// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr> // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_MACROS_H #define EIGEN_MACROS_H #define EIGEN_WORLD_VERSION 3 #define EIGEN_MAJOR_VERSION 2 #define EIGEN_MINOR_VERSION 5 #define EIGEN_VERSION_AT_LEAST(x,y,z) (EIGEN_WORLD_VERSION>x || (EIGEN_WORLD_VERSION>=x && \ (EIGEN_MAJOR_VERSION>y || (EIGEN_MAJOR_VERSION>=y && \ EIGEN_MINOR_VERSION>=z)))) #ifdef __GNUC__ #define EIGEN_GNUC_AT_LEAST(x,y) ((__GNUC__==x && __GNUC_MINOR__>=y) || __GNUC__>x) #else #define EIGEN_GNUC_AT_LEAST(x,y) 0 #endif #ifdef __GNUC__ #define EIGEN_GNUC_AT_MOST(x,y) ((__GNUC__==x && __GNUC_MINOR__<=y) || __GNUC__<x) #else #define EIGEN_GNUC_AT_MOST(x,y) 0 #endif #if EIGEN_GNUC_AT_MOST(4,3) && !defined(__clang__) // see bug 89 #define EIGEN_SAFE_TO_USE_STANDARD_ASSERT_MACRO 0 #else #define EIGEN_SAFE_TO_USE_STANDARD_ASSERT_MACRO 1 #endif #if defined(__GNUC__) && (__GNUC__ <= 3) #define EIGEN_GCC3_OR_OLDER 1 #else #define EIGEN_GCC3_OR_OLDER 0 #endif // 16 byte alignment is only useful for vectorization. Since it affects the ABI, we need to enable // 16 byte alignment on all platforms where vectorization might be enabled. In theory we could always // enable alignment, but it can be a cause of problems on some platforms, so we just disable it in // certain common platform (compiler+architecture combinations) to avoid these problems. // Only static alignment is really problematic (relies on nonstandard compiler extensions that don't // work everywhere, for example don't work on GCC/ARM), try to keep heap alignment even // when we have to disable static alignment. #if defined(__GNUC__) && !(defined(__i386__) || defined(__x86_64__) || defined(__powerpc__) || defined(__ppc__) || defined(__ia64__)) #define EIGEN_GCC_AND_ARCH_DOESNT_WANT_STACK_ALIGNMENT 1 #else #define EIGEN_GCC_AND_ARCH_DOESNT_WANT_STACK_ALIGNMENT 0 #endif // static alignment is completely disabled with GCC 3, Sun Studio, and QCC/QNX #if !EIGEN_GCC_AND_ARCH_DOESNT_WANT_STACK_ALIGNMENT \ && !EIGEN_GCC3_OR_OLDER \ && !defined(__SUNPRO_CC) \ && !defined(__QNXNTO__) #define EIGEN_ARCH_WANTS_STACK_ALIGNMENT 1 #else #define EIGEN_ARCH_WANTS_STACK_ALIGNMENT 0 #endif #ifdef EIGEN_DONT_ALIGN #ifndef EIGEN_DONT_ALIGN_STATICALLY #define EIGEN_DONT_ALIGN_STATICALLY #endif #define EIGEN_ALIGN 0 #else #define EIGEN_ALIGN 1 #endif // EIGEN_ALIGN_STATICALLY is the true test whether we want to align arrays on the stack or not. It takes into account both the user choice to explicitly disable // alignment (EIGEN_DONT_ALIGN_STATICALLY) and the architecture config (EIGEN_ARCH_WANTS_STACK_ALIGNMENT). Henceforth, only EIGEN_ALIGN_STATICALLY should be used. #if EIGEN_ARCH_WANTS_STACK_ALIGNMENT && !defined(EIGEN_DONT_ALIGN_STATICALLY) #define EIGEN_ALIGN_STATICALLY 1 #else #define EIGEN_ALIGN_STATICALLY 0 #ifndef EIGEN_DISABLE_UNALIGNED_ARRAY_ASSERT #define EIGEN_DISABLE_UNALIGNED_ARRAY_ASSERT #endif #endif #ifdef EIGEN_DEFAULT_TO_ROW_MAJOR #define EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION RowMajor #else #define EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION ColMajor #endif #ifndef EIGEN_DEFAULT_DENSE_INDEX_TYPE #define EIGEN_DEFAULT_DENSE_INDEX_TYPE std::ptrdiff_t #endif // Cross compiler wrapper around LLVM's __has_builtin #ifdef __has_builtin # define EIGEN_HAS_BUILTIN(x) __has_builtin(x) #else # define EIGEN_HAS_BUILTIN(x) 0 #endif /** Allows to disable some optimizations which might affect the accuracy of the result. * Such optimization are enabled by default, and set EIGEN_FAST_MATH to 0 to disable them. * They currently include: * - single precision Cwise::sin() and Cwise::cos() when SSE vectorization is enabled. */ #ifndef EIGEN_FAST_MATH #define EIGEN_FAST_MATH 1 #endif #define EIGEN_DEBUG_VAR(x) std::cerr << #x << " = " << x << std::endl; // concatenate two tokens #define EIGEN_CAT2(a,b) a ## b #define EIGEN_CAT(a,b) EIGEN_CAT2(a,b) // convert a token to a string #define EIGEN_MAKESTRING2(a) #a #define EIGEN_MAKESTRING(a) EIGEN_MAKESTRING2(a) // EIGEN_STRONG_INLINE is a stronger version of the inline, using __forceinline on MSVC, // but it still doesn't use GCC's always_inline. This is useful in (common) situations where MSVC needs forceinline // but GCC is still doing fine with just inline. #if (defined _MSC_VER) || (defined __INTEL_COMPILER) #define EIGEN_STRONG_INLINE __forceinline #else #define EIGEN_STRONG_INLINE inline #endif // EIGEN_ALWAYS_INLINE is the stronget, it has the effect of making the function inline and adding every possible // attribute to maximize inlining. This should only be used when really necessary: in particular, // it uses __attribute__((always_inline)) on GCC, which most of the time is useless and can severely harm compile times. // FIXME with the always_inline attribute, // gcc 3.4.x reports the following compilation error: // Eval.h:91: sorry, unimplemented: inlining failed in call to 'const Eigen::Eval<Derived> Eigen::MatrixBase<Scalar, Derived>::eval() const' // : function body not available #if EIGEN_GNUC_AT_LEAST(4,0) #define EIGEN_ALWAYS_INLINE __attribute__((always_inline)) inline #else #define EIGEN_ALWAYS_INLINE EIGEN_STRONG_INLINE #endif #if (defined __GNUC__) #define EIGEN_DONT_INLINE __attribute__((noinline)) #elif (defined _MSC_VER) #define EIGEN_DONT_INLINE __declspec(noinline) #else #define EIGEN_DONT_INLINE #endif #if (defined __GNUC__) #define EIGEN_PERMISSIVE_EXPR __extension__ #else #define EIGEN_PERMISSIVE_EXPR #endif // this macro allows to get rid of linking errors about multiply defined functions. // - static is not very good because it prevents definitions from different object files to be merged. // So static causes the resulting linked executable to be bloated with multiple copies of the same function. // - inline is not perfect either as it unwantedly hints the compiler toward inlining the function. #define EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS #define EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS inline #ifdef NDEBUG # ifndef EIGEN_NO_DEBUG # define EIGEN_NO_DEBUG # endif #endif // eigen_plain_assert is where we implement the workaround for the assert() bug in GCC <= 4.3, see bug 89 #ifdef EIGEN_NO_DEBUG #define eigen_plain_assert(x) #else #if EIGEN_SAFE_TO_USE_STANDARD_ASSERT_MACRO namespace Eigen { namespace internal { inline bool copy_bool(bool b) { return b; } } } #define eigen_plain_assert(x) assert(x) #else // work around bug 89 #include <cstdlib> // for abort #include <iostream> // for std::cerr namespace Eigen { namespace internal { // trivial function copying a bool. Must be EIGEN_DONT_INLINE, so we implement it after including Eigen headers. // see bug 89. namespace { EIGEN_DONT_INLINE bool copy_bool(bool b) { return b; } } inline void assert_fail(const char *condition, const char *function, const char *file, int line) { std::cerr << "assertion failed: " << condition << " in function " << function << " at " << file << ":" << line << std::endl; abort(); } } } #define eigen_plain_assert(x) \ do { \ if(!Eigen::internal::copy_bool(x)) \ Eigen::internal::assert_fail(EIGEN_MAKESTRING(x), __PRETTY_FUNCTION__, __FILE__, __LINE__); \ } while(false) #endif #endif // eigen_assert can be overridden #ifndef eigen_assert #define eigen_assert(x) eigen_plain_assert(x) #endif #ifdef EIGEN_INTERNAL_DEBUGGING #define eigen_internal_assert(x) eigen_assert(x) #else #define eigen_internal_assert(x) #endif #ifdef EIGEN_NO_DEBUG #define EIGEN_ONLY_USED_FOR_DEBUG(x) (void)x #else #define EIGEN_ONLY_USED_FOR_DEBUG(x) #endif #ifndef EIGEN_NO_DEPRECATED_WARNING #if (defined __GNUC__) #define EIGEN_DEPRECATED __attribute__((deprecated)) #elif (defined _MSC_VER) #define EIGEN_DEPRECATED __declspec(deprecated) #else #define EIGEN_DEPRECATED #endif #else #define EIGEN_DEPRECATED #endif #if (defined __GNUC__) #define EIGEN_UNUSED __attribute__((unused)) #else #define EIGEN_UNUSED #endif // Suppresses 'unused variable' warnings. namespace Eigen { namespace internal { template<typename T> void ignore_unused_variable(const T&) {} } } #define EIGEN_UNUSED_VARIABLE(var) Eigen::internal::ignore_unused_variable(var); #if !defined(EIGEN_ASM_COMMENT) #if (defined __GNUC__) && ( defined(__i386__) || defined(__x86_64__) ) #define EIGEN_ASM_COMMENT(X) __asm__("#" X) #else #define EIGEN_ASM_COMMENT(X) #endif #endif /* EIGEN_ALIGN_TO_BOUNDARY(n) forces data to be n-byte aligned. This is used to satisfy SIMD requirements. * However, we do that EVEN if vectorization (EIGEN_VECTORIZE) is disabled, * so that vectorization doesn't affect binary compatibility. * * If we made alignment depend on whether or not EIGEN_VECTORIZE is defined, it would be impossible to link * vectorized and non-vectorized code. */ #if (defined __GNUC__) || (defined __PGI) || (defined __IBMCPP__) || (defined __ARMCC_VERSION) #define EIGEN_ALIGN_TO_BOUNDARY(n) __attribute__((aligned(n))) #elif (defined _MSC_VER) #define EIGEN_ALIGN_TO_BOUNDARY(n) __declspec(align(n)) #elif (defined __SUNPRO_CC) // FIXME not sure about this one: #define EIGEN_ALIGN_TO_BOUNDARY(n) __attribute__((aligned(n))) #else #error Please tell me what is the equivalent of __attribute__((aligned(n))) for your compiler #endif #define EIGEN_ALIGN8 EIGEN_ALIGN_TO_BOUNDARY(8) #define EIGEN_ALIGN16 EIGEN_ALIGN_TO_BOUNDARY(16) #if EIGEN_ALIGN_STATICALLY #define EIGEN_USER_ALIGN_TO_BOUNDARY(n) EIGEN_ALIGN_TO_BOUNDARY(n) #define EIGEN_USER_ALIGN16 EIGEN_ALIGN16 #else #define EIGEN_USER_ALIGN_TO_BOUNDARY(n) #define EIGEN_USER_ALIGN16 #endif #ifdef EIGEN_DONT_USE_RESTRICT_KEYWORD #define EIGEN_RESTRICT #endif #ifndef EIGEN_RESTRICT #define EIGEN_RESTRICT __restrict #endif #ifndef EIGEN_STACK_ALLOCATION_LIMIT // 131072 == 128 KB #define EIGEN_STACK_ALLOCATION_LIMIT 131072 #endif #ifndef EIGEN_DEFAULT_IO_FORMAT #ifdef EIGEN_MAKING_DOCS // format used in Eigen's documentation // needed to define it here as escaping characters in CMake add_definition's argument seems very problematic. #define EIGEN_DEFAULT_IO_FORMAT Eigen::IOFormat(3, 0, " ", "\n", "", "") #else #define EIGEN_DEFAULT_IO_FORMAT Eigen::IOFormat() #endif #endif // just an empty macro ! #define EIGEN_EMPTY #if defined(_MSC_VER) && (_MSC_VER < 1800) && (!defined(__INTEL_COMPILER)) #define EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Derived) \ using Base::operator =; #elif defined(__clang__) // workaround clang bug (see http://forum.kde.org/viewtopic.php?f=74&t=102653) #define EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Derived) \ using Base::operator =; \ EIGEN_STRONG_INLINE Derived& operator=(const Derived& other) { Base::operator=(other); return *this; } \ template <typename OtherDerived> \ EIGEN_STRONG_INLINE Derived& operator=(const DenseBase<OtherDerived>& other) { Base::operator=(other.derived()); return *this; } #else #define EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Derived) \ using Base::operator =; \ EIGEN_STRONG_INLINE Derived& operator=(const Derived& other) \ { \ Base::operator=(other); \ return *this; \ } #endif /** \internal * \brief Macro to manually inherit assignment operators. * This is necessary, because the implicitly defined assignment operator gets deleted when a custom operator= is defined. */ #define EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Derived) EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Derived) /** * Just a side note. Commenting within defines works only by documenting * behind the object (via '!<'). Comments cannot be multi-line and thus * we have these extra long lines. What is confusing doxygen over here is * that we use '\' and basically have a bunch of typedefs with their * documentation in a single line. **/ #define EIGEN_GENERIC_PUBLIC_INTERFACE(Derived) \ typedef typename Eigen::internal::traits<Derived>::Scalar Scalar; /*!< \brief Numeric type, e.g. float, double, int or std::complex<float>. */ \ typedef typename Eigen::NumTraits<Scalar>::Real RealScalar; /*!< \brief The underlying numeric type for composed scalar types. \details In cases where Scalar is e.g. std::complex<T>, T were corresponding to RealScalar. */ \ typedef typename Base::CoeffReturnType CoeffReturnType; /*!< \brief The return type for coefficient access. \details Depending on whether the object allows direct coefficient access (e.g. for a MatrixXd), this type is either 'const Scalar&' or simply 'Scalar' for objects that do not allow direct coefficient access. */ \ typedef typename Eigen::internal::nested<Derived>::type Nested; \ typedef typename Eigen::internal::traits<Derived>::StorageKind StorageKind; \ typedef typename Eigen::internal::traits<Derived>::Index Index; \ enum { RowsAtCompileTime = Eigen::internal::traits<Derived>::RowsAtCompileTime, \ ColsAtCompileTime = Eigen::internal::traits<Derived>::ColsAtCompileTime, \ Flags = Eigen::internal::traits<Derived>::Flags, \ CoeffReadCost = Eigen::internal::traits<Derived>::CoeffReadCost, \ SizeAtCompileTime = Base::SizeAtCompileTime, \ MaxSizeAtCompileTime = Base::MaxSizeAtCompileTime, \ IsVectorAtCompileTime = Base::IsVectorAtCompileTime }; #define EIGEN_DENSE_PUBLIC_INTERFACE(Derived) \ typedef typename Eigen::internal::traits<Derived>::Scalar Scalar; /*!< \brief Numeric type, e.g. float, double, int or std::complex<float>. */ \ typedef typename Eigen::NumTraits<Scalar>::Real RealScalar; /*!< \brief The underlying numeric type for composed scalar types. \details In cases where Scalar is e.g. std::complex<T>, T were corresponding to RealScalar. */ \ typedef typename Base::PacketScalar PacketScalar; \ typedef typename Base::CoeffReturnType CoeffReturnType; /*!< \brief The return type for coefficient access. \details Depending on whether the object allows direct coefficient access (e.g. for a MatrixXd), this type is either 'const Scalar&' or simply 'Scalar' for objects that do not allow direct coefficient access. */ \ typedef typename Eigen::internal::nested<Derived>::type Nested; \ typedef typename Eigen::internal::traits<Derived>::StorageKind StorageKind; \ typedef typename Eigen::internal::traits<Derived>::Index Index; \ enum { RowsAtCompileTime = Eigen::internal::traits<Derived>::RowsAtCompileTime, \ ColsAtCompileTime = Eigen::internal::traits<Derived>::ColsAtCompileTime, \ MaxRowsAtCompileTime = Eigen::internal::traits<Derived>::MaxRowsAtCompileTime, \ MaxColsAtCompileTime = Eigen::internal::traits<Derived>::MaxColsAtCompileTime, \ Flags = Eigen::internal::traits<Derived>::Flags, \ CoeffReadCost = Eigen::internal::traits<Derived>::CoeffReadCost, \ SizeAtCompileTime = Base::SizeAtCompileTime, \ MaxSizeAtCompileTime = Base::MaxSizeAtCompileTime, \ IsVectorAtCompileTime = Base::IsVectorAtCompileTime }; \ using Base::derived; \ using Base::const_cast_derived; #define EIGEN_PLAIN_ENUM_MIN(a,b) (((int)a <= (int)b) ? (int)a : (int)b) #define EIGEN_PLAIN_ENUM_MAX(a,b) (((int)a >= (int)b) ? (int)a : (int)b) // EIGEN_SIZE_MIN_PREFER_DYNAMIC gives the min between compile-time sizes. 0 has absolute priority, followed by 1, // followed by Dynamic, followed by other finite values. The reason for giving Dynamic the priority over // finite values is that min(3, Dynamic) should be Dynamic, since that could be anything between 0 and 3. #define EIGEN_SIZE_MIN_PREFER_DYNAMIC(a,b) (((int)a == 0 || (int)b == 0) ? 0 \ : ((int)a == 1 || (int)b == 1) ? 1 \ : ((int)a == Dynamic || (int)b == Dynamic) ? Dynamic \ : ((int)a <= (int)b) ? (int)a : (int)b) // EIGEN_SIZE_MIN_PREFER_FIXED is a variant of EIGEN_SIZE_MIN_PREFER_DYNAMIC comparing MaxSizes. The difference is that finite values // now have priority over Dynamic, so that min(3, Dynamic) gives 3. Indeed, whatever the actual value is // (between 0 and 3), it is not more than 3. #define EIGEN_SIZE_MIN_PREFER_FIXED(a,b) (((int)a == 0 || (int)b == 0) ? 0 \ : ((int)a == 1 || (int)b == 1) ? 1 \ : ((int)a == Dynamic && (int)b == Dynamic) ? Dynamic \ : ((int)a == Dynamic) ? (int)b \ : ((int)b == Dynamic) ? (int)a \ : ((int)a <= (int)b) ? (int)a : (int)b) // see EIGEN_SIZE_MIN_PREFER_DYNAMIC. No need for a separate variant for MaxSizes here. #define EIGEN_SIZE_MAX(a,b) (((int)a == Dynamic || (int)b == Dynamic) ? Dynamic \ : ((int)a >= (int)b) ? (int)a : (int)b) #define EIGEN_LOGICAL_XOR(a,b) (((a) || (b)) && !((a) && (b))) #define EIGEN_IMPLIES(a,b) (!(a) || (b)) #define EIGEN_MAKE_CWISE_BINARY_OP(METHOD,FUNCTOR) \ template<typename OtherDerived> \ EIGEN_STRONG_INLINE const CwiseBinaryOp<FUNCTOR<Scalar>, const Derived, const OtherDerived> \ (METHOD)(const EIGEN_CURRENT_STORAGE_BASE_CLASS<OtherDerived> &other) const \ { \ return CwiseBinaryOp<FUNCTOR<Scalar>, const Derived, const OtherDerived>(derived(), other.derived()); \ } // the expression type of a cwise product #define EIGEN_CWISE_PRODUCT_RETURN_TYPE(LHS,RHS) \ CwiseBinaryOp< \ internal::scalar_product_op< \ typename internal::traits<LHS>::Scalar, \ typename internal::traits<RHS>::Scalar \ >, \ const LHS, \ const RHS \ > #endif // EIGEN_MACROS_H