// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2010 Manuel Yguel <manuel.yguel@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "main.h" #include <unsupported/Eigen/Polynomials> #include <iostream> using namespace std; namespace Eigen { namespace internal { template<int Size> struct increment_if_fixed_size { enum { ret = (Size == Dynamic) ? Dynamic : Size+1 }; }; } } template<typename _Scalar, int _Deg> void realRoots_to_monicPolynomial_test(int deg) { typedef internal::increment_if_fixed_size<_Deg> Dim; typedef Matrix<_Scalar,Dim::ret,1> PolynomialType; typedef Matrix<_Scalar,_Deg,1> EvalRootsType; PolynomialType pols(deg+1); EvalRootsType roots = EvalRootsType::Random(deg); roots_to_monicPolynomial( roots, pols ); EvalRootsType evr( deg ); for( int i=0; i<roots.size(); ++i ){ evr[i] = std::abs( poly_eval( pols, roots[i] ) ); } bool evalToZero = evr.isZero( test_precision<_Scalar>() ); if( !evalToZero ){ cerr << evr.transpose() << endl; } VERIFY( evalToZero ); } template<typename _Scalar> void realRoots_to_monicPolynomial_scalar() { CALL_SUBTEST_2( (realRoots_to_monicPolynomial_test<_Scalar,2>(2)) ); CALL_SUBTEST_3( (realRoots_to_monicPolynomial_test<_Scalar,3>(3)) ); CALL_SUBTEST_4( (realRoots_to_monicPolynomial_test<_Scalar,4>(4)) ); CALL_SUBTEST_5( (realRoots_to_monicPolynomial_test<_Scalar,5>(5)) ); CALL_SUBTEST_6( (realRoots_to_monicPolynomial_test<_Scalar,6>(6)) ); CALL_SUBTEST_7( (realRoots_to_monicPolynomial_test<_Scalar,7>(7)) ); CALL_SUBTEST_8( (realRoots_to_monicPolynomial_test<_Scalar,17>(17)) ); CALL_SUBTEST_9( (realRoots_to_monicPolynomial_test<_Scalar,Dynamic>( internal::random<int>(18,26) )) ); } template<typename _Scalar, int _Deg> void CauchyBounds(int deg) { typedef internal::increment_if_fixed_size<_Deg> Dim; typedef Matrix<_Scalar,Dim::ret,1> PolynomialType; typedef Matrix<_Scalar,_Deg,1> EvalRootsType; PolynomialType pols(deg+1); EvalRootsType roots = EvalRootsType::Random(deg); roots_to_monicPolynomial( roots, pols ); _Scalar M = cauchy_max_bound( pols ); _Scalar m = cauchy_min_bound( pols ); _Scalar Max = roots.array().abs().maxCoeff(); _Scalar min = roots.array().abs().minCoeff(); bool eval = (M >= Max) && (m <= min); if( !eval ) { cerr << "Roots: " << roots << endl; cerr << "Bounds: (" << m << ", " << M << ")" << endl; cerr << "Min,Max: (" << min << ", " << Max << ")" << endl; } VERIFY( eval ); } template<typename _Scalar> void CauchyBounds_scalar() { CALL_SUBTEST_2( (CauchyBounds<_Scalar,2>(2)) ); CALL_SUBTEST_3( (CauchyBounds<_Scalar,3>(3)) ); CALL_SUBTEST_4( (CauchyBounds<_Scalar,4>(4)) ); CALL_SUBTEST_5( (CauchyBounds<_Scalar,5>(5)) ); CALL_SUBTEST_6( (CauchyBounds<_Scalar,6>(6)) ); CALL_SUBTEST_7( (CauchyBounds<_Scalar,7>(7)) ); CALL_SUBTEST_8( (CauchyBounds<_Scalar,17>(17)) ); CALL_SUBTEST_9( (CauchyBounds<_Scalar,Dynamic>( internal::random<int>(18,26) )) ); } void test_polynomialutils() { for(int i = 0; i < g_repeat; i++) { realRoots_to_monicPolynomial_scalar<double>(); realRoots_to_monicPolynomial_scalar<float>(); CauchyBounds_scalar<double>(); CauchyBounds_scalar<float>(); } }