// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> // Copyright (C) 2009 Ricard Marxer <email@ricardmarxer.com> // Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_REVERSE_H #define EIGEN_REVERSE_H namespace Eigen { /** \class Reverse * \ingroup Core_Module * * \brief Expression of the reverse of a vector or matrix * * \param MatrixType the type of the object of which we are taking the reverse * * This class represents an expression of the reverse of a vector. * It is the return type of MatrixBase::reverse() and VectorwiseOp::reverse() * and most of the time this is the only way it is used. * * \sa MatrixBase::reverse(), VectorwiseOp::reverse() */ namespace internal { template<typename MatrixType, int Direction> struct traits<Reverse<MatrixType, Direction> > : traits<MatrixType> { typedef typename MatrixType::Scalar Scalar; typedef typename traits<MatrixType>::StorageKind StorageKind; typedef typename traits<MatrixType>::XprKind XprKind; typedef typename nested<MatrixType>::type MatrixTypeNested; typedef typename remove_reference<MatrixTypeNested>::type _MatrixTypeNested; enum { RowsAtCompileTime = MatrixType::RowsAtCompileTime, ColsAtCompileTime = MatrixType::ColsAtCompileTime, MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, // let's enable LinearAccess only with vectorization because of the product overhead LinearAccess = ( (Direction==BothDirections) && (int(_MatrixTypeNested::Flags)&PacketAccessBit) ) ? LinearAccessBit : 0, Flags = int(_MatrixTypeNested::Flags) & (HereditaryBits | LvalueBit | PacketAccessBit | LinearAccess), CoeffReadCost = _MatrixTypeNested::CoeffReadCost }; }; template<typename PacketScalar, bool ReversePacket> struct reverse_packet_cond { static inline PacketScalar run(const PacketScalar& x) { return preverse(x); } }; template<typename PacketScalar> struct reverse_packet_cond<PacketScalar,false> { static inline PacketScalar run(const PacketScalar& x) { return x; } }; } // end namespace internal template<typename MatrixType, int Direction> class Reverse : public internal::dense_xpr_base< Reverse<MatrixType, Direction> >::type { public: typedef typename internal::dense_xpr_base<Reverse>::type Base; EIGEN_DENSE_PUBLIC_INTERFACE(Reverse) using Base::IsRowMajor; // next line is necessary because otherwise const version of operator() // is hidden by non-const version defined in this file using Base::operator(); protected: enum { PacketSize = internal::packet_traits<Scalar>::size, IsColMajor = !IsRowMajor, ReverseRow = (Direction == Vertical) || (Direction == BothDirections), ReverseCol = (Direction == Horizontal) || (Direction == BothDirections), OffsetRow = ReverseRow && IsColMajor ? PacketSize : 1, OffsetCol = ReverseCol && IsRowMajor ? PacketSize : 1, ReversePacket = (Direction == BothDirections) || ((Direction == Vertical) && IsColMajor) || ((Direction == Horizontal) && IsRowMajor) }; typedef internal::reverse_packet_cond<PacketScalar,ReversePacket> reverse_packet; public: inline Reverse(const MatrixType& matrix) : m_matrix(matrix) { } EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Reverse) inline Index rows() const { return m_matrix.rows(); } inline Index cols() const { return m_matrix.cols(); } inline Index innerStride() const { return -m_matrix.innerStride(); } inline Scalar& operator()(Index row, Index col) { eigen_assert(row >= 0 && row < rows() && col >= 0 && col < cols()); return coeffRef(row, col); } inline Scalar& coeffRef(Index row, Index col) { return m_matrix.const_cast_derived().coeffRef(ReverseRow ? m_matrix.rows() - row - 1 : row, ReverseCol ? m_matrix.cols() - col - 1 : col); } inline CoeffReturnType coeff(Index row, Index col) const { return m_matrix.coeff(ReverseRow ? m_matrix.rows() - row - 1 : row, ReverseCol ? m_matrix.cols() - col - 1 : col); } inline CoeffReturnType coeff(Index index) const { return m_matrix.coeff(m_matrix.size() - index - 1); } inline Scalar& coeffRef(Index index) { return m_matrix.const_cast_derived().coeffRef(m_matrix.size() - index - 1); } inline Scalar& operator()(Index index) { eigen_assert(index >= 0 && index < m_matrix.size()); return coeffRef(index); } template<int LoadMode> inline const PacketScalar packet(Index row, Index col) const { return reverse_packet::run(m_matrix.template packet<LoadMode>( ReverseRow ? m_matrix.rows() - row - OffsetRow : row, ReverseCol ? m_matrix.cols() - col - OffsetCol : col)); } template<int LoadMode> inline void writePacket(Index row, Index col, const PacketScalar& x) { m_matrix.const_cast_derived().template writePacket<LoadMode>( ReverseRow ? m_matrix.rows() - row - OffsetRow : row, ReverseCol ? m_matrix.cols() - col - OffsetCol : col, reverse_packet::run(x)); } template<int LoadMode> inline const PacketScalar packet(Index index) const { return internal::preverse(m_matrix.template packet<LoadMode>( m_matrix.size() - index - PacketSize )); } template<int LoadMode> inline void writePacket(Index index, const PacketScalar& x) { m_matrix.const_cast_derived().template writePacket<LoadMode>(m_matrix.size() - index - PacketSize, internal::preverse(x)); } const typename internal::remove_all<typename MatrixType::Nested>::type& nestedExpression() const { return m_matrix; } protected: typename MatrixType::Nested m_matrix; }; /** \returns an expression of the reverse of *this. * * Example: \include MatrixBase_reverse.cpp * Output: \verbinclude MatrixBase_reverse.out * */ template<typename Derived> inline typename DenseBase<Derived>::ReverseReturnType DenseBase<Derived>::reverse() { return derived(); } /** This is the const version of reverse(). */ template<typename Derived> inline const typename DenseBase<Derived>::ConstReverseReturnType DenseBase<Derived>::reverse() const { return derived(); } /** This is the "in place" version of reverse: it reverses \c *this. * * In most cases it is probably better to simply use the reversed expression * of a matrix. However, when reversing the matrix data itself is really needed, * then this "in-place" version is probably the right choice because it provides * the following additional features: * - less error prone: doing the same operation with .reverse() requires special care: * \code m = m.reverse().eval(); \endcode * - this API allows to avoid creating a temporary (the current implementation creates a temporary, but that could be avoided using swap) * - it allows future optimizations (cache friendliness, etc.) * * \sa reverse() */ template<typename Derived> inline void DenseBase<Derived>::reverseInPlace() { derived() = derived().reverse().eval(); } } // end namespace Eigen #endif // EIGEN_REVERSE_H