//g++ -O3 -g0 -DNDEBUG sparse_product.cpp -I.. -I/home/gael/Coding/LinearAlgebra/mtl4/ -DDENSITY=0.005 -DSIZE=10000 && ./a.out //g++ -O3 -g0 -DNDEBUG sparse_product.cpp -I.. -I/home/gael/Coding/LinearAlgebra/mtl4/ -DDENSITY=0.05 -DSIZE=2000 && ./a.out // -DNOGMM -DNOMTL -DCSPARSE // -I /home/gael/Coding/LinearAlgebra/CSparse/Include/ /home/gael/Coding/LinearAlgebra/CSparse/Lib/libcsparse.a #include <typeinfo> #ifndef SIZE #define SIZE 1000000 #endif #ifndef NNZPERCOL #define NNZPERCOL 6 #endif #ifndef REPEAT #define REPEAT 1 #endif #include <algorithm> #include "BenchTimer.h" #include "BenchUtil.h" #include "BenchSparseUtil.h" #ifndef NBTRIES #define NBTRIES 1 #endif #define BENCH(X) \ timer.reset(); \ for (int _j=0; _j<NBTRIES; ++_j) { \ timer.start(); \ for (int _k=0; _k<REPEAT; ++_k) { \ X \ } timer.stop(); } // #ifdef MKL // // #include "mkl_types.h" // #include "mkl_spblas.h" // // template<typename Lhs,typename Rhs,typename Res> // void mkl_multiply(const Lhs& lhs, const Rhs& rhs, Res& res) // { // char n = 'N'; // float alpha = 1; // char matdescra[6]; // matdescra[0] = 'G'; // matdescra[1] = 0; // matdescra[2] = 0; // matdescra[3] = 'C'; // mkl_scscmm(&n, lhs.rows(), rhs.cols(), lhs.cols(), &alpha, matdescra, // lhs._valuePtr(), lhs._innerIndexPtr(), lhs.outerIndexPtr(), // pntre, b, &ldb, &beta, c, &ldc); // // mkl_somatcopy('C', 'T', lhs.rows(), lhs.cols(), 1, // // lhs._valuePtr(), lhs.rows(), DST, dst_stride); // } // // #endif #ifdef CSPARSE cs* cs_sorted_multiply(const cs* a, const cs* b) { // return cs_multiply(a,b); cs* A = cs_transpose(a, 1); cs* B = cs_transpose(b, 1); cs* D = cs_multiply(B,A); /* D = B'*A' */ cs_spfree (A) ; cs_spfree (B) ; cs_dropzeros (D) ; /* drop zeros from D */ cs* C = cs_transpose (D, 1) ; /* C = D', so that C is sorted */ cs_spfree (D) ; return C; // cs* A = cs_transpose(a, 1); // cs* C = cs_transpose(A, 1); // return C; } cs* cs_sorted_multiply2(const cs* a, const cs* b) { cs* D = cs_multiply(a,b); cs* E = cs_transpose(D,1); cs_spfree(D); cs* C = cs_transpose(E,1); cs_spfree(E); return C; } #endif void bench_sort(); int main(int argc, char *argv[]) { // bench_sort(); int rows = SIZE; int cols = SIZE; float density = DENSITY; EigenSparseMatrix sm1(rows,cols), sm2(rows,cols), sm3(rows,cols), sm4(rows,cols); BenchTimer timer; for (int nnzPerCol = NNZPERCOL; nnzPerCol>1; nnzPerCol/=1.1) { sm1.setZero(); sm2.setZero(); fillMatrix2(nnzPerCol, rows, cols, sm1); fillMatrix2(nnzPerCol, rows, cols, sm2); // std::cerr << "filling OK\n"; // dense matrices #ifdef DENSEMATRIX { std::cout << "Eigen Dense\t" << nnzPerCol << "%\n"; DenseMatrix m1(rows,cols), m2(rows,cols), m3(rows,cols); eiToDense(sm1, m1); eiToDense(sm2, m2); timer.reset(); timer.start(); for (int k=0; k<REPEAT; ++k) m3 = m1 * m2; timer.stop(); std::cout << " a * b:\t" << timer.value() << endl; timer.reset(); timer.start(); for (int k=0; k<REPEAT; ++k) m3 = m1.transpose() * m2; timer.stop(); std::cout << " a' * b:\t" << timer.value() << endl; timer.reset(); timer.start(); for (int k=0; k<REPEAT; ++k) m3 = m1.transpose() * m2.transpose(); timer.stop(); std::cout << " a' * b':\t" << timer.value() << endl; timer.reset(); timer.start(); for (int k=0; k<REPEAT; ++k) m3 = m1 * m2.transpose(); timer.stop(); std::cout << " a * b':\t" << timer.value() << endl; } #endif // eigen sparse matrices { std::cout << "Eigen sparse\t" << sm1.nonZeros()/(float(sm1.rows())*float(sm1.cols()))*100 << "% * " << sm2.nonZeros()/(float(sm2.rows())*float(sm2.cols()))*100 << "%\n"; BENCH(sm3 = sm1 * sm2; ) std::cout << " a * b:\t" << timer.value() << endl; // BENCH(sm3 = sm1.transpose() * sm2; ) // std::cout << " a' * b:\t" << timer.value() << endl; // // // BENCH(sm3 = sm1.transpose() * sm2.transpose(); ) // std::cout << " a' * b':\t" << timer.value() << endl; // // // BENCH(sm3 = sm1 * sm2.transpose(); ) // std::cout << " a * b' :\t" << timer.value() << endl; // std::cout << "\n"; // // BENCH( sm3._experimentalNewProduct(sm1, sm2); ) // std::cout << " a * b:\t" << timer.value() << endl; // // BENCH(sm3._experimentalNewProduct(sm1.transpose(),sm2); ) // std::cout << " a' * b:\t" << timer.value() << endl; // // // BENCH(sm3._experimentalNewProduct(sm1.transpose(),sm2.transpose()); ) // std::cout << " a' * b':\t" << timer.value() << endl; // // // BENCH(sm3._experimentalNewProduct(sm1, sm2.transpose());) // std::cout << " a * b' :\t" << timer.value() << endl; } // eigen dyn-sparse matrices /*{ DynamicSparseMatrix<Scalar> m1(sm1), m2(sm2), m3(sm3); std::cout << "Eigen dyn-sparse\t" << m1.nonZeros()/(float(m1.rows())*float(m1.cols()))*100 << "% * " << m2.nonZeros()/(float(m2.rows())*float(m2.cols()))*100 << "%\n"; // timer.reset(); // timer.start(); BENCH(for (int k=0; k<REPEAT; ++k) m3 = m1 * m2;) // timer.stop(); std::cout << " a * b:\t" << timer.value() << endl; // std::cout << sm3 << "\n"; timer.reset(); timer.start(); // std::cerr << "transpose...\n"; // EigenSparseMatrix sm4 = sm1.transpose(); // std::cout << sm4.nonZeros() << " == " << sm1.nonZeros() << "\n"; // exit(1); // std::cerr << "transpose OK\n"; // std::cout << sm1 << "\n\n" << sm1.transpose() << "\n\n" << sm4.transpose() << "\n\n"; BENCH(for (int k=0; k<REPEAT; ++k) m3 = m1.transpose() * m2;) // timer.stop(); std::cout << " a' * b:\t" << timer.value() << endl; // timer.reset(); // timer.start(); BENCH( for (int k=0; k<REPEAT; ++k) m3 = m1.transpose() * m2.transpose(); ) // timer.stop(); std::cout << " a' * b':\t" << timer.value() << endl; // timer.reset(); // timer.start(); BENCH( for (int k=0; k<REPEAT; ++k) m3 = m1 * m2.transpose(); ) // timer.stop(); std::cout << " a * b' :\t" << timer.value() << endl; }*/ // CSparse #ifdef CSPARSE { std::cout << "CSparse \t" << nnzPerCol << "%\n"; cs *m1, *m2, *m3; eiToCSparse(sm1, m1); eiToCSparse(sm2, m2); BENCH( { m3 = cs_sorted_multiply(m1, m2); if (!m3) { std::cerr << "cs_multiply failed\n"; } // cs_print(m3, 0); cs_spfree(m3); } ); // timer.stop(); std::cout << " a * b:\t" << timer.value() << endl; // BENCH( { m3 = cs_sorted_multiply2(m1, m2); cs_spfree(m3); } ); // std::cout << " a * b:\t" << timer.value() << endl; } #endif #ifndef NOUBLAS { std::cout << "ublas\t" << nnzPerCol << "%\n"; UBlasSparse m1(rows,cols), m2(rows,cols), m3(rows,cols); eiToUblas(sm1, m1); eiToUblas(sm2, m2); BENCH(boost::numeric::ublas::prod(m1, m2, m3);); std::cout << " a * b:\t" << timer.value() << endl; } #endif // GMM++ #ifndef NOGMM { std::cout << "GMM++ sparse\t" << nnzPerCol << "%\n"; GmmDynSparse gmmT3(rows,cols); GmmSparse m1(rows,cols), m2(rows,cols), m3(rows,cols); eiToGmm(sm1, m1); eiToGmm(sm2, m2); BENCH(gmm::mult(m1, m2, gmmT3);); std::cout << " a * b:\t" << timer.value() << endl; // BENCH(gmm::mult(gmm::transposed(m1), m2, gmmT3);); // std::cout << " a' * b:\t" << timer.value() << endl; // // if (rows<500) // { // BENCH(gmm::mult(gmm::transposed(m1), gmm::transposed(m2), gmmT3);); // std::cout << " a' * b':\t" << timer.value() << endl; // // BENCH(gmm::mult(m1, gmm::transposed(m2), gmmT3);); // std::cout << " a * b':\t" << timer.value() << endl; // } // else // { // std::cout << " a' * b':\t" << "forever" << endl; // std::cout << " a * b':\t" << "forever" << endl; // } } #endif // MTL4 #ifndef NOMTL { std::cout << "MTL4\t" << nnzPerCol << "%\n"; MtlSparse m1(rows,cols), m2(rows,cols), m3(rows,cols); eiToMtl(sm1, m1); eiToMtl(sm2, m2); BENCH(m3 = m1 * m2;); std::cout << " a * b:\t" << timer.value() << endl; // BENCH(m3 = trans(m1) * m2;); // std::cout << " a' * b:\t" << timer.value() << endl; // // BENCH(m3 = trans(m1) * trans(m2);); // std::cout << " a' * b':\t" << timer.value() << endl; // // BENCH(m3 = m1 * trans(m2);); // std::cout << " a * b' :\t" << timer.value() << endl; } #endif std::cout << "\n\n"; } return 0; }