// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_ORDERING_H #define EIGEN_ORDERING_H namespace Eigen { #include "Eigen_Colamd.h" namespace internal { /** \internal * \ingroup OrderingMethods_Module * \returns the symmetric pattern A^T+A from the input matrix A. * FIXME: The values should not be considered here */ template<typename MatrixType> void ordering_helper_at_plus_a(const MatrixType& mat, MatrixType& symmat) { MatrixType C; C = mat.transpose(); // NOTE: Could be costly for (int i = 0; i < C.rows(); i++) { for (typename MatrixType::InnerIterator it(C, i); it; ++it) it.valueRef() = 0.0; } symmat = C + mat; } } #ifndef EIGEN_MPL2_ONLY /** \ingroup OrderingMethods_Module * \class AMDOrdering * * Functor computing the \em approximate \em minimum \em degree ordering * If the matrix is not structurally symmetric, an ordering of A^T+A is computed * \tparam Index The type of indices of the matrix * \sa COLAMDOrdering */ template <typename Index> class AMDOrdering { public: typedef PermutationMatrix<Dynamic, Dynamic, Index> PermutationType; /** Compute the permutation vector from a sparse matrix * This routine is much faster if the input matrix is column-major */ template <typename MatrixType> void operator()(const MatrixType& mat, PermutationType& perm) { // Compute the symmetric pattern SparseMatrix<typename MatrixType::Scalar, ColMajor, Index> symm; internal::ordering_helper_at_plus_a(mat,symm); // Call the AMD routine //m_mat.prune(keep_diag()); internal::minimum_degree_ordering(symm, perm); } /** Compute the permutation with a selfadjoint matrix */ template <typename SrcType, unsigned int SrcUpLo> void operator()(const SparseSelfAdjointView<SrcType, SrcUpLo>& mat, PermutationType& perm) { SparseMatrix<typename SrcType::Scalar, ColMajor, Index> C; C = mat; // Call the AMD routine // m_mat.prune(keep_diag()); //Remove the diagonal elements internal::minimum_degree_ordering(C, perm); } }; #endif // EIGEN_MPL2_ONLY /** \ingroup OrderingMethods_Module * \class NaturalOrdering * * Functor computing the natural ordering (identity) * * \note Returns an empty permutation matrix * \tparam Index The type of indices of the matrix */ template <typename Index> class NaturalOrdering { public: typedef PermutationMatrix<Dynamic, Dynamic, Index> PermutationType; /** Compute the permutation vector from a column-major sparse matrix */ template <typename MatrixType> void operator()(const MatrixType& /*mat*/, PermutationType& perm) { perm.resize(0); } }; /** \ingroup OrderingMethods_Module * \class COLAMDOrdering * * Functor computing the \em column \em approximate \em minimum \em degree ordering * The matrix should be in column-major and \b compressed format (see SparseMatrix::makeCompressed()). */ template<typename Index> class COLAMDOrdering { public: typedef PermutationMatrix<Dynamic, Dynamic, Index> PermutationType; typedef Matrix<Index, Dynamic, 1> IndexVector; /** Compute the permutation vector \a perm form the sparse matrix \a mat * \warning The input sparse matrix \a mat must be in compressed mode (see SparseMatrix::makeCompressed()). */ template <typename MatrixType> void operator() (const MatrixType& mat, PermutationType& perm) { eigen_assert(mat.isCompressed() && "COLAMDOrdering requires a sparse matrix in compressed mode. Call .makeCompressed() before passing it to COLAMDOrdering"); Index m = mat.rows(); Index n = mat.cols(); Index nnz = mat.nonZeros(); // Get the recommended value of Alen to be used by colamd Index Alen = internal::colamd_recommended(nnz, m, n); // Set the default parameters double knobs [COLAMD_KNOBS]; Index stats [COLAMD_STATS]; internal::colamd_set_defaults(knobs); IndexVector p(n+1), A(Alen); for(Index i=0; i <= n; i++) p(i) = mat.outerIndexPtr()[i]; for(Index i=0; i < nnz; i++) A(i) = mat.innerIndexPtr()[i]; // Call Colamd routine to compute the ordering Index info = internal::colamd(m, n, Alen, A.data(), p.data(), knobs, stats); EIGEN_UNUSED_VARIABLE(info); eigen_assert( info && "COLAMD failed " ); perm.resize(n); for (Index i = 0; i < n; i++) perm.indices()(p(i)) = i; } }; } // end namespace Eigen #endif