// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com> // Copyright (C) 2010 Hauke Heibel <hauke.heibel@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "main.h" #include <Eigen/StdVector> #include <Eigen/Geometry> EIGEN_DEFINE_STL_VECTOR_SPECIALIZATION(Vector4f) EIGEN_DEFINE_STL_VECTOR_SPECIALIZATION(Matrix2f) EIGEN_DEFINE_STL_VECTOR_SPECIALIZATION(Matrix4f) EIGEN_DEFINE_STL_VECTOR_SPECIALIZATION(Matrix4d) EIGEN_DEFINE_STL_VECTOR_SPECIALIZATION(Affine3f) EIGEN_DEFINE_STL_VECTOR_SPECIALIZATION(Affine3d) EIGEN_DEFINE_STL_VECTOR_SPECIALIZATION(Quaternionf) EIGEN_DEFINE_STL_VECTOR_SPECIALIZATION(Quaterniond) template<typename MatrixType> void check_stdvector_matrix(const MatrixType& m) { typename MatrixType::Index rows = m.rows(); typename MatrixType::Index cols = m.cols(); MatrixType x = MatrixType::Random(rows,cols), y = MatrixType::Random(rows,cols); std::vector<MatrixType> v(10, MatrixType(rows,cols)), w(20, y); v[5] = x; w[6] = v[5]; VERIFY_IS_APPROX(w[6], v[5]); v = w; for(int i = 0; i < 20; i++) { VERIFY_IS_APPROX(w[i], v[i]); } v.resize(21); v[20] = x; VERIFY_IS_APPROX(v[20], x); v.resize(22,y); VERIFY_IS_APPROX(v[21], y); v.push_back(x); VERIFY_IS_APPROX(v[22], x); VERIFY((size_t)&(v[22]) == (size_t)&(v[21]) + sizeof(MatrixType)); // do a lot of push_back such that the vector gets internally resized // (with memory reallocation) MatrixType* ref = &w[0]; for(int i=0; i<30 || ((ref==&w[0]) && i<300); ++i) v.push_back(w[i%w.size()]); for(unsigned int i=23; i<v.size(); ++i) { VERIFY(v[i]==w[(i-23)%w.size()]); } } template<typename TransformType> void check_stdvector_transform(const TransformType&) { typedef typename TransformType::MatrixType MatrixType; TransformType x(MatrixType::Random()), y(MatrixType::Random()); std::vector<TransformType> v(10), w(20, y); v[5] = x; w[6] = v[5]; VERIFY_IS_APPROX(w[6], v[5]); v = w; for(int i = 0; i < 20; i++) { VERIFY_IS_APPROX(w[i], v[i]); } v.resize(21); v[20] = x; VERIFY_IS_APPROX(v[20], x); v.resize(22,y); VERIFY_IS_APPROX(v[21], y); v.push_back(x); VERIFY_IS_APPROX(v[22], x); VERIFY((size_t)&(v[22]) == (size_t)&(v[21]) + sizeof(TransformType)); // do a lot of push_back such that the vector gets internally resized // (with memory reallocation) TransformType* ref = &w[0]; for(int i=0; i<30 || ((ref==&w[0]) && i<300); ++i) v.push_back(w[i%w.size()]); for(unsigned int i=23; i<v.size(); ++i) { VERIFY(v[i].matrix()==w[(i-23)%w.size()].matrix()); } } template<typename QuaternionType> void check_stdvector_quaternion(const QuaternionType&) { typedef typename QuaternionType::Coefficients Coefficients; QuaternionType x(Coefficients::Random()), y(Coefficients::Random()); std::vector<QuaternionType> v(10), w(20, y); v[5] = x; w[6] = v[5]; VERIFY_IS_APPROX(w[6], v[5]); v = w; for(int i = 0; i < 20; i++) { VERIFY_IS_APPROX(w[i], v[i]); } v.resize(21); v[20] = x; VERIFY_IS_APPROX(v[20], x); v.resize(22,y); VERIFY_IS_APPROX(v[21], y); v.push_back(x); VERIFY_IS_APPROX(v[22], x); VERIFY((size_t)&(v[22]) == (size_t)&(v[21]) + sizeof(QuaternionType)); // do a lot of push_back such that the vector gets internally resized // (with memory reallocation) QuaternionType* ref = &w[0]; for(int i=0; i<30 || ((ref==&w[0]) && i<300); ++i) v.push_back(w[i%w.size()]); for(unsigned int i=23; i<v.size(); ++i) { VERIFY(v[i].coeffs()==w[(i-23)%w.size()].coeffs()); } } void test_stdvector_overload() { // some non vectorizable fixed sizes CALL_SUBTEST_1(check_stdvector_matrix(Vector2f())); CALL_SUBTEST_1(check_stdvector_matrix(Matrix3f())); CALL_SUBTEST_2(check_stdvector_matrix(Matrix3d())); // some vectorizable fixed sizes CALL_SUBTEST_1(check_stdvector_matrix(Matrix2f())); CALL_SUBTEST_1(check_stdvector_matrix(Vector4f())); CALL_SUBTEST_1(check_stdvector_matrix(Matrix4f())); CALL_SUBTEST_2(check_stdvector_matrix(Matrix4d())); // some dynamic sizes CALL_SUBTEST_3(check_stdvector_matrix(MatrixXd(1,1))); CALL_SUBTEST_3(check_stdvector_matrix(VectorXd(20))); CALL_SUBTEST_3(check_stdvector_matrix(RowVectorXf(20))); CALL_SUBTEST_3(check_stdvector_matrix(MatrixXcf(10,10))); // some Transform CALL_SUBTEST_4(check_stdvector_transform(Affine2f())); // does not need the specialization (2+1)^2 = 9 CALL_SUBTEST_4(check_stdvector_transform(Affine3f())); CALL_SUBTEST_4(check_stdvector_transform(Affine3d())); // some Quaternion CALL_SUBTEST_5(check_stdvector_quaternion(Quaternionf())); CALL_SUBTEST_5(check_stdvector_quaternion(Quaterniond())); }