// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "common.h" struct scalar_norm1_op { typedef RealScalar result_type; EIGEN_EMPTY_STRUCT_CTOR(scalar_norm1_op) inline RealScalar operator() (const Scalar& a) const { return numext::norm1(a); } }; namespace Eigen { namespace internal { template<> struct functor_traits<scalar_norm1_op > { enum { Cost = 3 * NumTraits<Scalar>::AddCost, PacketAccess = 0 }; }; } } // computes the sum of magnitudes of all vector elements or, for a complex vector x, the sum // res = |Rex1| + |Imx1| + |Rex2| + |Imx2| + ... + |Rexn| + |Imxn|, where x is a vector of order n RealScalar EIGEN_CAT(EIGEN_CAT(REAL_SCALAR_SUFFIX,SCALAR_SUFFIX),asum_)(int *n, RealScalar *px, int *incx) { // std::cerr << "__asum " << *n << " " << *incx << "\n"; Complex* x = reinterpret_cast<Complex*>(px); if(*n<=0) return 0; if(*incx==1) return vector(x,*n).unaryExpr<scalar_norm1_op>().sum(); else return vector(x,*n,std::abs(*incx)).unaryExpr<scalar_norm1_op>().sum(); } // computes a dot product of a conjugated vector with another vector. int EIGEN_BLAS_FUNC(dotcw)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar* pres) { // std::cerr << "_dotc " << *n << " " << *incx << " " << *incy << "\n"; if(*n<=0) return 0; Scalar* x = reinterpret_cast<Scalar*>(px); Scalar* y = reinterpret_cast<Scalar*>(py); Scalar* res = reinterpret_cast<Scalar*>(pres); if(*incx==1 && *incy==1) *res = (vector(x,*n).dot(vector(y,*n))); else if(*incx>0 && *incy>0) *res = (vector(x,*n,*incx).dot(vector(y,*n,*incy))); else if(*incx<0 && *incy>0) *res = (vector(x,*n,-*incx).reverse().dot(vector(y,*n,*incy))); else if(*incx>0 && *incy<0) *res = (vector(x,*n,*incx).dot(vector(y,*n,-*incy).reverse())); else if(*incx<0 && *incy<0) *res = (vector(x,*n,-*incx).reverse().dot(vector(y,*n,-*incy).reverse())); return 0; } // computes a vector-vector dot product without complex conjugation. int EIGEN_BLAS_FUNC(dotuw)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar* pres) { // std::cerr << "_dotu " << *n << " " << *incx << " " << *incy << "\n"; if(*n<=0) return 0; Scalar* x = reinterpret_cast<Scalar*>(px); Scalar* y = reinterpret_cast<Scalar*>(py); Scalar* res = reinterpret_cast<Scalar*>(pres); if(*incx==1 && *incy==1) *res = (vector(x,*n).cwiseProduct(vector(y,*n))).sum(); else if(*incx>0 && *incy>0) *res = (vector(x,*n,*incx).cwiseProduct(vector(y,*n,*incy))).sum(); else if(*incx<0 && *incy>0) *res = (vector(x,*n,-*incx).reverse().cwiseProduct(vector(y,*n,*incy))).sum(); else if(*incx>0 && *incy<0) *res = (vector(x,*n,*incx).cwiseProduct(vector(y,*n,-*incy).reverse())).sum(); else if(*incx<0 && *incy<0) *res = (vector(x,*n,-*incx).reverse().cwiseProduct(vector(y,*n,-*incy).reverse())).sum(); return 0; } RealScalar EIGEN_CAT(EIGEN_CAT(REAL_SCALAR_SUFFIX,SCALAR_SUFFIX),nrm2_)(int *n, RealScalar *px, int *incx) { // std::cerr << "__nrm2 " << *n << " " << *incx << "\n"; if(*n<=0) return 0; Scalar* x = reinterpret_cast<Scalar*>(px); if(*incx==1) return vector(x,*n).stableNorm(); return vector(x,*n,*incx).stableNorm(); } int EIGEN_CAT(EIGEN_CAT(SCALAR_SUFFIX,REAL_SCALAR_SUFFIX),rot_)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pc, RealScalar *ps) { if(*n<=0) return 0; Scalar* x = reinterpret_cast<Scalar*>(px); Scalar* y = reinterpret_cast<Scalar*>(py); RealScalar c = *pc; RealScalar s = *ps; StridedVectorType vx(vector(x,*n,std::abs(*incx))); StridedVectorType vy(vector(y,*n,std::abs(*incy))); Reverse<StridedVectorType> rvx(vx); Reverse<StridedVectorType> rvy(vy); // TODO implement mixed real-scalar rotations if(*incx<0 && *incy>0) internal::apply_rotation_in_the_plane(rvx, vy, JacobiRotation<Scalar>(c,s)); else if(*incx>0 && *incy<0) internal::apply_rotation_in_the_plane(vx, rvy, JacobiRotation<Scalar>(c,s)); else internal::apply_rotation_in_the_plane(vx, vy, JacobiRotation<Scalar>(c,s)); return 0; } int EIGEN_CAT(EIGEN_CAT(SCALAR_SUFFIX,REAL_SCALAR_SUFFIX),scal_)(int *n, RealScalar *palpha, RealScalar *px, int *incx) { if(*n<=0) return 0; Scalar* x = reinterpret_cast<Scalar*>(px); RealScalar alpha = *palpha; // std::cerr << "__scal " << *n << " " << alpha << " " << *incx << "\n"; if(*incx==1) vector(x,*n) *= alpha; else vector(x,*n,std::abs(*incx)) *= alpha; return 0; }