/* * Copyright (C) 2010 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef UNIQUE_PTR_H_included #define UNIQUE_PTR_H_included #include <cstdlib> // For NULL. // This is a fake declaration of std::swap to avoid including <algorithm> namespace std { template <class T> void swap(T&, T&); } // Default deleter for pointer types. template <typename T> struct DefaultDelete { enum { type_must_be_complete = sizeof(T) }; DefaultDelete() {} void operator()(T* p) const { delete p; } }; // Default deleter for array types. template <typename T> struct DefaultDelete<T[]> { enum { type_must_be_complete = sizeof(T) }; void operator()(T* p) const { delete[] p; } }; // A smart pointer that deletes the given pointer on destruction. // Equivalent to C++0x's std::unique_ptr (a combination of boost::scoped_ptr // and boost::scoped_array). // Named to be in keeping with Android style but also to avoid // collision with any other implementation, until we can switch over // to unique_ptr. // Use thus: // UniquePtr<C> c(new C); template <typename T, typename D = DefaultDelete<T> > class UniquePtr { public: // Construct a new UniquePtr, taking ownership of the given raw pointer. explicit UniquePtr(T* ptr = NULL) : mPtr(ptr) { } ~UniquePtr() { reset(); } // Accessors. T& operator*() const { return *mPtr; } T* operator->() const { return mPtr; } T* get() const { return mPtr; } // Returns the raw pointer and hands over ownership to the caller. // The pointer will not be deleted by UniquePtr. T* release() __attribute__((warn_unused_result)) { T* result = mPtr; mPtr = NULL; return result; } // Takes ownership of the given raw pointer. // If this smart pointer previously owned a different raw pointer, that // raw pointer will be freed. void reset(T* ptr = NULL) { if (ptr != mPtr) { D()(mPtr); mPtr = ptr; } } // Swap with another unique pointer. void swap(UniquePtr<T>& other) { std::swap(mPtr, other.mPtr); } private: // The raw pointer. T* mPtr; // Comparing unique pointers is probably a mistake, since they're unique. template <typename T2> bool operator==(const UniquePtr<T2>& p) const; template <typename T2> bool operator!=(const UniquePtr<T2>& p) const; // Disallow copy and assignment. UniquePtr(const UniquePtr&); void operator=(const UniquePtr&); }; // Partial specialization for array types. Like std::unique_ptr, this removes // operator* and operator-> but adds operator[]. template <typename T, typename D> class UniquePtr<T[], D> { public: explicit UniquePtr(T* ptr = NULL) : mPtr(ptr) { } ~UniquePtr() { reset(); } T& operator[](size_t i) const { return mPtr[i]; } T* get() const { return mPtr; } T* release() __attribute__((warn_unused_result)) { T* result = mPtr; mPtr = NULL; return result; } void reset(T* ptr = NULL) { if (ptr != mPtr) { D()(mPtr); mPtr = ptr; } } private: T* mPtr; // Disallow copy and assignment. UniquePtr(const UniquePtr&); void operator=(const UniquePtr&); }; #if UNIQUE_PTR_TESTS // Run these tests with: // g++ -g -DUNIQUE_PTR_TESTS -x c++ UniquePtr.h && ./a.out #include <stdio.h> static void assert(bool b) { if (!b) { fprintf(stderr, "FAIL\n"); abort(); } fprintf(stderr, "OK\n"); } static int cCount = 0; struct C { C() { ++cCount; } ~C() { --cCount; } }; static bool freed = false; struct Freer { void operator()(int* p) { assert(*p == 123); free(p); freed = true; } }; int main(int argc, char* argv[]) { // // UniquePtr<T> tests... // // Can we free a single object? { UniquePtr<C> c(new C); assert(cCount == 1); } assert(cCount == 0); // Does release work? C* rawC; { UniquePtr<C> c(new C); assert(cCount == 1); rawC = c.release(); } assert(cCount == 1); delete rawC; // Does reset work? { UniquePtr<C> c(new C); assert(cCount == 1); c.reset(new C); assert(cCount == 1); } assert(cCount == 0); // // UniquePtr<T[]> tests... // // Can we free an array? { UniquePtr<C[]> cs(new C[4]); assert(cCount == 4); } assert(cCount == 0); // Does release work? { UniquePtr<C[]> c(new C[4]); assert(cCount == 4); rawC = c.release(); } assert(cCount == 4); delete[] rawC; // Does reset work? { UniquePtr<C[]> c(new C[4]); assert(cCount == 4); c.reset(new C[2]); assert(cCount == 2); } assert(cCount == 0); // // Custom deleter tests... // assert(!freed); { UniquePtr<int, Freer> i(reinterpret_cast<int*>(malloc(sizeof(int)))); *i = 123; } assert(freed); return 0; } #endif #endif // UNIQUE_PTR_H_included