdata_dump_iter(prof_tdata_tree_t *tdatas, prof_tdata_t *tdata, void *arg) { bool propagate_err = *(bool *)arg; if (!tdata->dumping) return (NULL); if (prof_dump_printf(propagate_err, " t%"FMTu64": %"FMTu64": %"FMTu64" [%"FMTu64": %"FMTu64"]%s%s\n", tdata->thr_uid, tdata->cnt_summed.curobjs, tdata->cnt_summed.curbytes, tdata->cnt_summed.accumobjs, tdata->cnt_summed.accumbytes, (tdata->thread_name != NULL) ? " " : "", (tdata->thread_name != NULL) ? tdata->thread_name : "")) return (tdata); return (NULL); } #ifdef JEMALLOC_JET #undef prof_dump_header #define prof_dump_header JEMALLOC_N(prof_dump_header_impl) #endif static bool prof_dump_header(bool propagate_err, const prof_cnt_t *cnt_all) { bool ret; if (prof_dump_printf(propagate_err, "heap_v2/%"FMTu64"\n" " t*: %"FMTu64": %"FMTu64" [%"FMTu64": %"FMTu64"]\n", ((uint64_t)1U << lg_prof_sample), cnt_all->curobjs, cnt_all->curbytes, cnt_all->accumobjs, cnt_all->accumbytes)) return (true); malloc_mutex_lock(&tdatas_mtx); ret = (tdata_tree_iter(&tdatas, NULL, prof_tdata_dump_iter, (void *)&propagate_err) != NULL); malloc_mutex_unlock(&tdatas_mtx); return (ret); } #ifdef JEMALLOC_JET #undef prof_dump_header #define prof_dump_header JEMALLOC_N(prof_dump_header) prof_dump_header_t *prof_dump_header = JEMALLOC_N(prof_dump_header_impl); #endif /* gctx->lock is held. */ static bool prof_dump_gctx(bool propagate_err, prof_gctx_t *gctx, const prof_bt_t *bt, prof_gctx_tree_t *gctxs) { bool ret; unsigned i; cassert(config_prof); /* Avoid dumping such gctx's that have no useful data. */ if ((!opt_prof_accum && gctx->cnt_summed.curobjs == 0) || (opt_prof_accum && gctx->cnt_summed.accumobjs == 0)) { assert(gctx->cnt_summed.curobjs == 0); assert(gctx->cnt_summed.curbytes == 0); assert(gctx->cnt_summed.accumobjs == 0); assert(gctx->cnt_summed.accumbytes == 0); ret = false; goto label_return; } if (prof_dump_printf(propagate_err, "@")) { ret = true; goto label_return; } for (i = 0; i < bt->len; i++) { if (prof_dump_printf(propagate_err, " %#"FMTxPTR, (uintptr_t)bt->vec[i])) { ret = true; goto label_return; } } if (prof_dump_printf(propagate_err, "\n" " t*: %"FMTu64": %"FMTu64" [%"FMTu64": %"FMTu64"]\n", gctx->cnt_summed.curobjs, gctx->cnt_summed.curbytes, gctx->cnt_summed.accumobjs, gctx->cnt_summed.accumbytes)) { ret = true; goto label_return; } if (tctx_tree_iter(&gctx->tctxs, NULL, prof_tctx_dump_iter, (void *)&propagate_err) != NULL) { ret = true; goto label_return; } ret = false; label_return: return (ret); } #ifndef _WIN32 JEMALLOC_FORMAT_PRINTF(1, 2) static int prof_open_maps(const char *format, ...) { int mfd; va_list ap; char filename[PATH_MAX + 1]; va_start(ap, format); malloc_vsnprintf(filename, sizeof(filename), format, ap); va_end(ap); mfd = open(filename, O_RDONLY); return (mfd); } #endif static int prof_getpid(void) { #ifdef _WIN32 return (GetCurrentProcessId()); #else return (getpid()); #endif } static bool prof_dump_maps(bool propagate_err) { bool ret; int mfd; cassert(config_prof); #ifdef __FreeBSD__ mfd = prof_open_maps("/proc/curproc/map"); #elif defined(_WIN32) mfd = -1; // Not implemented #else { int pid = prof_getpid(); mfd = prof_open_maps("/proc/%d/task/%d/maps", pid, pid); if (mfd == -1) mfd = prof_open_maps("/proc/%d/maps", pid); } #endif if (mfd != -1) { ssize_t nread; if (prof_dump_write(propagate_err, "\nMAPPED_LIBRARIES:\n") && propagate_err) { ret = true; goto label_return; } nread = 0; do { prof_dump_buf_end += nread; if (prof_dump_buf_end == PROF_DUMP_BUFSIZE) { /* Make space in prof_dump_buf before read(). */ if (prof_dump_flush(propagate_err) && propagate_err) { ret = true; goto label_return; } } nread = read(mfd, &prof_dump_buf[prof_dump_buf_end], PROF_DUMP_BUFSIZE - prof_dump_buf_end); } while (nread > 0); } else { ret = true; goto label_return; } ret = false; label_return: if (mfd != -1) close(mfd); return (ret); } static void prof_leakcheck(const prof_cnt_t *cnt_all, size_t leak_ngctx, const char *filename) { if (cnt_all->curbytes != 0) { malloc_printf("<jemalloc>: Leak summary: %"FMTu64" byte%s, %" FMTu64" object%s, %zu context%s\n", cnt_all->curbytes, (cnt_all->curbytes != 1) ? "s" : "", cnt_all->curobjs, (cnt_all->curobjs != 1) ? "s" : "", leak_ngctx, (leak_ngctx != 1) ? "s" : ""); malloc_printf( "<jemalloc>: Run jeprof on \"%s\" for leak detail\n", filename); } } static prof_gctx_t * prof_gctx_dump_iter(prof_gctx_tree_t *gctxs, prof_gctx_t *gctx, void *arg) { prof_gctx_t *ret; bool propagate_err = *(bool *)arg; malloc_mutex_lock(gctx->lock); if (prof_dump_gctx(propagate_err, gctx, &gctx->bt, gctxs)) { ret = gctx; goto label_return; } ret = NULL; label_return: malloc_mutex_unlock(gctx->lock); return (ret); } static bool prof_dump(tsd_t *tsd, bool propagate_err, const char *filename, bool leakcheck) { prof_tdata_t *tdata; prof_cnt_t cnt_all; size_t tabind; union { prof_gctx_t *p; void *v; } gctx; size_t leak_ngctx; prof_gctx_tree_t gctxs; cassert(config_prof); tdata = prof_tdata_get(tsd, true); if (tdata == NULL) return (true); malloc_mutex_lock(&prof_dump_mtx); prof_enter(tsd, tdata); /* * Put gctx's in limbo and clear their counters in preparation for * summing. */ gctx_tree_new(&gctxs); for (tabind = 0; !ckh_iter(&bt2gctx, &tabind, NULL, &gctx.v);) prof_dump_gctx_prep(gctx.p, &gctxs); /* * Iterate over tdatas, and for the non-expired ones snapshot their tctx * stats and merge them into the associated gctx's. */ memset(&cnt_all, 0, sizeof(prof_cnt_t)); malloc_mutex_lock(&tdatas_mtx); tdata_tree_iter(&tdatas, NULL, prof_tdata_merge_iter, (void *)&cnt_all); malloc_mutex_unlock(&tdatas_mtx); /* Merge tctx stats into gctx's. */ leak_ngctx = 0; gctx_tree_iter(&gctxs, NULL, prof_gctx_merge_iter, (void *)&leak_ngctx); prof_leave(tsd, tdata); /* Create dump file. */ if ((prof_dump_fd = prof_dump_open(propagate_err, filename)) == -1) goto label_open_close_error; /* Dump profile header. */ if (prof_dump_header(propagate_err, &cnt_all)) goto label_write_error; /* Dump per gctx profile stats. */ if (gctx_tree_iter(&gctxs, NULL, prof_gctx_dump_iter, (void *)&propagate_err) != NULL) goto label_write_error; /* Dump /proc/<pid>/maps if possible. */ if (prof_dump_maps(propagate_err)) goto label_write_error; if (prof_dump_close(propagate_err)) goto label_open_close_error; prof_gctx_finish(tsd, &gctxs); malloc_mutex_unlock(&prof_dump_mtx); if (leakcheck) prof_leakcheck(&cnt_all, leak_ngctx, filename); return (false); label_write_error: prof_dump_close(propagate_err); label_open_close_error: prof_gctx_finish(tsd, &gctxs); malloc_mutex_unlock(&prof_dump_mtx); return (true); } #define DUMP_FILENAME_BUFSIZE (PATH_MAX + 1) #define VSEQ_INVALID UINT64_C(0xffffffffffffffff) static void prof_dump_filename(char *filename, char v, uint64_t vseq) { cassert(config_prof); if (vseq != VSEQ_INVALID) { /* "<prefix>.<pid>.<seq>.v<vseq>.heap" */ malloc_snprintf(filename, DUMP_FILENAME_BUFSIZE, "%s.%d.%"FMTu64".%c%"FMTu64".heap", opt_prof_prefix, prof_getpid(), prof_dump_seq, v, vseq); } else { /* "<prefix>.<pid>.<seq>.<v>.heap" */ malloc_snprintf(filename, DUMP_FILENAME_BUFSIZE, "%s.%d.%"FMTu64".%c.heap", opt_prof_prefix, prof_getpid(), prof_dump_seq, v); } prof_dump_seq++; } static void prof_fdump(void) { tsd_t *tsd; char filename[DUMP_FILENAME_BUFSIZE]; cassert(config_prof); assert(opt_prof_final); assert(opt_prof_prefix[0] != '\0'); if (!prof_booted) return; tsd = tsd_fetch(); malloc_mutex_lock(&prof_dump_seq_mtx); prof_dump_filename(filename, 'f', VSEQ_INVALID); malloc_mutex_unlock(&prof_dump_seq_mtx); prof_dump(tsd, false, filename, opt_prof_leak); } void prof_idump(void) { tsd_t *tsd; prof_tdata_t *tdata; cassert(config_prof); if (!prof_booted) return; tsd = tsd_fetch(); tdata = prof_tdata_get(tsd, false); if (tdata == NULL) return; if (tdata->enq) { tdata->enq_idump = true; return; } if (opt_prof_prefix[0] != '\0') { char filename[PATH_MAX + 1]; malloc_mutex_lock(&prof_dump_seq_mtx); prof_dump_filename(filename, 'i', prof_dump_iseq); prof_dump_iseq++; malloc_mutex_unlock(&prof_dump_seq_mtx); prof_dump(tsd, false, filename, false); } } bool prof_mdump(const char *filename) { tsd_t *tsd; char filename_buf[DUMP_FILENAME_BUFSIZE]; cassert(config_prof); if (!opt_prof || !prof_booted) return (true); tsd = tsd_fetch(); if (filename == NULL) { /* No filename specified, so automatically generate one. */ if (opt_prof_prefix[0] == '\0') return (true); malloc_mutex_lock(&prof_dump_seq_mtx); prof_dump_filename(filename_buf, 'm', prof_dump_mseq); prof_dump_mseq++; malloc_mutex_unlock(&prof_dump_seq_mtx); filename = filename_buf; } return (prof_dump(tsd, true, filename, false)); } void prof_gdump(void) { tsd_t *tsd; prof_tdata_t *tdata; cassert(config_prof); if (!prof_booted) return; tsd = tsd_fetch(); tdata = prof_tdata_get(tsd, false); if (tdata == NULL) return; if (tdata->enq) { tdata->enq_gdump = true; return; } if (opt_prof_prefix[0] != '\0') { char filename[DUMP_FILENAME_BUFSIZE]; malloc_mutex_lock(&prof_dump_seq_mtx); prof_dump_filename(filename, 'u', prof_dump_useq); prof_dump_useq++; malloc_mutex_unlock(&prof_dump_seq_mtx); prof_dump(tsd, false, filename, false); } } static void prof_bt_hash(const void *key, size_t r_hash[2]) { prof_bt_t *bt = (prof_bt_t *)key; cassert(config_prof); hash(bt->vec, bt->len * sizeof(void *), 0x94122f33U, r_hash); } static bool prof_bt_keycomp(const void *k1, const void *k2) { const prof_bt_t *bt1 = (prof_bt_t *)k1; const prof_bt_t *bt2 = (prof_bt_t *)k2; cassert(config_prof); if (bt1->len != bt2->len) return (false); return (memcmp(bt1->vec, bt2->vec, bt1->len * sizeof(void *)) == 0); } JEMALLOC_INLINE_C uint64_t prof_thr_uid_alloc(void) { uint64_t thr_uid; malloc_mutex_lock(&next_thr_uid_mtx); thr_uid = next_thr_uid; next_thr_uid++; malloc_mutex_unlock(&next_thr_uid_mtx); return (thr_uid); } static prof_tdata_t * prof_tdata_init_impl(tsd_t *tsd, uint64_t thr_uid, uint64_t thr_discrim, char *thread_name, bool active) { prof_tdata_t *tdata; tcache_t *tcache; cassert(config_prof); /* Initialize an empty cache for this thread. */ tcache = tcache_get(tsd, true); tdata = (prof_tdata_t *)iallocztm(tsd, sizeof(prof_tdata_t), size2index(sizeof(prof_tdata_t)), false, tcache, true, NULL, true); if (tdata == NULL) return (NULL); tdata->lock = prof_tdata_mutex_choose(thr_uid); tdata->thr_uid = thr_uid; tdata->thr_discrim = thr_discrim; tdata->thread_name = thread_name; tdata->attached = true; tdata->expired = false; tdata->tctx_uid_next = 0; if (ckh_new(tsd, &tdata->bt2tctx, PROF_CKH_MINITEMS, prof_bt_hash, prof_bt_keycomp)) { idalloctm(tsd, tdata, tcache, true, true); return (NULL); } tdata->prng_state = (uint64_t)(uintptr_t)tdata; prof_sample_threshold_update(tdata); tdata->enq = false; tdata->enq_idump = false; tdata->enq_gdump = false; tdata->dumping = false; tdata->active = active; malloc_mutex_lock(&tdatas_mtx); tdata_tree_insert(&tdatas, tdata); malloc_mutex_unlock(&tdatas_mtx); return (tdata); } prof_tdata_t * prof_tdata_init(tsd_t *tsd) { return (prof_tdata_init_impl(tsd, prof_thr_uid_alloc(), 0, NULL, prof_thread_active_init_get())); } /* tdata->lock must be held. */ static bool prof_tdata_should_destroy(prof_tdata_t *tdata, bool even_if_attached) { if (tdata->attached && !even_if_attached) return (false); if (ckh_count(&tdata->bt2tctx) != 0) return (false); return (true); } /* tdatas_mtx must be held. */ static void prof_tdata_destroy_locked(tsd_t *tsd, prof_tdata_t *tdata, bool even_if_attached) { tcache_t *tcache; assert(prof_tdata_should_destroy(tdata, even_if_attached)); assert(tsd_prof_tdata_get(tsd) != tdata); tdata_tree_remove(&tdatas, tdata); tcache = tcache_get(tsd, false); if (tdata->thread_name != NULL) idalloctm(tsd, tdata->thread_name, tcache, true, true); ckh_delete(tsd, &tdata->bt2tctx); idalloctm(tsd, tdata, tcache, true, true); } static void prof_tdata_destroy(tsd_t *tsd, prof_tdata_t *tdata, bool even_if_attached) { malloc_mutex_lock(&tdatas_mtx); prof_tdata_destroy_locked(tsd, tdata, even_if_attached); malloc_mutex_unlock(&tdatas_mtx); } static void prof_tdata_detach(tsd_t *tsd, prof_tdata_t *tdata) { bool destroy_tdata; malloc_mutex_lock(tdata->lock); if (tdata->attached) { destroy_tdata = prof_tdata_should_destroy(tdata, true); /* * Only detach if !destroy_tdata, because detaching would allow * another thread to win the race to destroy tdata. */ if (!destroy_tdata) tdata->attached = false; tsd_prof_tdata_set(tsd, NULL); } else destroy_tdata = false; malloc_mutex_unlock(tdata->lock); if (destroy_tdata) prof_tdata_destroy(tsd, tdata, true); } prof_tdata_t * prof_tdata_reinit(tsd_t *tsd, prof_tdata_t *tdata) { uint64_t thr_uid = tdata->thr_uid; uint64_t thr_discrim = tdata->thr_discrim + 1; char *thread_name = (tdata->thread_name != NULL) ? prof_thread_name_alloc(tsd, tdata->thread_name) : NULL; bool active = tdata->active; prof_tdata_detach(tsd, tdata); return (prof_tdata_init_impl(tsd, thr_uid, thr_discrim, thread_name, active)); } static bool prof_tdata_expire(prof_tdata_t *tdata) { bool destroy_tdata; malloc_mutex_lock(tdata->lock); if (!tdata->expired) { tdata->expired = true; destroy_tdata = tdata->attached ? false : prof_tdata_should_destroy(tdata, false); } else destroy_tdata = false; malloc_mutex_unlock(tdata->lock); return (destroy_tdata); } static prof_tdata_t * prof_tdata_reset_iter(prof_tdata_tree_t *tdatas, prof_tdata_t *tdata, void *arg) { return (prof_tdata_expire(tdata) ? tdata : NULL); } void prof_reset(tsd_t *tsd, size_t lg_sample) { prof_tdata_t *next; assert(lg_sample < (sizeof(uint64_t) << 3)); malloc_mutex_lock(&prof_dump_mtx); malloc_mutex_lock(&tdatas_mtx); lg_prof_sample = lg_sample; next = NULL; do { prof_tdata_t *to_destroy = tdata_tree_iter(&tdatas, next, prof_tdata_reset_iter, NULL); if (to_destroy != NULL) { next = tdata_tree_next(&tdatas, to_destroy); prof_tdata_destroy_locked(tsd, to_destroy, false); } else next = NULL; } while (next != NULL); malloc_mutex_unlock(&tdatas_mtx); malloc_mutex_unlock(&prof_dump_mtx); } void prof_tdata_cleanup(tsd_t *tsd) { prof_tdata_t *tdata; if (!config_prof) return; tdata = tsd_prof_tdata_get(tsd); if (tdata != NULL) prof_tdata_detach(tsd, tdata); } bool prof_active_get(void) { bool prof_active_current; malloc_mutex_lock(&prof_active_mtx); prof_active_current = prof_active; malloc_mutex_unlock(&prof_active_mtx); return (prof_active_current); } bool prof_active_set(bool active) { bool prof_active_old; malloc_mutex_lock(&prof_active_mtx); prof_active_old = prof_active; prof_active = active; malloc_mutex_unlock(&prof_active_mtx); return (prof_active_old); } const char * prof_thread_name_get(void) { tsd_t *tsd; prof_tdata_t *tdata; tsd = tsd_fetch(); tdata = prof_tdata_get(tsd, true); if (tdata == NULL) return (""); return (tdata->thread_name != NULL ? tdata->thread_name : ""); } static char * prof_thread_name_alloc(tsd_t *tsd, const char *thread_name) { char *ret; size_t size; if (thread_name == NULL) return (NULL); size = strlen(thread_name) + 1; if (size == 1) return (""); ret = iallocztm(tsd, size, size2index(size), false, tcache_get(tsd, true), true, NULL, true); if (ret == NULL) return (NULL); memcpy(ret, thread_name, size); return (ret); } int prof_thread_name_set(tsd_t *tsd, const char *thread_name) { prof_tdata_t *tdata; unsigned i; char *s; tdata = prof_tdata_get(tsd, true); if (tdata == NULL) return (EAGAIN); /* Validate input. */ if (thread_name == NULL) return (EFAULT); for (i = 0; thread_name[i] != '\0'; i++) { char c = thread_name[i]; if (!isgraph(c) && !isblank(c)) return (EFAULT); } s = prof_thread_name_alloc(tsd, thread_name); if (s == NULL) return (EAGAIN); if (tdata->thread_name != NULL) { idalloctm(tsd, tdata->thread_name, tcache_get(tsd, false), true, true); tdata->thread_name = NULL; } if (strlen(s) > 0) tdata->thread_name = s; return (0); } bool prof_thread_active_get(void) { tsd_t *tsd; prof_tdata_t *tdata; tsd = tsd_fetch(); tdata = prof_tdata_get(tsd, true); if (tdata == NULL) return (false); return (tdata->active); } bool prof_thread_active_set(bool active) { tsd_t *tsd; prof_tdata_t *tdata; tsd = tsd_fetch(); tdata = prof_tdata_get(tsd, true); if (tdata == NULL) return (true); tdata->active = active; return (false); } bool prof_thread_active_init_get(void) { bool active_init; malloc_mutex_lock(&prof_thread_active_init_mtx); active_init = prof_thread_active_init; malloc_mutex_unlock(&prof_thread_active_init_mtx); return (active_init); } bool prof_thread_active_init_set(bool active_init) { bool active_init_old; malloc_mutex_lock(&prof_thread_active_init_mtx); active_init_old = prof_thread_active_init; prof_thread_active_init = active_init; malloc_mutex_unlock(&prof_thread_active_init_mtx); return (active_init_old); } bool prof_gdump_get(void) { bool prof_gdump_current; malloc_mutex_lock(&prof_gdump_mtx); prof_gdump_current = prof_gdump_val; malloc_mutex_unlock(&prof_gdump_mtx); return (prof_gdump_current); } bool prof_gdump_set(bool gdump) { bool prof_gdump_old; malloc_mutex_lock(&prof_gdump_mtx); prof_gdump_old = prof_gdump_val; prof_gdump_val = gdump; malloc_mutex_unlock(&prof_gdump_mtx); return (prof_gdump_old); } void prof_boot0(void) { cassert(config_prof); memcpy(opt_prof_prefix, PROF_PREFIX_DEFAULT, sizeof(PROF_PREFIX_DEFAULT)); } void prof_boot1(void) { cassert(config_prof); /* * opt_prof must be in its final state before any arenas are * initialized, so this function must be executed early. */ if (opt_prof_leak && !opt_prof) { /* * Enable opt_prof, but in such a way that profiles are never * automatically dumped. */ opt_prof = true; opt_prof_gdump = false; } else if (opt_prof) { if (opt_lg_prof_interval >= 0) { prof_interval = (((uint64_t)1U) << opt_lg_prof_interval); } } } bool prof_boot2(void) { cassert(config_prof); if (opt_prof) { tsd_t *tsd; unsigned i; lg_prof_sample = opt_lg_prof_sample; prof_active = opt_prof_active; if (malloc_mutex_init(&prof_active_mtx)) return (true); prof_gdump_val = opt_prof_gdump; if (malloc_mutex_init(&prof_gdump_mtx)) return (true); prof_thread_active_init = opt_prof_thread_active_init; if (malloc_mutex_init(&prof_thread_active_init_mtx)) return (true); tsd = tsd_fetch(); if (ckh_new(tsd, &bt2gctx, PROF_CKH_MINITEMS, prof_bt_hash, prof_bt_keycomp)) return (true); if (malloc_mutex_init(&bt2gctx_mtx)) return (true); tdata_tree_new(&tdatas); if (malloc_mutex_init(&tdatas_mtx)) return (true); next_thr_uid = 0; if (malloc_mutex_init(&next_thr_uid_mtx)) return (true); if (malloc_mutex_init(&prof_dump_seq_mtx)) return (true); if (malloc_mutex_init(&prof_dump_mtx)) return (true); if (opt_prof_final && opt_prof_prefix[0] != '\0' && atexit(prof_fdump) != 0) { malloc_write("<jemalloc>: Error in atexit()\n"); if (opt_abort) abort(); } gctx_locks = (malloc_mutex_t *)base_alloc(PROF_NCTX_LOCKS * sizeof(malloc_mutex_t)); if (gctx_locks == NULL) return (true); for (i = 0; i < PROF_NCTX_LOCKS; i++) { if (malloc_mutex_init(&gctx_locks[i])) return (true); } tdata_locks = (malloc_mutex_t *)base_alloc(PROF_NTDATA_LOCKS * sizeof(malloc_mutex_t)); if (tdata_locks == NULL) return (true); for (i = 0; i < PROF_NTDATA_LOCKS; i++) { if (malloc_mutex_init(&tdata_locks[i])) return (true); } } #ifdef JEMALLOC_PROF_LIBGCC /* * Cause the backtracing machinery to allocate its internal state * before enabling profiling. */ _Unwind_Backtrace(prof_unwind_init_callback, NULL); #endif prof_booted = true; return (false); } void prof_prefork(void) { if (opt_prof) { unsigned i; malloc_mutex_prefork(&tdatas_mtx); malloc_mutex_prefork(&bt2gctx_mtx); malloc_mutex_prefork(&next_thr_uid_mtx); malloc_mutex_prefork(&prof_dump_seq_mtx); for (i = 0; i < PROF_NCTX_LOCKS; i++) malloc_mutex_prefork(&gctx_locks[i]); for (i = 0; i < PROF_NTDATA_LOCKS; i++) malloc_mutex_prefork(&tdata_locks[i]); } } void prof_postfork_parent(void) { if (opt_prof) { unsigned i; for (i = 0; i < PROF_NTDATA_LOCKS; i++) malloc_mutex_postfork_parent(&tdata_locks[i]); for (i = 0; i < PROF_NCTX_LOCKS; i++) malloc_mutex_postfork_parent(&gctx_locks[i]); malloc_mutex_postfork_parent(&prof_dump_seq_mtx); malloc_mutex_postfork_parent(&next_thr_uid_mtx); malloc_mutex_postfork_parent(&bt2gctx_mtx); malloc_mutex_postfork_parent(&tdatas_mtx); } } void prof_postfork_child(void) { if (opt_prof) { unsigned i; for (i = 0; i < PROF_NTDATA_LOCKS; i++) malloc_mutex_postfork_child(&tdata_locks[i]); for (i = 0; i < PROF_NCTX_LOCKS; i++) malloc_mutex_postfork_child(&gctx_locks[i]); malloc_mutex_postfork_child(&prof_dump_seq_mtx); malloc_mutex_postfork_child(&next_thr_uid_mtx); malloc_mutex_postfork_child(&bt2gctx_mtx); malloc_mutex_postfork_child(&tdatas_mtx); } } /******************************************************************************/