//===================================================== // File : blitz_LU_solve_interface.hh // Author : L. Plagne <laurent.plagne@edf.fr)> // Copyright (C) EDF R&D, lun sep 30 14:23:31 CEST 2002 //===================================================== // // This program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License // as published by the Free Software Foundation; either version 2 // of the License, or (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. // #ifndef BLITZ_LU_SOLVE_INTERFACE_HH #define BLITZ_LU_SOLVE_INTERFACE_HH #include "blitz/array.h" #include <vector> BZ_USING_NAMESPACE(blitz) template<class real> class blitz_LU_solve_interface : public blitz_interface<real> { public : typedef typename blitz_interface<real>::gene_matrix gene_matrix; typedef typename blitz_interface<real>::gene_vector gene_vector; typedef blitz::Array<int,1> Pivot_Vector; inline static void new_Pivot_Vector(Pivot_Vector & pivot,int N) { pivot.resize(N); } inline static void free_Pivot_Vector(Pivot_Vector & pivot) { return; } static inline real matrix_vector_product_sliced(const gene_matrix & A, gene_vector B, int row, int col_start, int col_end) { real somme=0.; for (int j=col_start ; j<col_end+1 ; j++){ somme+=A(row,j)*B(j); } return somme; } static inline real matrix_matrix_product_sliced(gene_matrix & A, int row, int col_start, int col_end, gene_matrix & B, int row_shift, int col ) { real somme=0.; for (int j=col_start ; j<col_end+1 ; j++){ somme+=A(row,j)*B(j+row_shift,col); } return somme; } inline static void LU_factor(gene_matrix & LU, Pivot_Vector & pivot, int N) { ASSERT( LU.rows()==LU.cols() ) ; int index_max = 0 ; real big = 0. ; real theSum = 0. ; real dum = 0. ; // Get the implicit scaling information : gene_vector ImplicitScaling( N ) ; for( int i=0; i<N; i++ ) { big = 0. ; for( int j=0; j<N; j++ ) { if( abs( LU( i, j ) )>=big ) big = abs( LU( i, j ) ) ; } if( big==0. ) { INFOS( "blitz_LU_factor::Singular matrix" ) ; exit( 0 ) ; } ImplicitScaling( i ) = 1./big ; } // Loop over columns of Crout's method : for( int j=0; j<N; j++ ) { for( int i=0; i<j; i++ ) { theSum = LU( i, j ) ; theSum -= matrix_matrix_product_sliced(LU, i, 0, i-1, LU, 0, j) ; // theSum -= sum( LU( i, Range( fromStart, i-1 ) )*LU( Range( fromStart, i-1 ), j ) ) ; LU( i, j ) = theSum ; } // Search for the largest pivot element : big = 0. ; for( int i=j; i<N; i++ ) { theSum = LU( i, j ) ; theSum -= matrix_matrix_product_sliced(LU, i, 0, j-1, LU, 0, j) ; // theSum -= sum( LU( i, Range( fromStart, j-1 ) )*LU( Range( fromStart, j-1 ), j ) ) ; LU( i, j ) = theSum ; if( (ImplicitScaling( i )*abs( theSum ))>=big ) { dum = ImplicitScaling( i )*abs( theSum ) ; big = dum ; index_max = i ; } } // Interchanging rows and the scale factor : if( j!=index_max ) { for( int k=0; k<N; k++ ) { dum = LU( index_max, k ) ; LU( index_max, k ) = LU( j, k ) ; LU( j, k ) = dum ; } ImplicitScaling( index_max ) = ImplicitScaling( j ) ; } pivot( j ) = index_max ; if ( LU( j, j )==0. ) LU( j, j ) = 1.e-20 ; // Divide by the pivot element : if( j<N ) { dum = 1./LU( j, j ) ; for( int i=j+1; i<N; i++ ) LU( i, j ) *= dum ; } } } inline static void LU_solve(const gene_matrix & LU, const Pivot_Vector pivot, gene_vector &B, gene_vector X, int N) { // Pour conserver le meme header, on travaille sur X, copie du second-membre B X = B.copy() ; ASSERT( LU.rows()==LU.cols() ) ; firstIndex indI ; // Forward substitution : int ii = 0 ; real theSum = 0. ; for( int i=0; i<N; i++ ) { int ip = pivot( i ) ; theSum = X( ip ) ; // theSum = B( ip ) ; X( ip ) = X( i ) ; // B( ip ) = B( i ) ; if( ii ) { theSum -= matrix_vector_product_sliced(LU, X, i, ii-1, i-1) ; // theSum -= sum( LU( i, Range( ii-1, i-1 ) )*X( Range( ii-1, i-1 ) ) ) ; // theSum -= sum( LU( i, Range( ii-1, i-1 ) )*B( Range( ii-1, i-1 ) ) ) ; } else if( theSum ) { ii = i+1 ; } X( i ) = theSum ; // B( i ) = theSum ; } // Backsubstitution : for( int i=N-1; i>=0; i-- ) { theSum = X( i ) ; // theSum = B( i ) ; theSum -= matrix_vector_product_sliced(LU, X, i, i+1, N) ; // theSum -= sum( LU( i, Range( i+1, toEnd ) )*X( Range( i+1, toEnd ) ) ) ; // theSum -= sum( LU( i, Range( i+1, toEnd ) )*B( Range( i+1, toEnd ) ) ) ; // Store a component of the solution vector : X( i ) = theSum/LU( i, i ) ; // B( i ) = theSum/LU( i, i ) ; } } }; #endif