// RUN: %clangxx -O1 %s -o %t && TSAN_OPTIONS="flush_memory_ms=1 memory_limit_mb=1" ASAN_OPTIONS="handle_segv=0 allow_user_segv_handler=1" %run %t 2>&1 | FileCheck %s // JVM uses SEGV to preempt threads. All threads do a load from a known address // periodically. When runtime needs to preempt threads, it unmaps the page. // Threads start triggering SEGV one by one. The signal handler blocks // threads while runtime does its thing. Then runtime maps the page again // and resumes the threads. // Previously this pattern conflicted with stop-the-world machinery, // because it briefly reset SEGV handler to SIG_DFL. // As the consequence JVM just silently died. // This test sets memory flushing rate to maximum, then does series of // "benign" SEGVs that are handled by signal handler, and ensures that // the process survive. #include <stdio.h> #include <stdlib.h> #include <signal.h> #include <sys/mman.h> #include <string.h> #include <unistd.h> unsigned long page_size; void *guard; void handler(int signo, siginfo_t *info, void *uctx) { mprotect(guard, page_size, PROT_READ | PROT_WRITE); } int main() { page_size = sysconf(_SC_PAGESIZE); struct sigaction a, old; memset(&a, 0, sizeof(a)); memset(&old, 0, sizeof(old)); a.sa_sigaction = handler; a.sa_flags = SA_SIGINFO; sigaction(SIGSEGV, &a, &old); guard = mmap(0, 3 * page_size, PROT_NONE, MAP_ANON | MAP_PRIVATE, -1, 0); guard = (char*)guard + page_size; // work around a kernel bug for (int i = 0; i < 1000000; i++) { mprotect(guard, page_size, PROT_NONE); *(int*)guard = 1; } sigaction(SIGSEGV, &old, 0); fprintf(stderr, "DONE\n"); } // CHECK: DONE