// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_XPRHELPER_H #define EIGEN_XPRHELPER_H // just a workaround because GCC seems to not really like empty structs // FIXME: gcc 4.3 generates bad code when strict-aliasing is enabled // so currently we simply disable this optimization for gcc 4.3 #if (defined __GNUG__) && !((__GNUC__==4) && (__GNUC_MINOR__==3)) #define EIGEN_EMPTY_STRUCT_CTOR(X) \ EIGEN_STRONG_INLINE X() {} \ EIGEN_STRONG_INLINE X(const X& ) {} #else #define EIGEN_EMPTY_STRUCT_CTOR(X) #endif namespace Eigen { typedef EIGEN_DEFAULT_DENSE_INDEX_TYPE DenseIndex; namespace internal { //classes inheriting no_assignment_operator don't generate a default operator=. class no_assignment_operator { private: no_assignment_operator& operator=(const no_assignment_operator&); }; /** \internal return the index type with the largest number of bits */ template<typename I1, typename I2> struct promote_index_type { typedef typename conditional<(sizeof(I1)<sizeof(I2)), I2, I1>::type type; }; /** \internal If the template parameter Value is Dynamic, this class is just a wrapper around a T variable that * can be accessed using value() and setValue(). * Otherwise, this class is an empty structure and value() just returns the template parameter Value. */ template<typename T, int Value> class variable_if_dynamic { public: EIGEN_EMPTY_STRUCT_CTOR(variable_if_dynamic) explicit variable_if_dynamic(T v) { EIGEN_ONLY_USED_FOR_DEBUG(v); assert(v == T(Value)); } static T value() { return T(Value); } void setValue(T) {} }; template<typename T> class variable_if_dynamic<T, Dynamic> { T m_value; variable_if_dynamic() { assert(false); } public: explicit variable_if_dynamic(T value) : m_value(value) {} T value() const { return m_value; } void setValue(T value) { m_value = value; } }; /** \internal like variable_if_dynamic but for DynamicIndex */ template<typename T, int Value> class variable_if_dynamicindex { public: EIGEN_EMPTY_STRUCT_CTOR(variable_if_dynamicindex) explicit variable_if_dynamicindex(T v) { EIGEN_ONLY_USED_FOR_DEBUG(v); assert(v == T(Value)); } static T value() { return T(Value); } void setValue(T) {} }; template<typename T> class variable_if_dynamicindex<T, DynamicIndex> { T m_value; variable_if_dynamicindex() { assert(false); } public: explicit variable_if_dynamicindex(T value) : m_value(value) {} T value() const { return m_value; } void setValue(T value) { m_value = value; } }; template<typename T> struct functor_traits { enum { Cost = 10, PacketAccess = false, IsRepeatable = false }; }; template<typename T> struct packet_traits; template<typename T> struct unpacket_traits { typedef T type; enum {size=1}; }; template<typename _Scalar, int _Rows, int _Cols, int _Options = AutoAlign | ( (_Rows==1 && _Cols!=1) ? RowMajor : (_Cols==1 && _Rows!=1) ? ColMajor : EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION ), int _MaxRows = _Rows, int _MaxCols = _Cols > class make_proper_matrix_type { enum { IsColVector = _Cols==1 && _Rows!=1, IsRowVector = _Rows==1 && _Cols!=1, Options = IsColVector ? (_Options | ColMajor) & ~RowMajor : IsRowVector ? (_Options | RowMajor) & ~ColMajor : _Options }; public: typedef Matrix<_Scalar, _Rows, _Cols, Options, _MaxRows, _MaxCols> type; }; template<typename Scalar, int Rows, int Cols, int Options, int MaxRows, int MaxCols> class compute_matrix_flags { enum { row_major_bit = Options&RowMajor ? RowMajorBit : 0, is_dynamic_size_storage = MaxRows==Dynamic || MaxCols==Dynamic, aligned_bit = ( ((Options&DontAlign)==0) && ( #if EIGEN_ALIGN_STATICALLY ((!is_dynamic_size_storage) && (((MaxCols*MaxRows*int(sizeof(Scalar))) % 16) == 0)) #else 0 #endif || #if EIGEN_ALIGN is_dynamic_size_storage #else 0 #endif ) ) ? AlignedBit : 0, packet_access_bit = packet_traits<Scalar>::Vectorizable && aligned_bit ? PacketAccessBit : 0 }; public: enum { ret = LinearAccessBit | LvalueBit | DirectAccessBit | NestByRefBit | packet_access_bit | row_major_bit | aligned_bit }; }; template<int _Rows, int _Cols> struct size_at_compile_time { enum { ret = (_Rows==Dynamic || _Cols==Dynamic) ? Dynamic : _Rows * _Cols }; }; /* plain_matrix_type : the difference from eval is that plain_matrix_type is always a plain matrix type, * whereas eval is a const reference in the case of a matrix */ template<typename T, typename StorageKind = typename traits<T>::StorageKind> struct plain_matrix_type; template<typename T, typename BaseClassType> struct plain_matrix_type_dense; template<typename T> struct plain_matrix_type<T,Dense> { typedef typename plain_matrix_type_dense<T,typename traits<T>::XprKind>::type type; }; template<typename T> struct plain_matrix_type_dense<T,MatrixXpr> { typedef Matrix<typename traits<T>::Scalar, traits<T>::RowsAtCompileTime, traits<T>::ColsAtCompileTime, AutoAlign | (traits<T>::Flags&RowMajorBit ? RowMajor : ColMajor), traits<T>::MaxRowsAtCompileTime, traits<T>::MaxColsAtCompileTime > type; }; template<typename T> struct plain_matrix_type_dense<T,ArrayXpr> { typedef Array<typename traits<T>::Scalar, traits<T>::RowsAtCompileTime, traits<T>::ColsAtCompileTime, AutoAlign | (traits<T>::Flags&RowMajorBit ? RowMajor : ColMajor), traits<T>::MaxRowsAtCompileTime, traits<T>::MaxColsAtCompileTime > type; }; /* eval : the return type of eval(). For matrices, this is just a const reference * in order to avoid a useless copy */ template<typename T, typename StorageKind = typename traits<T>::StorageKind> struct eval; template<typename T> struct eval<T,Dense> { typedef typename plain_matrix_type<T>::type type; // typedef typename T::PlainObject type; // typedef T::Matrix<typename traits<T>::Scalar, // traits<T>::RowsAtCompileTime, // traits<T>::ColsAtCompileTime, // AutoAlign | (traits<T>::Flags&RowMajorBit ? RowMajor : ColMajor), // traits<T>::MaxRowsAtCompileTime, // traits<T>::MaxColsAtCompileTime // > type; }; // for matrices, no need to evaluate, just use a const reference to avoid a useless copy template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols> struct eval<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>, Dense> { typedef const Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& type; }; template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols> struct eval<Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>, Dense> { typedef const Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& type; }; /* plain_matrix_type_column_major : same as plain_matrix_type but guaranteed to be column-major */ template<typename T> struct plain_matrix_type_column_major { enum { Rows = traits<T>::RowsAtCompileTime, Cols = traits<T>::ColsAtCompileTime, MaxRows = traits<T>::MaxRowsAtCompileTime, MaxCols = traits<T>::MaxColsAtCompileTime }; typedef Matrix<typename traits<T>::Scalar, Rows, Cols, (MaxRows==1&&MaxCols!=1) ? RowMajor : ColMajor, MaxRows, MaxCols > type; }; /* plain_matrix_type_row_major : same as plain_matrix_type but guaranteed to be row-major */ template<typename T> struct plain_matrix_type_row_major { enum { Rows = traits<T>::RowsAtCompileTime, Cols = traits<T>::ColsAtCompileTime, MaxRows = traits<T>::MaxRowsAtCompileTime, MaxCols = traits<T>::MaxColsAtCompileTime }; typedef Matrix<typename traits<T>::Scalar, Rows, Cols, (MaxCols==1&&MaxRows!=1) ? RowMajor : ColMajor, MaxRows, MaxCols > type; }; // we should be able to get rid of this one too template<typename T> struct must_nest_by_value { enum { ret = false }; }; /** \internal The reference selector for template expressions. The idea is that we don't * need to use references for expressions since they are light weight proxy * objects which should generate no copying overhead. */ template <typename T> struct ref_selector { typedef typename conditional< bool(traits<T>::Flags & NestByRefBit), T const&, const T >::type type; }; /** \internal Adds the const qualifier on the value-type of T2 if and only if T1 is a const type */ template<typename T1, typename T2> struct transfer_constness { typedef typename conditional< bool(internal::is_const<T1>::value), typename internal::add_const_on_value_type<T2>::type, T2 >::type type; }; /** \internal Determines how a given expression should be nested into another one. * For example, when you do a * (b+c), Eigen will determine how the expression b+c should be * nested into the bigger product expression. The choice is between nesting the expression b+c as-is, or * evaluating that expression b+c into a temporary variable d, and nest d so that the resulting expression is * a*d. Evaluating can be beneficial for example if every coefficient access in the resulting expression causes * many coefficient accesses in the nested expressions -- as is the case with matrix product for example. * * \param T the type of the expression being nested * \param n the number of coefficient accesses in the nested expression for each coefficient access in the bigger expression. * * Note that if no evaluation occur, then the constness of T is preserved. * * Example. Suppose that a, b, and c are of type Matrix3d. The user forms the expression a*(b+c). * b+c is an expression "sum of matrices", which we will denote by S. In order to determine how to nest it, * the Product expression uses: nested<S, 3>::ret, which turns out to be Matrix3d because the internal logic of * nested determined that in this case it was better to evaluate the expression b+c into a temporary. On the other hand, * since a is of type Matrix3d, the Product expression nests it as nested<Matrix3d, 3>::ret, which turns out to be * const Matrix3d&, because the internal logic of nested determined that since a was already a matrix, there was no point * in copying it into another matrix. */ template<typename T, int n=1, typename PlainObject = typename eval<T>::type> struct nested { enum { // for the purpose of this test, to keep it reasonably simple, we arbitrarily choose a value of Dynamic values. // the choice of 10000 makes it larger than any practical fixed value and even most dynamic values. // in extreme cases where these assumptions would be wrong, we would still at worst suffer performance issues // (poor choice of temporaries). // it's important that this value can still be squared without integer overflowing. DynamicAsInteger = 10000, ScalarReadCost = NumTraits<typename traits<T>::Scalar>::ReadCost, ScalarReadCostAsInteger = ScalarReadCost == Dynamic ? int(DynamicAsInteger) : int(ScalarReadCost), CoeffReadCost = traits<T>::CoeffReadCost, CoeffReadCostAsInteger = CoeffReadCost == Dynamic ? int(DynamicAsInteger) : int(CoeffReadCost), NAsInteger = n == Dynamic ? int(DynamicAsInteger) : n, CostEvalAsInteger = (NAsInteger+1) * ScalarReadCostAsInteger + CoeffReadCostAsInteger, CostNoEvalAsInteger = NAsInteger * CoeffReadCostAsInteger }; typedef typename conditional< ( (int(traits<T>::Flags) & EvalBeforeNestingBit) || int(CostEvalAsInteger) < int(CostNoEvalAsInteger) ), PlainObject, typename ref_selector<T>::type >::type type; }; template<typename T> inline T* const_cast_ptr(const T* ptr) { return const_cast<T*>(ptr); } template<typename Derived, typename XprKind = typename traits<Derived>::XprKind> struct dense_xpr_base { /* dense_xpr_base should only ever be used on dense expressions, thus falling either into the MatrixXpr or into the ArrayXpr cases */ }; template<typename Derived> struct dense_xpr_base<Derived, MatrixXpr> { typedef MatrixBase<Derived> type; }; template<typename Derived> struct dense_xpr_base<Derived, ArrayXpr> { typedef ArrayBase<Derived> type; }; /** \internal Helper base class to add a scalar multiple operator * overloads for complex types */ template<typename Derived,typename Scalar,typename OtherScalar, bool EnableIt = !is_same<Scalar,OtherScalar>::value > struct special_scalar_op_base : public DenseCoeffsBase<Derived> { // dummy operator* so that the // "using special_scalar_op_base::operator*" compiles void operator*() const; }; template<typename Derived,typename Scalar,typename OtherScalar> struct special_scalar_op_base<Derived,Scalar,OtherScalar,true> : public DenseCoeffsBase<Derived> { const CwiseUnaryOp<scalar_multiple2_op<Scalar,OtherScalar>, Derived> operator*(const OtherScalar& scalar) const { return CwiseUnaryOp<scalar_multiple2_op<Scalar,OtherScalar>, Derived> (*static_cast<const Derived*>(this), scalar_multiple2_op<Scalar,OtherScalar>(scalar)); } inline friend const CwiseUnaryOp<scalar_multiple2_op<Scalar,OtherScalar>, Derived> operator*(const OtherScalar& scalar, const Derived& matrix) { return static_cast<const special_scalar_op_base&>(matrix).operator*(scalar); } }; template<typename XprType, typename CastType> struct cast_return_type { typedef typename XprType::Scalar CurrentScalarType; typedef typename remove_all<CastType>::type _CastType; typedef typename _CastType::Scalar NewScalarType; typedef typename conditional<is_same<CurrentScalarType,NewScalarType>::value, const XprType&,CastType>::type type; }; template <typename A, typename B> struct promote_storage_type; template <typename A> struct promote_storage_type<A,A> { typedef A ret; }; /** \internal gives the plain matrix or array type to store a row/column/diagonal of a matrix type. * \param Scalar optional parameter allowing to pass a different scalar type than the one of the MatrixType. */ template<typename ExpressionType, typename Scalar = typename ExpressionType::Scalar> struct plain_row_type { typedef Matrix<Scalar, 1, ExpressionType::ColsAtCompileTime, ExpressionType::PlainObject::Options | RowMajor, 1, ExpressionType::MaxColsAtCompileTime> MatrixRowType; typedef Array<Scalar, 1, ExpressionType::ColsAtCompileTime, ExpressionType::PlainObject::Options | RowMajor, 1, ExpressionType::MaxColsAtCompileTime> ArrayRowType; typedef typename conditional< is_same< typename traits<ExpressionType>::XprKind, MatrixXpr >::value, MatrixRowType, ArrayRowType >::type type; }; template<typename ExpressionType, typename Scalar = typename ExpressionType::Scalar> struct plain_col_type { typedef Matrix<Scalar, ExpressionType::RowsAtCompileTime, 1, ExpressionType::PlainObject::Options & ~RowMajor, ExpressionType::MaxRowsAtCompileTime, 1> MatrixColType; typedef Array<Scalar, ExpressionType::RowsAtCompileTime, 1, ExpressionType::PlainObject::Options & ~RowMajor, ExpressionType::MaxRowsAtCompileTime, 1> ArrayColType; typedef typename conditional< is_same< typename traits<ExpressionType>::XprKind, MatrixXpr >::value, MatrixColType, ArrayColType >::type type; }; template<typename ExpressionType, typename Scalar = typename ExpressionType::Scalar> struct plain_diag_type { enum { diag_size = EIGEN_SIZE_MIN_PREFER_DYNAMIC(ExpressionType::RowsAtCompileTime, ExpressionType::ColsAtCompileTime), max_diag_size = EIGEN_SIZE_MIN_PREFER_FIXED(ExpressionType::MaxRowsAtCompileTime, ExpressionType::MaxColsAtCompileTime) }; typedef Matrix<Scalar, diag_size, 1, ExpressionType::PlainObject::Options & ~RowMajor, max_diag_size, 1> MatrixDiagType; typedef Array<Scalar, diag_size, 1, ExpressionType::PlainObject::Options & ~RowMajor, max_diag_size, 1> ArrayDiagType; typedef typename conditional< is_same< typename traits<ExpressionType>::XprKind, MatrixXpr >::value, MatrixDiagType, ArrayDiagType >::type type; }; template<typename ExpressionType> struct is_lvalue { enum { value = !bool(is_const<ExpressionType>::value) && bool(traits<ExpressionType>::Flags & LvalueBit) }; }; } // end namespace internal } // end namespace Eigen #endif // EIGEN_XPRHELPER_H