// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com> // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_TRIANGULARMATRIX_H #define EIGEN_TRIANGULARMATRIX_H namespace Eigen { namespace internal { template<int Side, typename TriangularType, typename Rhs> struct triangular_solve_retval; } /** \internal * * \class TriangularBase * \ingroup Core_Module * * \brief Base class for triangular part in a matrix */ template<typename Derived> class TriangularBase : public EigenBase<Derived> { public: enum { Mode = internal::traits<Derived>::Mode, CoeffReadCost = internal::traits<Derived>::CoeffReadCost, RowsAtCompileTime = internal::traits<Derived>::RowsAtCompileTime, ColsAtCompileTime = internal::traits<Derived>::ColsAtCompileTime, MaxRowsAtCompileTime = internal::traits<Derived>::MaxRowsAtCompileTime, MaxColsAtCompileTime = internal::traits<Derived>::MaxColsAtCompileTime }; typedef typename internal::traits<Derived>::Scalar Scalar; typedef typename internal::traits<Derived>::StorageKind StorageKind; typedef typename internal::traits<Derived>::Index Index; typedef typename internal::traits<Derived>::DenseMatrixType DenseMatrixType; typedef DenseMatrixType DenseType; inline TriangularBase() { eigen_assert(!((Mode&UnitDiag) && (Mode&ZeroDiag))); } inline Index rows() const { return derived().rows(); } inline Index cols() const { return derived().cols(); } inline Index outerStride() const { return derived().outerStride(); } inline Index innerStride() const { return derived().innerStride(); } inline Scalar coeff(Index row, Index col) const { return derived().coeff(row,col); } inline Scalar& coeffRef(Index row, Index col) { return derived().coeffRef(row,col); } /** \see MatrixBase::copyCoeff(row,col) */ template<typename Other> EIGEN_STRONG_INLINE void copyCoeff(Index row, Index col, Other& other) { derived().coeffRef(row, col) = other.coeff(row, col); } inline Scalar operator()(Index row, Index col) const { check_coordinates(row, col); return coeff(row,col); } inline Scalar& operator()(Index row, Index col) { check_coordinates(row, col); return coeffRef(row,col); } #ifndef EIGEN_PARSED_BY_DOXYGEN inline const Derived& derived() const { return *static_cast<const Derived*>(this); } inline Derived& derived() { return *static_cast<Derived*>(this); } #endif // not EIGEN_PARSED_BY_DOXYGEN template<typename DenseDerived> void evalTo(MatrixBase<DenseDerived> &other) const; template<typename DenseDerived> void evalToLazy(MatrixBase<DenseDerived> &other) const; DenseMatrixType toDenseMatrix() const { DenseMatrixType res(rows(), cols()); evalToLazy(res); return res; } protected: void check_coordinates(Index row, Index col) const { EIGEN_ONLY_USED_FOR_DEBUG(row); EIGEN_ONLY_USED_FOR_DEBUG(col); eigen_assert(col>=0 && col<cols() && row>=0 && row<rows()); const int mode = int(Mode) & ~SelfAdjoint; EIGEN_ONLY_USED_FOR_DEBUG(mode); eigen_assert((mode==Upper && col>=row) || (mode==Lower && col<=row) || ((mode==StrictlyUpper || mode==UnitUpper) && col>row) || ((mode==StrictlyLower || mode==UnitLower) && col<row)); } #ifdef EIGEN_INTERNAL_DEBUGGING void check_coordinates_internal(Index row, Index col) const { check_coordinates(row, col); } #else void check_coordinates_internal(Index , Index ) const {} #endif }; /** \class TriangularView * \ingroup Core_Module * * \brief Base class for triangular part in a matrix * * \param MatrixType the type of the object in which we are taking the triangular part * \param Mode the kind of triangular matrix expression to construct. Can be #Upper, * #Lower, #UnitUpper, #UnitLower, #StrictlyUpper, or #StrictlyLower. * This is in fact a bit field; it must have either #Upper or #Lower, * and additionnaly it may have #UnitDiag or #ZeroDiag or neither. * * This class represents a triangular part of a matrix, not necessarily square. Strictly speaking, for rectangular * matrices one should speak of "trapezoid" parts. This class is the return type * of MatrixBase::triangularView() and most of the time this is the only way it is used. * * \sa MatrixBase::triangularView() */ namespace internal { template<typename MatrixType, unsigned int _Mode> struct traits<TriangularView<MatrixType, _Mode> > : traits<MatrixType> { typedef typename nested<MatrixType>::type MatrixTypeNested; typedef typename remove_reference<MatrixTypeNested>::type MatrixTypeNestedNonRef; typedef typename remove_all<MatrixTypeNested>::type MatrixTypeNestedCleaned; typedef MatrixType ExpressionType; typedef typename MatrixType::PlainObject DenseMatrixType; enum { Mode = _Mode, Flags = (MatrixTypeNestedCleaned::Flags & (HereditaryBits) & (~(PacketAccessBit | DirectAccessBit | LinearAccessBit))) | Mode, CoeffReadCost = MatrixTypeNestedCleaned::CoeffReadCost }; }; } template<int Mode, bool LhsIsTriangular, typename Lhs, bool LhsIsVector, typename Rhs, bool RhsIsVector> struct TriangularProduct; template<typename _MatrixType, unsigned int _Mode> class TriangularView : public TriangularBase<TriangularView<_MatrixType, _Mode> > { public: typedef TriangularBase<TriangularView> Base; typedef typename internal::traits<TriangularView>::Scalar Scalar; typedef _MatrixType MatrixType; typedef typename internal::traits<TriangularView>::DenseMatrixType DenseMatrixType; typedef DenseMatrixType PlainObject; protected: typedef typename internal::traits<TriangularView>::MatrixTypeNested MatrixTypeNested; typedef typename internal::traits<TriangularView>::MatrixTypeNestedNonRef MatrixTypeNestedNonRef; typedef typename internal::traits<TriangularView>::MatrixTypeNestedCleaned MatrixTypeNestedCleaned; typedef typename internal::remove_all<typename MatrixType::ConjugateReturnType>::type MatrixConjugateReturnType; public: using Base::evalToLazy; typedef typename internal::traits<TriangularView>::StorageKind StorageKind; typedef typename internal::traits<TriangularView>::Index Index; enum { Mode = _Mode, TransposeMode = (Mode & Upper ? Lower : 0) | (Mode & Lower ? Upper : 0) | (Mode & (UnitDiag)) | (Mode & (ZeroDiag)) }; inline TriangularView(const MatrixType& matrix) : m_matrix(matrix) {} inline Index rows() const { return m_matrix.rows(); } inline Index cols() const { return m_matrix.cols(); } inline Index outerStride() const { return m_matrix.outerStride(); } inline Index innerStride() const { return m_matrix.innerStride(); } /** \sa MatrixBase::operator+=() */ template<typename Other> TriangularView& operator+=(const DenseBase<Other>& other) { return *this = m_matrix + other.derived(); } /** \sa MatrixBase::operator-=() */ template<typename Other> TriangularView& operator-=(const DenseBase<Other>& other) { return *this = m_matrix - other.derived(); } /** \sa MatrixBase::operator*=() */ TriangularView& operator*=(const typename internal::traits<MatrixType>::Scalar& other) { return *this = m_matrix * other; } /** \sa MatrixBase::operator/=() */ TriangularView& operator/=(const typename internal::traits<MatrixType>::Scalar& other) { return *this = m_matrix / other; } /** \sa MatrixBase::fill() */ void fill(const Scalar& value) { setConstant(value); } /** \sa MatrixBase::setConstant() */ TriangularView& setConstant(const Scalar& value) { return *this = MatrixType::Constant(rows(), cols(), value); } /** \sa MatrixBase::setZero() */ TriangularView& setZero() { return setConstant(Scalar(0)); } /** \sa MatrixBase::setOnes() */ TriangularView& setOnes() { return setConstant(Scalar(1)); } /** \sa MatrixBase::coeff() * \warning the coordinates must fit into the referenced triangular part */ inline Scalar coeff(Index row, Index col) const { Base::check_coordinates_internal(row, col); return m_matrix.coeff(row, col); } /** \sa MatrixBase::coeffRef() * \warning the coordinates must fit into the referenced triangular part */ inline Scalar& coeffRef(Index row, Index col) { Base::check_coordinates_internal(row, col); return m_matrix.const_cast_derived().coeffRef(row, col); } const MatrixTypeNestedCleaned& nestedExpression() const { return m_matrix; } MatrixTypeNestedCleaned& nestedExpression() { return *const_cast<MatrixTypeNestedCleaned*>(&m_matrix); } /** Assigns a triangular matrix to a triangular part of a dense matrix */ template<typename OtherDerived> TriangularView& operator=(const TriangularBase<OtherDerived>& other); template<typename OtherDerived> TriangularView& operator=(const MatrixBase<OtherDerived>& other); TriangularView& operator=(const TriangularView& other) { return *this = other.nestedExpression(); } template<typename OtherDerived> void lazyAssign(const TriangularBase<OtherDerived>& other); template<typename OtherDerived> void lazyAssign(const MatrixBase<OtherDerived>& other); /** \sa MatrixBase::conjugate() */ inline TriangularView<MatrixConjugateReturnType,Mode> conjugate() { return m_matrix.conjugate(); } /** \sa MatrixBase::conjugate() const */ inline const TriangularView<MatrixConjugateReturnType,Mode> conjugate() const { return m_matrix.conjugate(); } /** \sa MatrixBase::adjoint() const */ inline const TriangularView<const typename MatrixType::AdjointReturnType,TransposeMode> adjoint() const { return m_matrix.adjoint(); } /** \sa MatrixBase::transpose() */ inline TriangularView<Transpose<MatrixType>,TransposeMode> transpose() { EIGEN_STATIC_ASSERT_LVALUE(MatrixType) return m_matrix.const_cast_derived().transpose(); } /** \sa MatrixBase::transpose() const */ inline const TriangularView<Transpose<MatrixType>,TransposeMode> transpose() const { return m_matrix.transpose(); } /** Efficient triangular matrix times vector/matrix product */ template<typename OtherDerived> TriangularProduct<Mode, true, MatrixType, false, OtherDerived, OtherDerived::ColsAtCompileTime==1> operator*(const MatrixBase<OtherDerived>& rhs) const { return TriangularProduct <Mode, true, MatrixType, false, OtherDerived, OtherDerived::ColsAtCompileTime==1> (m_matrix, rhs.derived()); } /** Efficient vector/matrix times triangular matrix product */ template<typename OtherDerived> friend TriangularProduct<Mode, false, OtherDerived, OtherDerived::RowsAtCompileTime==1, MatrixType, false> operator*(const MatrixBase<OtherDerived>& lhs, const TriangularView& rhs) { return TriangularProduct <Mode, false, OtherDerived, OtherDerived::RowsAtCompileTime==1, MatrixType, false> (lhs.derived(),rhs.m_matrix); } #ifdef EIGEN2_SUPPORT template<typename OtherDerived> struct eigen2_product_return_type { typedef typename TriangularView<MatrixType,Mode>::DenseMatrixType DenseMatrixType; typedef typename OtherDerived::PlainObject::DenseType OtherPlainObject; typedef typename ProductReturnType<DenseMatrixType, OtherPlainObject>::Type ProdRetType; typedef typename ProdRetType::PlainObject type; }; template<typename OtherDerived> const typename eigen2_product_return_type<OtherDerived>::type operator*(const EigenBase<OtherDerived>& rhs) const { typename OtherDerived::PlainObject::DenseType rhsPlainObject; rhs.evalTo(rhsPlainObject); return this->toDenseMatrix() * rhsPlainObject; } template<typename OtherMatrixType> bool isApprox(const TriangularView<OtherMatrixType, Mode>& other, typename NumTraits<Scalar>::Real precision = NumTraits<Scalar>::dummy_precision()) const { return this->toDenseMatrix().isApprox(other.toDenseMatrix(), precision); } template<typename OtherDerived> bool isApprox(const MatrixBase<OtherDerived>& other, typename NumTraits<Scalar>::Real precision = NumTraits<Scalar>::dummy_precision()) const { return this->toDenseMatrix().isApprox(other, precision); } #endif // EIGEN2_SUPPORT template<int Side, typename Other> inline const internal::triangular_solve_retval<Side,TriangularView, Other> solve(const MatrixBase<Other>& other) const; template<int Side, typename OtherDerived> void solveInPlace(const MatrixBase<OtherDerived>& other) const; template<typename Other> inline const internal::triangular_solve_retval<OnTheLeft,TriangularView, Other> solve(const MatrixBase<Other>& other) const { return solve<OnTheLeft>(other); } template<typename OtherDerived> void solveInPlace(const MatrixBase<OtherDerived>& other) const { return solveInPlace<OnTheLeft>(other); } const SelfAdjointView<MatrixTypeNestedNonRef,Mode> selfadjointView() const { EIGEN_STATIC_ASSERT((Mode&UnitDiag)==0,PROGRAMMING_ERROR); return SelfAdjointView<MatrixTypeNestedNonRef,Mode>(m_matrix); } SelfAdjointView<MatrixTypeNestedNonRef,Mode> selfadjointView() { EIGEN_STATIC_ASSERT((Mode&UnitDiag)==0,PROGRAMMING_ERROR); return SelfAdjointView<MatrixTypeNestedNonRef,Mode>(m_matrix); } template<typename OtherDerived> void swap(TriangularBase<OtherDerived> const & other) { TriangularView<SwapWrapper<MatrixType>,Mode>(const_cast<MatrixType&>(m_matrix)).lazyAssign(other.derived()); } template<typename OtherDerived> void swap(MatrixBase<OtherDerived> const & other) { SwapWrapper<MatrixType> swaper(const_cast<MatrixType&>(m_matrix)); TriangularView<SwapWrapper<MatrixType>,Mode>(swaper).lazyAssign(other.derived()); } Scalar determinant() const { if (Mode & UnitDiag) return 1; else if (Mode & ZeroDiag) return 0; else return m_matrix.diagonal().prod(); } // TODO simplify the following: template<typename ProductDerived, typename Lhs, typename Rhs> EIGEN_STRONG_INLINE TriangularView& operator=(const ProductBase<ProductDerived, Lhs,Rhs>& other) { setZero(); return assignProduct(other.derived(),1); } template<typename ProductDerived, typename Lhs, typename Rhs> EIGEN_STRONG_INLINE TriangularView& operator+=(const ProductBase<ProductDerived, Lhs,Rhs>& other) { return assignProduct(other.derived(),1); } template<typename ProductDerived, typename Lhs, typename Rhs> EIGEN_STRONG_INLINE TriangularView& operator-=(const ProductBase<ProductDerived, Lhs,Rhs>& other) { return assignProduct(other.derived(),-1); } template<typename ProductDerived> EIGEN_STRONG_INLINE TriangularView& operator=(const ScaledProduct<ProductDerived>& other) { setZero(); return assignProduct(other.derived(),other.alpha()); } template<typename ProductDerived> EIGEN_STRONG_INLINE TriangularView& operator+=(const ScaledProduct<ProductDerived>& other) { return assignProduct(other.derived(),other.alpha()); } template<typename ProductDerived> EIGEN_STRONG_INLINE TriangularView& operator-=(const ScaledProduct<ProductDerived>& other) { return assignProduct(other.derived(),-other.alpha()); } protected: template<typename ProductDerived, typename Lhs, typename Rhs> EIGEN_STRONG_INLINE TriangularView& assignProduct(const ProductBase<ProductDerived, Lhs,Rhs>& prod, const Scalar& alpha); template<int Mode, bool LhsIsTriangular, typename Lhs, bool LhsIsVector, typename Rhs, bool RhsIsVector> EIGEN_STRONG_INLINE TriangularView& assignProduct(const TriangularProduct<Mode, LhsIsTriangular, Lhs, LhsIsVector, Rhs, RhsIsVector>& prod, const Scalar& alpha) { lazyAssign(alpha*prod.eval()); return *this; } MatrixTypeNested m_matrix; }; /*************************************************************************** * Implementation of triangular evaluation/assignment ***************************************************************************/ namespace internal { template<typename Derived1, typename Derived2, unsigned int Mode, int UnrollCount, bool ClearOpposite> struct triangular_assignment_selector { enum { col = (UnrollCount-1) / Derived1::RowsAtCompileTime, row = (UnrollCount-1) % Derived1::RowsAtCompileTime }; typedef typename Derived1::Scalar Scalar; static inline void run(Derived1 &dst, const Derived2 &src) { triangular_assignment_selector<Derived1, Derived2, Mode, UnrollCount-1, ClearOpposite>::run(dst, src); eigen_assert( Mode == Upper || Mode == Lower || Mode == StrictlyUpper || Mode == StrictlyLower || Mode == UnitUpper || Mode == UnitLower); if((Mode == Upper && row <= col) || (Mode == Lower && row >= col) || (Mode == StrictlyUpper && row < col) || (Mode == StrictlyLower && row > col) || (Mode == UnitUpper && row < col) || (Mode == UnitLower && row > col)) dst.copyCoeff(row, col, src); else if(ClearOpposite) { if (Mode&UnitDiag && row==col) dst.coeffRef(row, col) = Scalar(1); else dst.coeffRef(row, col) = Scalar(0); } } }; // prevent buggy user code from causing an infinite recursion template<typename Derived1, typename Derived2, unsigned int Mode, bool ClearOpposite> struct triangular_assignment_selector<Derived1, Derived2, Mode, 0, ClearOpposite> { static inline void run(Derived1 &, const Derived2 &) {} }; template<typename Derived1, typename Derived2, bool ClearOpposite> struct triangular_assignment_selector<Derived1, Derived2, Upper, Dynamic, ClearOpposite> { typedef typename Derived1::Index Index; typedef typename Derived1::Scalar Scalar; static inline void run(Derived1 &dst, const Derived2 &src) { for(Index j = 0; j < dst.cols(); ++j) { Index maxi = (std::min)(j, dst.rows()-1); for(Index i = 0; i <= maxi; ++i) dst.copyCoeff(i, j, src); if (ClearOpposite) for(Index i = maxi+1; i < dst.rows(); ++i) dst.coeffRef(i, j) = Scalar(0); } } }; template<typename Derived1, typename Derived2, bool ClearOpposite> struct triangular_assignment_selector<Derived1, Derived2, Lower, Dynamic, ClearOpposite> { typedef typename Derived1::Index Index; static inline void run(Derived1 &dst, const Derived2 &src) { for(Index j = 0; j < dst.cols(); ++j) { for(Index i = j; i < dst.rows(); ++i) dst.copyCoeff(i, j, src); Index maxi = (std::min)(j, dst.rows()); if (ClearOpposite) for(Index i = 0; i < maxi; ++i) dst.coeffRef(i, j) = static_cast<typename Derived1::Scalar>(0); } } }; template<typename Derived1, typename Derived2, bool ClearOpposite> struct triangular_assignment_selector<Derived1, Derived2, StrictlyUpper, Dynamic, ClearOpposite> { typedef typename Derived1::Index Index; typedef typename Derived1::Scalar Scalar; static inline void run(Derived1 &dst, const Derived2 &src) { for(Index j = 0; j < dst.cols(); ++j) { Index maxi = (std::min)(j, dst.rows()); for(Index i = 0; i < maxi; ++i) dst.copyCoeff(i, j, src); if (ClearOpposite) for(Index i = maxi; i < dst.rows(); ++i) dst.coeffRef(i, j) = Scalar(0); } } }; template<typename Derived1, typename Derived2, bool ClearOpposite> struct triangular_assignment_selector<Derived1, Derived2, StrictlyLower, Dynamic, ClearOpposite> { typedef typename Derived1::Index Index; static inline void run(Derived1 &dst, const Derived2 &src) { for(Index j = 0; j < dst.cols(); ++j) { for(Index i = j+1; i < dst.rows(); ++i) dst.copyCoeff(i, j, src); Index maxi = (std::min)(j, dst.rows()-1); if (ClearOpposite) for(Index i = 0; i <= maxi; ++i) dst.coeffRef(i, j) = static_cast<typename Derived1::Scalar>(0); } } }; template<typename Derived1, typename Derived2, bool ClearOpposite> struct triangular_assignment_selector<Derived1, Derived2, UnitUpper, Dynamic, ClearOpposite> { typedef typename Derived1::Index Index; static inline void run(Derived1 &dst, const Derived2 &src) { for(Index j = 0; j < dst.cols(); ++j) { Index maxi = (std::min)(j, dst.rows()); for(Index i = 0; i < maxi; ++i) dst.copyCoeff(i, j, src); if (ClearOpposite) { for(Index i = maxi+1; i < dst.rows(); ++i) dst.coeffRef(i, j) = 0; } } dst.diagonal().setOnes(); } }; template<typename Derived1, typename Derived2, bool ClearOpposite> struct triangular_assignment_selector<Derived1, Derived2, UnitLower, Dynamic, ClearOpposite> { typedef typename Derived1::Index Index; static inline void run(Derived1 &dst, const Derived2 &src) { for(Index j = 0; j < dst.cols(); ++j) { Index maxi = (std::min)(j, dst.rows()); for(Index i = maxi+1; i < dst.rows(); ++i) dst.copyCoeff(i, j, src); if (ClearOpposite) { for(Index i = 0; i < maxi; ++i) dst.coeffRef(i, j) = 0; } } dst.diagonal().setOnes(); } }; } // end namespace internal // FIXME should we keep that possibility template<typename MatrixType, unsigned int Mode> template<typename OtherDerived> inline TriangularView<MatrixType, Mode>& TriangularView<MatrixType, Mode>::operator=(const MatrixBase<OtherDerived>& other) { if(OtherDerived::Flags & EvalBeforeAssigningBit) { typename internal::plain_matrix_type<OtherDerived>::type other_evaluated(other.rows(), other.cols()); other_evaluated.template triangularView<Mode>().lazyAssign(other.derived()); lazyAssign(other_evaluated); } else lazyAssign(other.derived()); return *this; } // FIXME should we keep that possibility template<typename MatrixType, unsigned int Mode> template<typename OtherDerived> void TriangularView<MatrixType, Mode>::lazyAssign(const MatrixBase<OtherDerived>& other) { enum { unroll = MatrixType::SizeAtCompileTime != Dynamic && internal::traits<OtherDerived>::CoeffReadCost != Dynamic && MatrixType::SizeAtCompileTime*internal::traits<OtherDerived>::CoeffReadCost/2 <= EIGEN_UNROLLING_LIMIT }; eigen_assert(m_matrix.rows() == other.rows() && m_matrix.cols() == other.cols()); internal::triangular_assignment_selector <MatrixType, OtherDerived, int(Mode), unroll ? int(MatrixType::SizeAtCompileTime) : Dynamic, false // do not change the opposite triangular part >::run(m_matrix.const_cast_derived(), other.derived()); } template<typename MatrixType, unsigned int Mode> template<typename OtherDerived> inline TriangularView<MatrixType, Mode>& TriangularView<MatrixType, Mode>::operator=(const TriangularBase<OtherDerived>& other) { eigen_assert(Mode == int(OtherDerived::Mode)); if(internal::traits<OtherDerived>::Flags & EvalBeforeAssigningBit) { typename OtherDerived::DenseMatrixType other_evaluated(other.rows(), other.cols()); other_evaluated.template triangularView<Mode>().lazyAssign(other.derived().nestedExpression()); lazyAssign(other_evaluated); } else lazyAssign(other.derived().nestedExpression()); return *this; } template<typename MatrixType, unsigned int Mode> template<typename OtherDerived> void TriangularView<MatrixType, Mode>::lazyAssign(const TriangularBase<OtherDerived>& other) { enum { unroll = MatrixType::SizeAtCompileTime != Dynamic && internal::traits<OtherDerived>::CoeffReadCost != Dynamic && MatrixType::SizeAtCompileTime * internal::traits<OtherDerived>::CoeffReadCost / 2 <= EIGEN_UNROLLING_LIMIT }; eigen_assert(m_matrix.rows() == other.rows() && m_matrix.cols() == other.cols()); internal::triangular_assignment_selector <MatrixType, OtherDerived, int(Mode), unroll ? int(MatrixType::SizeAtCompileTime) : Dynamic, false // preserve the opposite triangular part >::run(m_matrix.const_cast_derived(), other.derived().nestedExpression()); } /*************************************************************************** * Implementation of TriangularBase methods ***************************************************************************/ /** Assigns a triangular or selfadjoint matrix to a dense matrix. * If the matrix is triangular, the opposite part is set to zero. */ template<typename Derived> template<typename DenseDerived> void TriangularBase<Derived>::evalTo(MatrixBase<DenseDerived> &other) const { if(internal::traits<Derived>::Flags & EvalBeforeAssigningBit) { typename internal::plain_matrix_type<Derived>::type other_evaluated(rows(), cols()); evalToLazy(other_evaluated); other.derived().swap(other_evaluated); } else evalToLazy(other.derived()); } /** Assigns a triangular or selfadjoint matrix to a dense matrix. * If the matrix is triangular, the opposite part is set to zero. */ template<typename Derived> template<typename DenseDerived> void TriangularBase<Derived>::evalToLazy(MatrixBase<DenseDerived> &other) const { enum { unroll = DenseDerived::SizeAtCompileTime != Dynamic && internal::traits<Derived>::CoeffReadCost != Dynamic && DenseDerived::SizeAtCompileTime * internal::traits<Derived>::CoeffReadCost / 2 <= EIGEN_UNROLLING_LIMIT }; other.derived().resize(this->rows(), this->cols()); internal::triangular_assignment_selector <DenseDerived, typename internal::traits<Derived>::MatrixTypeNestedCleaned, Derived::Mode, unroll ? int(DenseDerived::SizeAtCompileTime) : Dynamic, true // clear the opposite triangular part >::run(other.derived(), derived().nestedExpression()); } /*************************************************************************** * Implementation of TriangularView methods ***************************************************************************/ /*************************************************************************** * Implementation of MatrixBase methods ***************************************************************************/ #ifdef EIGEN2_SUPPORT // implementation of part<>(), including the SelfAdjoint case. namespace internal { template<typename MatrixType, unsigned int Mode> struct eigen2_part_return_type { typedef TriangularView<MatrixType, Mode> type; }; template<typename MatrixType> struct eigen2_part_return_type<MatrixType, SelfAdjoint> { typedef SelfAdjointView<MatrixType, Upper> type; }; } /** \deprecated use MatrixBase::triangularView() */ template<typename Derived> template<unsigned int Mode> const typename internal::eigen2_part_return_type<Derived, Mode>::type MatrixBase<Derived>::part() const { return derived(); } /** \deprecated use MatrixBase::triangularView() */ template<typename Derived> template<unsigned int Mode> typename internal::eigen2_part_return_type<Derived, Mode>::type MatrixBase<Derived>::part() { return derived(); } #endif /** * \returns an expression of a triangular view extracted from the current matrix * * The parameter \a Mode can have the following values: \c #Upper, \c #StrictlyUpper, \c #UnitUpper, * \c #Lower, \c #StrictlyLower, \c #UnitLower. * * Example: \include MatrixBase_extract.cpp * Output: \verbinclude MatrixBase_extract.out * * \sa class TriangularView */ template<typename Derived> template<unsigned int Mode> typename MatrixBase<Derived>::template TriangularViewReturnType<Mode>::Type MatrixBase<Derived>::triangularView() { return derived(); } /** This is the const version of MatrixBase::triangularView() */ template<typename Derived> template<unsigned int Mode> typename MatrixBase<Derived>::template ConstTriangularViewReturnType<Mode>::Type MatrixBase<Derived>::triangularView() const { return derived(); } /** \returns true if *this is approximately equal to an upper triangular matrix, * within the precision given by \a prec. * * \sa isLowerTriangular() */ template<typename Derived> bool MatrixBase<Derived>::isUpperTriangular(const RealScalar& prec) const { using std::abs; RealScalar maxAbsOnUpperPart = static_cast<RealScalar>(-1); for(Index j = 0; j < cols(); ++j) { Index maxi = (std::min)(j, rows()-1); for(Index i = 0; i <= maxi; ++i) { RealScalar absValue = abs(coeff(i,j)); if(absValue > maxAbsOnUpperPart) maxAbsOnUpperPart = absValue; } } RealScalar threshold = maxAbsOnUpperPart * prec; for(Index j = 0; j < cols(); ++j) for(Index i = j+1; i < rows(); ++i) if(abs(coeff(i, j)) > threshold) return false; return true; } /** \returns true if *this is approximately equal to a lower triangular matrix, * within the precision given by \a prec. * * \sa isUpperTriangular() */ template<typename Derived> bool MatrixBase<Derived>::isLowerTriangular(const RealScalar& prec) const { using std::abs; RealScalar maxAbsOnLowerPart = static_cast<RealScalar>(-1); for(Index j = 0; j < cols(); ++j) for(Index i = j; i < rows(); ++i) { RealScalar absValue = abs(coeff(i,j)); if(absValue > maxAbsOnLowerPart) maxAbsOnLowerPart = absValue; } RealScalar threshold = maxAbsOnLowerPart * prec; for(Index j = 1; j < cols(); ++j) { Index maxi = (std::min)(j, rows()-1); for(Index i = 0; i < maxi; ++i) if(abs(coeff(i, j)) > threshold) return false; } return true; } } // end namespace Eigen #endif // EIGEN_TRIANGULARMATRIX_H