//===- NeonEmitter.cpp - Generate arm_neon.h for use with clang -*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This tablegen backend is responsible for emitting arm_neon.h, which includes // a declaration and definition of each function specified by the ARM NEON // compiler interface. See ARM document DUI0348B. // // Each NEON instruction is implemented in terms of 1 or more functions which // are suffixed with the element type of the input vectors. Functions may be // implemented in terms of generic vector operations such as +, *, -, etc. or // by calling a __builtin_-prefixed function which will be handled by clang's // CodeGen library. // // Additional validation code can be generated by this file when runHeader() is // called, rather than the normal run() entry point. // // See also the documentation in include/clang/Basic/arm_neon.td. // //===----------------------------------------------------------------------===// #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringMap.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/TableGen/Error.h" #include "llvm/TableGen/Record.h" #include "llvm/TableGen/SetTheory.h" #include "llvm/TableGen/TableGenBackend.h" #include <algorithm> #include <deque> #include <map> #include <sstream> #include <string> #include <vector> using namespace llvm; namespace { // While globals are generally bad, this one allows us to perform assertions // liberally and somehow still trace them back to the def they indirectly // came from. static Record *CurrentRecord = nullptr; static void assert_with_loc(bool Assertion, const std::string &Str) { if (!Assertion) { if (CurrentRecord) PrintFatalError(CurrentRecord->getLoc(), Str); else PrintFatalError(Str); } } enum ClassKind { ClassNone, ClassI, // generic integer instruction, e.g., "i8" suffix ClassS, // signed/unsigned/poly, e.g., "s8", "u8" or "p8" suffix ClassW, // width-specific instruction, e.g., "8" suffix ClassB, // bitcast arguments with enum argument to specify type ClassL, // Logical instructions which are op instructions // but we need to not emit any suffix for in our // tests. ClassNoTest // Instructions which we do not test since they are // not TRUE instructions. }; /// NeonTypeFlags - Flags to identify the types for overloaded Neon /// builtins. These must be kept in sync with the flags in /// include/clang/Basic/TargetBuiltins.h. namespace NeonTypeFlags { enum { EltTypeMask = 0xf, UnsignedFlag = 0x10, QuadFlag = 0x20 }; enum EltType { Int8, Int16, Int32, Int64, Poly8, Poly16, Poly64, Poly128, Float16, Float32, Float64 }; } class Intrinsic; class NeonEmitter; class Type; class Variable; //===----------------------------------------------------------------------===// // TypeSpec //===----------------------------------------------------------------------===// /// A TypeSpec is just a simple wrapper around a string, but gets its own type /// for strong typing purposes. /// /// A TypeSpec can be used to create a type. class TypeSpec : public std::string { public: static std::vector<TypeSpec> fromTypeSpecs(StringRef Str) { std::vector<TypeSpec> Ret; TypeSpec Acc; for (char I : Str.str()) { if (islower(I)) { Acc.push_back(I); Ret.push_back(TypeSpec(Acc)); Acc.clear(); } else { Acc.push_back(I); } } return Ret; } }; //===----------------------------------------------------------------------===// // Type //===----------------------------------------------------------------------===// /// A Type. Not much more to say here. class Type { private: TypeSpec TS; bool Float, Signed, Immediate, Void, Poly, Constant, Pointer; // ScalarForMangling and NoManglingQ are really not suited to live here as // they are not related to the type. But they live in the TypeSpec (not the // prototype), so this is really the only place to store them. bool ScalarForMangling, NoManglingQ; unsigned Bitwidth, ElementBitwidth, NumVectors; public: Type() : Float(false), Signed(false), Immediate(false), Void(true), Poly(false), Constant(false), Pointer(false), ScalarForMangling(false), NoManglingQ(false), Bitwidth(0), ElementBitwidth(0), NumVectors(0) {} Type(TypeSpec TS, char CharMod) : TS(TS), Float(false), Signed(false), Immediate(false), Void(false), Poly(false), Constant(false), Pointer(false), ScalarForMangling(false), NoManglingQ(false), Bitwidth(0), ElementBitwidth(0), NumVectors(0) { applyModifier(CharMod); } /// Returns a type representing "void". static Type getVoid() { return Type(); } bool operator==(const Type &Other) const { return str() == Other.str(); } bool operator!=(const Type &Other) const { return !operator==(Other); } // // Query functions // bool isScalarForMangling() const { return ScalarForMangling; } bool noManglingQ() const { return NoManglingQ; } bool isPointer() const { return Pointer; } bool isFloating() const { return Float; } bool isInteger() const { return !Float && !Poly; } bool isSigned() const { return Signed; } bool isImmediate() const { return Immediate; } bool isScalar() const { return NumVectors == 0; } bool isVector() const { return NumVectors > 0; } bool isFloat() const { return Float && ElementBitwidth == 32; } bool isDouble() const { return Float && ElementBitwidth == 64; } bool isHalf() const { return Float && ElementBitwidth == 16; } bool isPoly() const { return Poly; } bool isChar() const { return ElementBitwidth == 8; } bool isShort() const { return !Float && ElementBitwidth == 16; } bool isInt() const { return !Float && ElementBitwidth == 32; } bool isLong() const { return !Float && ElementBitwidth == 64; } bool isVoid() const { return Void; } unsigned getNumElements() const { return Bitwidth / ElementBitwidth; } unsigned getSizeInBits() const { return Bitwidth; } unsigned getElementSizeInBits() const { return ElementBitwidth; } unsigned getNumVectors() const { return NumVectors; } // // Mutator functions // void makeUnsigned() { Signed = false; } void makeSigned() { Signed = true; } void makeInteger(unsigned ElemWidth, bool Sign) { Float = false; Poly = false; Signed = Sign; Immediate = false; ElementBitwidth = ElemWidth; } void makeImmediate(unsigned ElemWidth) { Float = false; Poly = false; Signed = true; Immediate = true; ElementBitwidth = ElemWidth; } void makeScalar() { Bitwidth = ElementBitwidth; NumVectors = 0; } void makeOneVector() { assert(isVector()); NumVectors = 1; } void doubleLanes() { assert_with_loc(Bitwidth != 128, "Can't get bigger than 128!"); Bitwidth = 128; } void halveLanes() { assert_with_loc(Bitwidth != 64, "Can't get smaller than 64!"); Bitwidth = 64; } /// Return the C string representation of a type, which is the typename /// defined in stdint.h or arm_neon.h. std::string str() const; /// Return the string representation of a type, which is an encoded /// string for passing to the BUILTIN() macro in Builtins.def. std::string builtin_str() const; /// Return the value in NeonTypeFlags for this type. unsigned getNeonEnum() const; /// Parse a type from a stdint.h or arm_neon.h typedef name, /// for example uint32x2_t or int64_t. static Type fromTypedefName(StringRef Name); private: /// Creates the type based on the typespec string in TS. /// Sets "Quad" to true if the "Q" or "H" modifiers were /// seen. This is needed by applyModifier as some modifiers /// only take effect if the type size was changed by "Q" or "H". void applyTypespec(bool &Quad); /// Applies a prototype modifier to the type. void applyModifier(char Mod); }; //===----------------------------------------------------------------------===// // Variable //===----------------------------------------------------------------------===// /// A variable is a simple class that just has a type and a name. class Variable { Type T; std::string N; public: Variable() : T(Type::getVoid()), N("") {} Variable(Type T, std::string N) : T(T), N(N) {} Type getType() const { return T; } std::string getName() const { return "__" + N; } }; //===----------------------------------------------------------------------===// // Intrinsic //===----------------------------------------------------------------------===// /// The main grunt class. This represents an instantiation of an intrinsic with /// a particular typespec and prototype. class Intrinsic { friend class DagEmitter; /// The Record this intrinsic was created from. Record *R; /// The unmangled name and prototype. std::string Name, Proto; /// The input and output typespecs. InTS == OutTS except when /// CartesianProductOfTypes is 1 - this is the case for vreinterpret. TypeSpec OutTS, InTS; /// The base class kind. Most intrinsics use ClassS, which has full type /// info for integers (s32/u32). Some use ClassI, which doesn't care about /// signedness (i32), while some (ClassB) have no type at all, only a width /// (32). ClassKind CK; /// The list of DAGs for the body. May be empty, in which case we should /// emit a builtin call. ListInit *Body; /// The architectural #ifdef guard. std::string Guard; /// Set if the Unvailable bit is 1. This means we don't generate a body, /// just an "unavailable" attribute on a declaration. bool IsUnavailable; /// Is this intrinsic safe for big-endian? or does it need its arguments /// reversing? bool BigEndianSafe; /// The types of return value [0] and parameters [1..]. std::vector<Type> Types; /// The local variables defined. std::map<std::string, Variable> Variables; /// NeededEarly - set if any other intrinsic depends on this intrinsic. bool NeededEarly; /// UseMacro - set if we should implement using a macro or unset for a /// function. bool UseMacro; /// The set of intrinsics that this intrinsic uses/requires. std::set<Intrinsic *> Dependencies; /// The "base type", which is Type('d', OutTS). InBaseType is only /// different if CartesianProductOfTypes = 1 (for vreinterpret). Type BaseType, InBaseType; /// The return variable. Variable RetVar; /// A postfix to apply to every variable. Defaults to "". std::string VariablePostfix; NeonEmitter &Emitter; std::stringstream OS; public: Intrinsic(Record *R, StringRef Name, StringRef Proto, TypeSpec OutTS, TypeSpec InTS, ClassKind CK, ListInit *Body, NeonEmitter &Emitter, StringRef Guard, bool IsUnavailable, bool BigEndianSafe) : R(R), Name(Name.str()), Proto(Proto.str()), OutTS(OutTS), InTS(InTS), CK(CK), Body(Body), Guard(Guard.str()), IsUnavailable(IsUnavailable), BigEndianSafe(BigEndianSafe), NeededEarly(false), UseMacro(false), BaseType(OutTS, 'd'), InBaseType(InTS, 'd'), Emitter(Emitter) { // If this builtin takes an immediate argument, we need to #define it rather // than use a standard declaration, so that SemaChecking can range check // the immediate passed by the user. if (Proto.find('i') != std::string::npos) UseMacro = true; // Pointer arguments need to use macros to avoid hiding aligned attributes // from the pointer type. if (Proto.find('p') != std::string::npos || Proto.find('c') != std::string::npos) UseMacro = true; // It is not permitted to pass or return an __fp16 by value, so intrinsics // taking a scalar float16_t must be implemented as macros. if (OutTS.find('h') != std::string::npos && Proto.find('s') != std::string::npos) UseMacro = true; // Modify the TypeSpec per-argument to get a concrete Type, and create // known variables for each. // Types[0] is the return value. Types.emplace_back(OutTS, Proto[0]); for (unsigned I = 1; I < Proto.size(); ++I) Types.emplace_back(InTS, Proto[I]); } /// Get the Record that this intrinsic is based off. Record *getRecord() const { return R; } /// Get the set of Intrinsics that this intrinsic calls. /// this is the set of immediate dependencies, NOT the /// transitive closure. const std::set<Intrinsic *> &getDependencies() const { return Dependencies; } /// Get the architectural guard string (#ifdef). std::string getGuard() const { return Guard; } /// Get the non-mangled name. std::string getName() const { return Name; } /// Return true if the intrinsic takes an immediate operand. bool hasImmediate() const { return Proto.find('i') != std::string::npos; } /// Return the parameter index of the immediate operand. unsigned getImmediateIdx() const { assert(hasImmediate()); unsigned Idx = Proto.find('i'); assert(Idx > 0 && "Can't return an immediate!"); return Idx - 1; } /// Return true if the intrinsic takes an splat operand. bool hasSplat() const { return Proto.find('a') != std::string::npos; } /// Return the parameter index of the splat operand. unsigned getSplatIdx() const { assert(hasSplat()); unsigned Idx = Proto.find('a'); assert(Idx > 0 && "Can't return a splat!"); return Idx - 1; } unsigned getNumParams() const { return Proto.size() - 1; } Type getReturnType() const { return Types[0]; } Type getParamType(unsigned I) const { return Types[I + 1]; } Type getBaseType() const { return BaseType; } /// Return the raw prototype string. std::string getProto() const { return Proto; } /// Return true if the prototype has a scalar argument. /// This does not return true for the "splat" code ('a'). bool protoHasScalar() const; /// Return the index that parameter PIndex will sit at /// in a generated function call. This is often just PIndex, /// but may not be as things such as multiple-vector operands /// and sret parameters need to be taken into accont. unsigned getGeneratedParamIdx(unsigned PIndex) { unsigned Idx = 0; if (getReturnType().getNumVectors() > 1) // Multiple vectors are passed as sret. ++Idx; for (unsigned I = 0; I < PIndex; ++I) Idx += std::max(1U, getParamType(I).getNumVectors()); return Idx; } bool hasBody() const { return Body && Body->getValues().size() > 0; } void setNeededEarly() { NeededEarly = true; } bool operator<(const Intrinsic &Other) const { // Sort lexicographically on a two-tuple (Guard, Name) if (Guard != Other.Guard) return Guard < Other.Guard; return Name < Other.Name; } ClassKind getClassKind(bool UseClassBIfScalar = false) { if (UseClassBIfScalar && !protoHasScalar()) return ClassB; return CK; } /// Return the name, mangled with type information. /// If ForceClassS is true, use ClassS (u32/s32) instead /// of the intrinsic's own type class. std::string getMangledName(bool ForceClassS = false) const; /// Return the type code for a builtin function call. std::string getInstTypeCode(Type T, ClassKind CK) const; /// Return the type string for a BUILTIN() macro in Builtins.def. std::string getBuiltinTypeStr(); /// Generate the intrinsic, returning code. std::string generate(); /// Perform type checking and populate the dependency graph, but /// don't generate code yet. void indexBody(); private: std::string mangleName(std::string Name, ClassKind CK) const; void initVariables(); std::string replaceParamsIn(std::string S); void emitBodyAsBuiltinCall(); void generateImpl(bool ReverseArguments, StringRef NamePrefix, StringRef CallPrefix); void emitReturn(); void emitBody(StringRef CallPrefix); void emitShadowedArgs(); void emitArgumentReversal(); void emitReturnReversal(); void emitReverseVariable(Variable &Dest, Variable &Src); void emitNewLine(); void emitClosingBrace(); void emitOpeningBrace(); void emitPrototype(StringRef NamePrefix); class DagEmitter { Intrinsic &Intr; StringRef CallPrefix; public: DagEmitter(Intrinsic &Intr, StringRef CallPrefix) : Intr(Intr), CallPrefix(CallPrefix) { } std::pair<Type, std::string> emitDagArg(Init *Arg, std::string ArgName); std::pair<Type, std::string> emitDagSaveTemp(DagInit *DI); std::pair<Type, std::string> emitDagSplat(DagInit *DI); std::pair<Type, std::string> emitDagDup(DagInit *DI); std::pair<Type, std::string> emitDagShuffle(DagInit *DI); std::pair<Type, std::string> emitDagCast(DagInit *DI, bool IsBitCast); std::pair<Type, std::string> emitDagCall(DagInit *DI); std::pair<Type, std::string> emitDagNameReplace(DagInit *DI); std::pair<Type, std::string> emitDagLiteral(DagInit *DI); std::pair<Type, std::string> emitDagOp(DagInit *DI); std::pair<Type, std::string> emitDag(DagInit *DI); }; }; //===----------------------------------------------------------------------===// // NeonEmitter //===----------------------------------------------------------------------===// class NeonEmitter { RecordKeeper &Records; DenseMap<Record *, ClassKind> ClassMap; std::map<std::string, std::deque<Intrinsic>> IntrinsicMap; unsigned UniqueNumber; void createIntrinsic(Record *R, SmallVectorImpl<Intrinsic *> &Out); void genBuiltinsDef(raw_ostream &OS, SmallVectorImpl<Intrinsic *> &Defs); void genOverloadTypeCheckCode(raw_ostream &OS, SmallVectorImpl<Intrinsic *> &Defs); void genIntrinsicRangeCheckCode(raw_ostream &OS, SmallVectorImpl<Intrinsic *> &Defs); public: /// Called by Intrinsic - this attempts to get an intrinsic that takes /// the given types as arguments. Intrinsic &getIntrinsic(StringRef Name, ArrayRef<Type> Types); /// Called by Intrinsic - returns a globally-unique number. unsigned getUniqueNumber() { return UniqueNumber++; } NeonEmitter(RecordKeeper &R) : Records(R), UniqueNumber(0) { Record *SI = R.getClass("SInst"); Record *II = R.getClass("IInst"); Record *WI = R.getClass("WInst"); Record *SOpI = R.getClass("SOpInst"); Record *IOpI = R.getClass("IOpInst"); Record *WOpI = R.getClass("WOpInst"); Record *LOpI = R.getClass("LOpInst"); Record *NoTestOpI = R.getClass("NoTestOpInst"); ClassMap[SI] = ClassS; ClassMap[II] = ClassI; ClassMap[WI] = ClassW; ClassMap[SOpI] = ClassS; ClassMap[IOpI] = ClassI; ClassMap[WOpI] = ClassW; ClassMap[LOpI] = ClassL; ClassMap[NoTestOpI] = ClassNoTest; } // run - Emit arm_neon.h.inc void run(raw_ostream &o); // runHeader - Emit all the __builtin prototypes used in arm_neon.h void runHeader(raw_ostream &o); // runTests - Emit tests for all the Neon intrinsics. void runTests(raw_ostream &o); }; } // end anonymous namespace //===----------------------------------------------------------------------===// // Type implementation //===----------------------------------------------------------------------===// std::string Type::str() const { if (Void) return "void"; std::string S; if (!Signed && isInteger()) S += "u"; if (Poly) S += "poly"; else if (Float) S += "float"; else S += "int"; S += utostr(ElementBitwidth); if (isVector()) S += "x" + utostr(getNumElements()); if (NumVectors > 1) S += "x" + utostr(NumVectors); S += "_t"; if (Constant) S += " const"; if (Pointer) S += " *"; return S; } std::string Type::builtin_str() const { std::string S; if (isVoid()) return "v"; if (Pointer) // All pointers are void pointers. S += "v"; else if (isInteger()) switch (ElementBitwidth) { case 8: S += "c"; break; case 16: S += "s"; break; case 32: S += "i"; break; case 64: S += "Wi"; break; case 128: S += "LLLi"; break; default: llvm_unreachable("Unhandled case!"); } else switch (ElementBitwidth) { case 16: S += "h"; break; case 32: S += "f"; break; case 64: S += "d"; break; default: llvm_unreachable("Unhandled case!"); } if (isChar() && !Pointer) // Make chars explicitly signed. S = "S" + S; else if (isInteger() && !Pointer && !Signed) S = "U" + S; // Constant indices are "int", but have the "constant expression" modifier. if (isImmediate()) { assert(isInteger() && isSigned()); S = "I" + S; } if (isScalar()) { if (Constant) S += "C"; if (Pointer) S += "*"; return S; } std::string Ret; for (unsigned I = 0; I < NumVectors; ++I) Ret += "V" + utostr(getNumElements()) + S; return Ret; } unsigned Type::getNeonEnum() const { unsigned Addend; switch (ElementBitwidth) { case 8: Addend = 0; break; case 16: Addend = 1; break; case 32: Addend = 2; break; case 64: Addend = 3; break; case 128: Addend = 4; break; default: llvm_unreachable("Unhandled element bitwidth!"); } unsigned Base = (unsigned)NeonTypeFlags::Int8 + Addend; if (Poly) { // Adjustment needed because Poly32 doesn't exist. if (Addend >= 2) --Addend; Base = (unsigned)NeonTypeFlags::Poly8 + Addend; } if (Float) { assert(Addend != 0 && "Float8 doesn't exist!"); Base = (unsigned)NeonTypeFlags::Float16 + (Addend - 1); } if (Bitwidth == 128) Base |= (unsigned)NeonTypeFlags::QuadFlag; if (isInteger() && !Signed) Base |= (unsigned)NeonTypeFlags::UnsignedFlag; return Base; } Type Type::fromTypedefName(StringRef Name) { Type T; T.Void = false; T.Float = false; T.Poly = false; if (Name.front() == 'u') { T.Signed = false; Name = Name.drop_front(); } else { T.Signed = true; } if (Name.startswith("float")) { T.Float = true; Name = Name.drop_front(5); } else if (Name.startswith("poly")) { T.Poly = true; Name = Name.drop_front(4); } else { assert(Name.startswith("int")); Name = Name.drop_front(3); } unsigned I = 0; for (I = 0; I < Name.size(); ++I) { if (!isdigit(Name[I])) break; } Name.substr(0, I).getAsInteger(10, T.ElementBitwidth); Name = Name.drop_front(I); T.Bitwidth = T.ElementBitwidth; T.NumVectors = 1; if (Name.front() == 'x') { Name = Name.drop_front(); unsigned I = 0; for (I = 0; I < Name.size(); ++I) { if (!isdigit(Name[I])) break; } unsigned NumLanes; Name.substr(0, I).getAsInteger(10, NumLanes); Name = Name.drop_front(I); T.Bitwidth = T.ElementBitwidth * NumLanes; } else { // Was scalar. T.NumVectors = 0; } if (Name.front() == 'x') { Name = Name.drop_front(); unsigned I = 0; for (I = 0; I < Name.size(); ++I) { if (!isdigit(Name[I])) break; } Name.substr(0, I).getAsInteger(10, T.NumVectors); Name = Name.drop_front(I); } assert(Name.startswith("_t") && "Malformed typedef!"); return T; } void Type::applyTypespec(bool &Quad) { std::string S = TS; ScalarForMangling = false; Void = false; Poly = Float = false; ElementBitwidth = ~0U; Signed = true; NumVectors = 1; for (char I : S) { switch (I) { case 'S': ScalarForMangling = true; break; case 'H': NoManglingQ = true; Quad = true; break; case 'Q': Quad = true; break; case 'P': Poly = true; break; case 'U': Signed = false; break; case 'c': ElementBitwidth = 8; break; case 'h': Float = true; // Fall through case 's': ElementBitwidth = 16; break; case 'f': Float = true; // Fall through case 'i': ElementBitwidth = 32; break; case 'd': Float = true; // Fall through case 'l': ElementBitwidth = 64; break; case 'k': ElementBitwidth = 128; // Poly doesn't have a 128x1 type. if (Poly) NumVectors = 0; break; default: llvm_unreachable("Unhandled type code!"); } } assert(ElementBitwidth != ~0U && "Bad element bitwidth!"); Bitwidth = Quad ? 128 : 64; } void Type::applyModifier(char Mod) { bool AppliedQuad = false; applyTypespec(AppliedQuad); switch (Mod) { case 'v': Void = true; break; case 't': if (Poly) { Poly = false; Signed = false; } break; case 'b': Signed = false; Float = false; Poly = false; NumVectors = 0; Bitwidth = ElementBitwidth; break; case '$': Signed = true; Float = false; Poly = false; NumVectors = 0; Bitwidth = ElementBitwidth; break; case 'u': Signed = false; Poly = false; Float = false; break; case 'x': Signed = true; assert(!Poly && "'u' can't be used with poly types!"); Float = false; break; case 'o': Bitwidth = ElementBitwidth = 64; NumVectors = 0; Float = true; break; case 'y': Bitwidth = ElementBitwidth = 32; NumVectors = 0; Float = true; break; case 'f': Float = true; ElementBitwidth = 32; break; case 'F': Float = true; ElementBitwidth = 64; break; case 'g': if (AppliedQuad) Bitwidth /= 2; break; case 'j': if (!AppliedQuad) Bitwidth *= 2; break; case 'w': ElementBitwidth *= 2; Bitwidth *= 2; break; case 'n': ElementBitwidth *= 2; break; case 'i': Float = false; Poly = false; ElementBitwidth = Bitwidth = 32; NumVectors = 0; Signed = true; Immediate = true; break; case 'l': Float = false; Poly = false; ElementBitwidth = Bitwidth = 64; NumVectors = 0; Signed = false; Immediate = true; break; case 'z': ElementBitwidth /= 2; Bitwidth = ElementBitwidth; NumVectors = 0; break; case 'r': ElementBitwidth *= 2; Bitwidth = ElementBitwidth; NumVectors = 0; break; case 's': case 'a': Bitwidth = ElementBitwidth; NumVectors = 0; break; case 'k': Bitwidth *= 2; break; case 'c': Constant = true; // Fall through case 'p': Pointer = true; Bitwidth = ElementBitwidth; NumVectors = 0; break; case 'h': ElementBitwidth /= 2; break; case 'q': ElementBitwidth /= 2; Bitwidth *= 2; break; case 'e': ElementBitwidth /= 2; Signed = false; break; case 'm': ElementBitwidth /= 2; Bitwidth /= 2; break; case 'd': break; case '2': NumVectors = 2; break; case '3': NumVectors = 3; break; case '4': NumVectors = 4; break; case 'B': NumVectors = 2; if (!AppliedQuad) Bitwidth *= 2; break; case 'C': NumVectors = 3; if (!AppliedQuad) Bitwidth *= 2; break; case 'D': NumVectors = 4; if (!AppliedQuad) Bitwidth *= 2; break; default: llvm_unreachable("Unhandled character!"); } } //===----------------------------------------------------------------------===// // Intrinsic implementation //===----------------------------------------------------------------------===// std::string Intrinsic::getInstTypeCode(Type T, ClassKind CK) const { char typeCode = '\0'; bool printNumber = true; if (CK == ClassB) return ""; if (T.isPoly()) typeCode = 'p'; else if (T.isInteger()) typeCode = T.isSigned() ? 's' : 'u'; else typeCode = 'f'; if (CK == ClassI) { switch (typeCode) { default: break; case 's': case 'u': case 'p': typeCode = 'i'; break; } } if (CK == ClassB) { typeCode = '\0'; } std::string S; if (typeCode != '\0') S.push_back(typeCode); if (printNumber) S += utostr(T.getElementSizeInBits()); return S; } static bool isFloatingPointProtoModifier(char Mod) { return Mod == 'F' || Mod == 'f'; } std::string Intrinsic::getBuiltinTypeStr() { ClassKind LocalCK = getClassKind(true); std::string S; Type RetT = getReturnType(); if ((LocalCK == ClassI || LocalCK == ClassW) && RetT.isScalar() && !RetT.isFloating()) RetT.makeInteger(RetT.getElementSizeInBits(), false); // Since the return value must be one type, return a vector type of the // appropriate width which we will bitcast. An exception is made for // returning structs of 2, 3, or 4 vectors which are returned in a sret-like // fashion, storing them to a pointer arg. if (RetT.getNumVectors() > 1) { S += "vv*"; // void result with void* first argument } else { if (RetT.isPoly()) RetT.makeInteger(RetT.getElementSizeInBits(), false); if (!RetT.isScalar() && !RetT.isSigned()) RetT.makeSigned(); bool ForcedVectorFloatingType = isFloatingPointProtoModifier(Proto[0]); if (LocalCK == ClassB && !RetT.isScalar() && !ForcedVectorFloatingType) // Cast to vector of 8-bit elements. RetT.makeInteger(8, true); S += RetT.builtin_str(); } for (unsigned I = 0; I < getNumParams(); ++I) { Type T = getParamType(I); if (T.isPoly()) T.makeInteger(T.getElementSizeInBits(), false); bool ForcedFloatingType = isFloatingPointProtoModifier(Proto[I + 1]); if (LocalCK == ClassB && !T.isScalar() && !ForcedFloatingType) T.makeInteger(8, true); // Halves always get converted to 8-bit elements. if (T.isHalf() && T.isVector() && !T.isScalarForMangling()) T.makeInteger(8, true); if (LocalCK == ClassI) T.makeSigned(); if (hasImmediate() && getImmediateIdx() == I) T.makeImmediate(32); S += T.builtin_str(); } // Extra constant integer to hold type class enum for this function, e.g. s8 if (LocalCK == ClassB) S += "i"; return S; } std::string Intrinsic::getMangledName(bool ForceClassS) const { // Check if the prototype has a scalar operand with the type of the vector // elements. If not, bitcasting the args will take care of arg checking. // The actual signedness etc. will be taken care of with special enums. ClassKind LocalCK = CK; if (!protoHasScalar()) LocalCK = ClassB; return mangleName(Name, ForceClassS ? ClassS : LocalCK); } std::string Intrinsic::mangleName(std::string Name, ClassKind LocalCK) const { std::string typeCode = getInstTypeCode(BaseType, LocalCK); std::string S = Name; if (Name == "vcvt_f16_f32" || Name == "vcvt_f32_f16" || Name == "vcvt_f32_f64" || Name == "vcvt_f64_f32") return Name; if (typeCode.size() > 0) { // If the name ends with _xN (N = 2,3,4), insert the typeCode before _xN. if (Name.size() >= 3 && isdigit(Name.back()) && Name[Name.length() - 2] == 'x' && Name[Name.length() - 3] == '_') S.insert(S.length() - 3, "_" + typeCode); else S += "_" + typeCode; } if (BaseType != InBaseType) { // A reinterpret - out the input base type at the end. S += "_" + getInstTypeCode(InBaseType, LocalCK); } if (LocalCK == ClassB) S += "_v"; // Insert a 'q' before the first '_' character so that it ends up before // _lane or _n on vector-scalar operations. if (BaseType.getSizeInBits() == 128 && !BaseType.noManglingQ()) { size_t Pos = S.find('_'); S.insert(Pos, "q"); } char Suffix = '\0'; if (BaseType.isScalarForMangling()) { switch (BaseType.getElementSizeInBits()) { case 8: Suffix = 'b'; break; case 16: Suffix = 'h'; break; case 32: Suffix = 's'; break; case 64: Suffix = 'd'; break; default: llvm_unreachable("Bad suffix!"); } } if (Suffix != '\0') { size_t Pos = S.find('_'); S.insert(Pos, &Suffix, 1); } return S; } std::string Intrinsic::replaceParamsIn(std::string S) { while (S.find('$') != std::string::npos) { size_t Pos = S.find('$'); size_t End = Pos + 1; while (isalpha(S[End])) ++End; std::string VarName = S.substr(Pos + 1, End - Pos - 1); assert_with_loc(Variables.find(VarName) != Variables.end(), "Variable not defined!"); S.replace(Pos, End - Pos, Variables.find(VarName)->second.getName()); } return S; } void Intrinsic::initVariables() { Variables.clear(); // Modify the TypeSpec per-argument to get a concrete Type, and create // known variables for each. for (unsigned I = 1; I < Proto.size(); ++I) { char NameC = '0' + (I - 1); std::string Name = "p"; Name.push_back(NameC); Variables[Name] = Variable(Types[I], Name + VariablePostfix); } RetVar = Variable(Types[0], "ret" + VariablePostfix); } void Intrinsic::emitPrototype(StringRef NamePrefix) { if (UseMacro) OS << "#define "; else OS << "__ai " << Types[0].str() << " "; OS << NamePrefix.str() << mangleName(Name, ClassS) << "("; for (unsigned I = 0; I < getNumParams(); ++I) { if (I != 0) OS << ", "; char NameC = '0' + I; std::string Name = "p"; Name.push_back(NameC); assert(Variables.find(Name) != Variables.end()); Variable &V = Variables[Name]; if (!UseMacro) OS << V.getType().str() << " "; OS << V.getName(); } OS << ")"; } void Intrinsic::emitOpeningBrace() { if (UseMacro) OS << " __extension__ ({"; else OS << " {"; emitNewLine(); } void Intrinsic::emitClosingBrace() { if (UseMacro) OS << "})"; else OS << "}"; } void Intrinsic::emitNewLine() { if (UseMacro) OS << " \\\n"; else OS << "\n"; } void Intrinsic::emitReverseVariable(Variable &Dest, Variable &Src) { if (Dest.getType().getNumVectors() > 1) { emitNewLine(); for (unsigned K = 0; K < Dest.getType().getNumVectors(); ++K) { OS << " " << Dest.getName() << ".val[" << utostr(K) << "] = " << "__builtin_shufflevector(" << Src.getName() << ".val[" << utostr(K) << "], " << Src.getName() << ".val[" << utostr(K) << "]"; for (int J = Dest.getType().getNumElements() - 1; J >= 0; --J) OS << ", " << utostr(J); OS << ");"; emitNewLine(); } } else { OS << " " << Dest.getName() << " = __builtin_shufflevector(" << Src.getName() << ", " << Src.getName(); for (int J = Dest.getType().getNumElements() - 1; J >= 0; --J) OS << ", " << utostr(J); OS << ");"; emitNewLine(); } } void Intrinsic::emitArgumentReversal() { if (BigEndianSafe) return; // Reverse all vector arguments. for (unsigned I = 0; I < getNumParams(); ++I) { std::string Name = "p" + utostr(I); std::string NewName = "rev" + utostr(I); Variable &V = Variables[Name]; Variable NewV(V.getType(), NewName + VariablePostfix); if (!NewV.getType().isVector() || NewV.getType().getNumElements() == 1) continue; OS << " " << NewV.getType().str() << " " << NewV.getName() << ";"; emitReverseVariable(NewV, V); V = NewV; } } void Intrinsic::emitReturnReversal() { if (BigEndianSafe) return; if (!getReturnType().isVector() || getReturnType().isVoid() || getReturnType().getNumElements() == 1) return; emitReverseVariable(RetVar, RetVar); } void Intrinsic::emitShadowedArgs() { // Macro arguments are not type-checked like inline function arguments, // so assign them to local temporaries to get the right type checking. if (!UseMacro) return; for (unsigned I = 0; I < getNumParams(); ++I) { // Do not create a temporary for an immediate argument. // That would defeat the whole point of using a macro! if (hasImmediate() && Proto[I+1] == 'i') continue; // Do not create a temporary for pointer arguments. The input // pointer may have an alignment hint. if (getParamType(I).isPointer()) continue; std::string Name = "p" + utostr(I); assert(Variables.find(Name) != Variables.end()); Variable &V = Variables[Name]; std::string NewName = "s" + utostr(I); Variable V2(V.getType(), NewName + VariablePostfix); OS << " " << V2.getType().str() << " " << V2.getName() << " = " << V.getName() << ";"; emitNewLine(); V = V2; } } // We don't check 'a' in this function, because for builtin function the // argument matching to 'a' uses a vector type splatted from a scalar type. bool Intrinsic::protoHasScalar() const { return (Proto.find('s') != std::string::npos || Proto.find('z') != std::string::npos || Proto.find('r') != std::string::npos || Proto.find('b') != std::string::npos || Proto.find('$') != std::string::npos || Proto.find('y') != std::string::npos || Proto.find('o') != std::string::npos); } void Intrinsic::emitBodyAsBuiltinCall() { std::string S; // If this builtin returns a struct 2, 3, or 4 vectors, pass it as an implicit // sret-like argument. bool SRet = getReturnType().getNumVectors() >= 2; StringRef N = Name; if (hasSplat()) { // Call the non-splat builtin: chop off the "_n" suffix from the name. assert(N.endswith("_n")); N = N.drop_back(2); } ClassKind LocalCK = CK; if (!protoHasScalar()) LocalCK = ClassB; if (!getReturnType().isVoid() && !SRet) S += "(" + RetVar.getType().str() + ") "; S += "__builtin_neon_" + mangleName(N, LocalCK) + "("; if (SRet) S += "&" + RetVar.getName() + ", "; for (unsigned I = 0; I < getNumParams(); ++I) { Variable &V = Variables["p" + utostr(I)]; Type T = V.getType(); // Handle multiple-vector values specially, emitting each subvector as an // argument to the builtin. if (T.getNumVectors() > 1) { // Check if an explicit cast is needed. std::string Cast; if (T.isChar() || T.isPoly() || !T.isSigned()) { Type T2 = T; T2.makeOneVector(); T2.makeInteger(8, /*Signed=*/true); Cast = "(" + T2.str() + ")"; } for (unsigned J = 0; J < T.getNumVectors(); ++J) S += Cast + V.getName() + ".val[" + utostr(J) + "], "; continue; } std::string Arg; Type CastToType = T; if (hasSplat() && I == getSplatIdx()) { Arg = "(" + BaseType.str() + ") {"; for (unsigned J = 0; J < BaseType.getNumElements(); ++J) { if (J != 0) Arg += ", "; Arg += V.getName(); } Arg += "}"; CastToType = BaseType; } else { Arg = V.getName(); } // Check if an explicit cast is needed. if (CastToType.isVector()) { CastToType.makeInteger(8, true); Arg = "(" + CastToType.str() + ")" + Arg; } S += Arg + ", "; } // Extra constant integer to hold type class enum for this function, e.g. s8 if (getClassKind(true) == ClassB) { Type ThisTy = getReturnType(); if (Proto[0] == 'v' || isFloatingPointProtoModifier(Proto[0])) ThisTy = getParamType(0); if (ThisTy.isPointer()) ThisTy = getParamType(1); S += utostr(ThisTy.getNeonEnum()); } else { // Remove extraneous ", ". S.pop_back(); S.pop_back(); } S += ");"; std::string RetExpr; if (!SRet && !RetVar.getType().isVoid()) RetExpr = RetVar.getName() + " = "; OS << " " << RetExpr << S; emitNewLine(); } void Intrinsic::emitBody(StringRef CallPrefix) { std::vector<std::string> Lines; assert(RetVar.getType() == Types[0]); // Create a return variable, if we're not void. if (!RetVar.getType().isVoid()) { OS << " " << RetVar.getType().str() << " " << RetVar.getName() << ";"; emitNewLine(); } if (!Body || Body->getValues().size() == 0) { // Nothing specific to output - must output a builtin. emitBodyAsBuiltinCall(); return; } // We have a list of "things to output". The last should be returned. for (auto *I : Body->getValues()) { if (StringInit *SI = dyn_cast<StringInit>(I)) { Lines.push_back(replaceParamsIn(SI->getAsString())); } else if (DagInit *DI = dyn_cast<DagInit>(I)) { DagEmitter DE(*this, CallPrefix); Lines.push_back(DE.emitDag(DI).second + ";"); } } assert(!Lines.empty() && "Empty def?"); if (!RetVar.getType().isVoid()) Lines.back().insert(0, RetVar.getName() + " = "); for (auto &L : Lines) { OS << " " << L; emitNewLine(); } } void Intrinsic::emitReturn() { if (RetVar.getType().isVoid()) return; if (UseMacro) OS << " " << RetVar.getName() << ";"; else OS << " return " << RetVar.getName() << ";"; emitNewLine(); } std::pair<Type, std::string> Intrinsic::DagEmitter::emitDag(DagInit *DI) { // At this point we should only be seeing a def. DefInit *DefI = cast<DefInit>(DI->getOperator()); std::string Op = DefI->getAsString(); if (Op == "cast" || Op == "bitcast") return emitDagCast(DI, Op == "bitcast"); if (Op == "shuffle") return emitDagShuffle(DI); if (Op == "dup") return emitDagDup(DI); if (Op == "splat") return emitDagSplat(DI); if (Op == "save_temp") return emitDagSaveTemp(DI); if (Op == "op") return emitDagOp(DI); if (Op == "call") return emitDagCall(DI); if (Op == "name_replace") return emitDagNameReplace(DI); if (Op == "literal") return emitDagLiteral(DI); assert_with_loc(false, "Unknown operation!"); return std::make_pair(Type::getVoid(), ""); } std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagOp(DagInit *DI) { std::string Op = cast<StringInit>(DI->getArg(0))->getAsUnquotedString(); if (DI->getNumArgs() == 2) { // Unary op. std::pair<Type, std::string> R = emitDagArg(DI->getArg(1), DI->getArgName(1)); return std::make_pair(R.first, Op + R.second); } else { assert(DI->getNumArgs() == 3 && "Can only handle unary and binary ops!"); std::pair<Type, std::string> R1 = emitDagArg(DI->getArg(1), DI->getArgName(1)); std::pair<Type, std::string> R2 = emitDagArg(DI->getArg(2), DI->getArgName(2)); assert_with_loc(R1.first == R2.first, "Argument type mismatch!"); return std::make_pair(R1.first, R1.second + " " + Op + " " + R2.second); } } std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagCall(DagInit *DI) { std::vector<Type> Types; std::vector<std::string> Values; for (unsigned I = 0; I < DI->getNumArgs() - 1; ++I) { std::pair<Type, std::string> R = emitDagArg(DI->getArg(I + 1), DI->getArgName(I + 1)); Types.push_back(R.first); Values.push_back(R.second); } // Look up the called intrinsic. std::string N; if (StringInit *SI = dyn_cast<StringInit>(DI->getArg(0))) N = SI->getAsUnquotedString(); else N = emitDagArg(DI->getArg(0), "").second; Intrinsic &Callee = Intr.Emitter.getIntrinsic(N, Types); // Make sure the callee is known as an early def. Callee.setNeededEarly(); Intr.Dependencies.insert(&Callee); // Now create the call itself. std::string S = CallPrefix.str() + Callee.getMangledName(true) + "("; for (unsigned I = 0; I < DI->getNumArgs() - 1; ++I) { if (I != 0) S += ", "; S += Values[I]; } S += ")"; return std::make_pair(Callee.getReturnType(), S); } std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagCast(DagInit *DI, bool IsBitCast){ // (cast MOD* VAL) -> cast VAL to type given by MOD. std::pair<Type, std::string> R = emitDagArg( DI->getArg(DI->getNumArgs() - 1), DI->getArgName(DI->getNumArgs() - 1)); Type castToType = R.first; for (unsigned ArgIdx = 0; ArgIdx < DI->getNumArgs() - 1; ++ArgIdx) { // MOD can take several forms: // 1. $X - take the type of parameter / variable X. // 2. The value "R" - take the type of the return type. // 3. a type string // 4. The value "U" or "S" to switch the signedness. // 5. The value "H" or "D" to half or double the bitwidth. // 6. The value "8" to convert to 8-bit (signed) integer lanes. if (DI->getArgName(ArgIdx).size()) { assert_with_loc(Intr.Variables.find(DI->getArgName(ArgIdx)) != Intr.Variables.end(), "Variable not found"); castToType = Intr.Variables[DI->getArgName(ArgIdx)].getType(); } else { StringInit *SI = dyn_cast<StringInit>(DI->getArg(ArgIdx)); assert_with_loc(SI, "Expected string type or $Name for cast type"); if (SI->getAsUnquotedString() == "R") { castToType = Intr.getReturnType(); } else if (SI->getAsUnquotedString() == "U") { castToType.makeUnsigned(); } else if (SI->getAsUnquotedString() == "S") { castToType.makeSigned(); } else if (SI->getAsUnquotedString() == "H") { castToType.halveLanes(); } else if (SI->getAsUnquotedString() == "D") { castToType.doubleLanes(); } else if (SI->getAsUnquotedString() == "8") { castToType.makeInteger(8, true); } else { castToType = Type::fromTypedefName(SI->getAsUnquotedString()); assert_with_loc(!castToType.isVoid(), "Unknown typedef"); } } } std::string S; if (IsBitCast) { // Emit a reinterpret cast. The second operand must be an lvalue, so create // a temporary. std::string N = "reint"; unsigned I = 0; while (Intr.Variables.find(N) != Intr.Variables.end()) N = "reint" + utostr(++I); Intr.Variables[N] = Variable(R.first, N + Intr.VariablePostfix); Intr.OS << R.first.str() << " " << Intr.Variables[N].getName() << " = " << R.second << ";"; Intr.emitNewLine(); S = "*(" + castToType.str() + " *) &" + Intr.Variables[N].getName() + ""; } else { // Emit a normal (static) cast. S = "(" + castToType.str() + ")(" + R.second + ")"; } return std::make_pair(castToType, S); } std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagShuffle(DagInit *DI){ // See the documentation in arm_neon.td for a description of these operators. class LowHalf : public SetTheory::Operator { public: void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts, ArrayRef<SMLoc> Loc) override { SetTheory::RecSet Elts2; ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts2, Loc); Elts.insert(Elts2.begin(), Elts2.begin() + (Elts2.size() / 2)); } }; class HighHalf : public SetTheory::Operator { public: void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts, ArrayRef<SMLoc> Loc) override { SetTheory::RecSet Elts2; ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts2, Loc); Elts.insert(Elts2.begin() + (Elts2.size() / 2), Elts2.end()); } }; class Rev : public SetTheory::Operator { unsigned ElementSize; public: Rev(unsigned ElementSize) : ElementSize(ElementSize) {} void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts, ArrayRef<SMLoc> Loc) override { SetTheory::RecSet Elts2; ST.evaluate(Expr->arg_begin() + 1, Expr->arg_end(), Elts2, Loc); int64_t VectorSize = cast<IntInit>(Expr->getArg(0))->getValue(); VectorSize /= ElementSize; std::vector<Record *> Revved; for (unsigned VI = 0; VI < Elts2.size(); VI += VectorSize) { for (int LI = VectorSize - 1; LI >= 0; --LI) { Revved.push_back(Elts2[VI + LI]); } } Elts.insert(Revved.begin(), Revved.end()); } }; class MaskExpander : public SetTheory::Expander { unsigned N; public: MaskExpander(unsigned N) : N(N) {} void expand(SetTheory &ST, Record *R, SetTheory::RecSet &Elts) override { unsigned Addend = 0; if (R->getName() == "mask0") Addend = 0; else if (R->getName() == "mask1") Addend = N; else return; for (unsigned I = 0; I < N; ++I) Elts.insert(R->getRecords().getDef("sv" + utostr(I + Addend))); } }; // (shuffle arg1, arg2, sequence) std::pair<Type, std::string> Arg1 = emitDagArg(DI->getArg(0), DI->getArgName(0)); std::pair<Type, std::string> Arg2 = emitDagArg(DI->getArg(1), DI->getArgName(1)); assert_with_loc(Arg1.first == Arg2.first, "Different types in arguments to shuffle!"); SetTheory ST; SetTheory::RecSet Elts; ST.addOperator("lowhalf", llvm::make_unique<LowHalf>()); ST.addOperator("highhalf", llvm::make_unique<HighHalf>()); ST.addOperator("rev", llvm::make_unique<Rev>(Arg1.first.getElementSizeInBits())); ST.addExpander("MaskExpand", llvm::make_unique<MaskExpander>(Arg1.first.getNumElements())); ST.evaluate(DI->getArg(2), Elts, None); std::string S = "__builtin_shufflevector(" + Arg1.second + ", " + Arg2.second; for (auto &E : Elts) { StringRef Name = E->getName(); assert_with_loc(Name.startswith("sv"), "Incorrect element kind in shuffle mask!"); S += ", " + Name.drop_front(2).str(); } S += ")"; // Recalculate the return type - the shuffle may have halved or doubled it. Type T(Arg1.first); if (Elts.size() > T.getNumElements()) { assert_with_loc( Elts.size() == T.getNumElements() * 2, "Can only double or half the number of elements in a shuffle!"); T.doubleLanes(); } else if (Elts.size() < T.getNumElements()) { assert_with_loc( Elts.size() == T.getNumElements() / 2, "Can only double or half the number of elements in a shuffle!"); T.halveLanes(); } return std::make_pair(T, S); } std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagDup(DagInit *DI) { assert_with_loc(DI->getNumArgs() == 1, "dup() expects one argument"); std::pair<Type, std::string> A = emitDagArg(DI->getArg(0), DI->getArgName(0)); assert_with_loc(A.first.isScalar(), "dup() expects a scalar argument"); Type T = Intr.getBaseType(); assert_with_loc(T.isVector(), "dup() used but default type is scalar!"); std::string S = "(" + T.str() + ") {"; for (unsigned I = 0; I < T.getNumElements(); ++I) { if (I != 0) S += ", "; S += A.second; } S += "}"; return std::make_pair(T, S); } std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagSplat(DagInit *DI) { assert_with_loc(DI->getNumArgs() == 2, "splat() expects two arguments"); std::pair<Type, std::string> A = emitDagArg(DI->getArg(0), DI->getArgName(0)); std::pair<Type, std::string> B = emitDagArg(DI->getArg(1), DI->getArgName(1)); assert_with_loc(B.first.isScalar(), "splat() requires a scalar int as the second argument"); std::string S = "__builtin_shufflevector(" + A.second + ", " + A.second; for (unsigned I = 0; I < Intr.getBaseType().getNumElements(); ++I) { S += ", " + B.second; } S += ")"; return std::make_pair(Intr.getBaseType(), S); } std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagSaveTemp(DagInit *DI) { assert_with_loc(DI->getNumArgs() == 2, "save_temp() expects two arguments"); std::pair<Type, std::string> A = emitDagArg(DI->getArg(1), DI->getArgName(1)); assert_with_loc(!A.first.isVoid(), "Argument to save_temp() must have non-void type!"); std::string N = DI->getArgName(0); assert_with_loc(N.size(), "save_temp() expects a name as the first argument"); assert_with_loc(Intr.Variables.find(N) == Intr.Variables.end(), "Variable already defined!"); Intr.Variables[N] = Variable(A.first, N + Intr.VariablePostfix); std::string S = A.first.str() + " " + Intr.Variables[N].getName() + " = " + A.second; return std::make_pair(Type::getVoid(), S); } std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagNameReplace(DagInit *DI) { std::string S = Intr.Name; assert_with_loc(DI->getNumArgs() == 2, "name_replace requires 2 arguments!"); std::string ToReplace = cast<StringInit>(DI->getArg(0))->getAsUnquotedString(); std::string ReplaceWith = cast<StringInit>(DI->getArg(1))->getAsUnquotedString(); size_t Idx = S.find(ToReplace); assert_with_loc(Idx != std::string::npos, "name should contain '" + ToReplace + "'!"); S.replace(Idx, ToReplace.size(), ReplaceWith); return std::make_pair(Type::getVoid(), S); } std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagLiteral(DagInit *DI){ std::string Ty = cast<StringInit>(DI->getArg(0))->getAsUnquotedString(); std::string Value = cast<StringInit>(DI->getArg(1))->getAsUnquotedString(); return std::make_pair(Type::fromTypedefName(Ty), Value); } std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagArg(Init *Arg, std::string ArgName) { if (ArgName.size()) { assert_with_loc(!Arg->isComplete(), "Arguments must either be DAGs or names, not both!"); assert_with_loc(Intr.Variables.find(ArgName) != Intr.Variables.end(), "Variable not defined!"); Variable &V = Intr.Variables[ArgName]; return std::make_pair(V.getType(), V.getName()); } assert(Arg && "Neither ArgName nor Arg?!"); DagInit *DI = dyn_cast<DagInit>(Arg); assert_with_loc(DI, "Arguments must either be DAGs or names!"); return emitDag(DI); } std::string Intrinsic::generate() { // Little endian intrinsics are simple and don't require any argument // swapping. OS << "#ifdef __LITTLE_ENDIAN__\n"; generateImpl(false, "", ""); OS << "#else\n"; // Big endian intrinsics are more complex. The user intended these // intrinsics to operate on a vector "as-if" loaded by (V)LDR, // but we load as-if (V)LD1. So we should swap all arguments and // swap the return value too. // // If we call sub-intrinsics, we should call a version that does // not re-swap the arguments! generateImpl(true, "", "__noswap_"); // If we're needed early, create a non-swapping variant for // big-endian. if (NeededEarly) { generateImpl(false, "__noswap_", "__noswap_"); } OS << "#endif\n\n"; return OS.str(); } void Intrinsic::generateImpl(bool ReverseArguments, StringRef NamePrefix, StringRef CallPrefix) { CurrentRecord = R; // If we call a macro, our local variables may be corrupted due to // lack of proper lexical scoping. So, add a globally unique postfix // to every variable. // // indexBody() should have set up the Dependencies set by now. for (auto *I : Dependencies) if (I->UseMacro) { VariablePostfix = "_" + utostr(Emitter.getUniqueNumber()); break; } initVariables(); emitPrototype(NamePrefix); if (IsUnavailable) { OS << " __attribute__((unavailable));"; } else { emitOpeningBrace(); emitShadowedArgs(); if (ReverseArguments) emitArgumentReversal(); emitBody(CallPrefix); if (ReverseArguments) emitReturnReversal(); emitReturn(); emitClosingBrace(); } OS << "\n"; CurrentRecord = nullptr; } void Intrinsic::indexBody() { CurrentRecord = R; initVariables(); emitBody(""); OS.str(""); CurrentRecord = nullptr; } //===----------------------------------------------------------------------===// // NeonEmitter implementation //===----------------------------------------------------------------------===// Intrinsic &NeonEmitter::getIntrinsic(StringRef Name, ArrayRef<Type> Types) { // First, look up the name in the intrinsic map. assert_with_loc(IntrinsicMap.find(Name.str()) != IntrinsicMap.end(), ("Intrinsic '" + Name + "' not found!").str()); auto &V = IntrinsicMap.find(Name.str())->second; std::vector<Intrinsic *> GoodVec; // Create a string to print if we end up failing. std::string ErrMsg = "looking up intrinsic '" + Name.str() + "("; for (unsigned I = 0; I < Types.size(); ++I) { if (I != 0) ErrMsg += ", "; ErrMsg += Types[I].str(); } ErrMsg += ")'\n"; ErrMsg += "Available overloads:\n"; // Now, look through each intrinsic implementation and see if the types are // compatible. for (auto &I : V) { ErrMsg += " - " + I.getReturnType().str() + " " + I.getMangledName(); ErrMsg += "("; for (unsigned A = 0; A < I.getNumParams(); ++A) { if (A != 0) ErrMsg += ", "; ErrMsg += I.getParamType(A).str(); } ErrMsg += ")\n"; if (I.getNumParams() != Types.size()) continue; bool Good = true; for (unsigned Arg = 0; Arg < Types.size(); ++Arg) { if (I.getParamType(Arg) != Types[Arg]) { Good = false; break; } } if (Good) GoodVec.push_back(&I); } assert_with_loc(GoodVec.size() > 0, "No compatible intrinsic found - " + ErrMsg); assert_with_loc(GoodVec.size() == 1, "Multiple overloads found - " + ErrMsg); return *GoodVec.front(); } void NeonEmitter::createIntrinsic(Record *R, SmallVectorImpl<Intrinsic *> &Out) { std::string Name = R->getValueAsString("Name"); std::string Proto = R->getValueAsString("Prototype"); std::string Types = R->getValueAsString("Types"); Record *OperationRec = R->getValueAsDef("Operation"); bool CartesianProductOfTypes = R->getValueAsBit("CartesianProductOfTypes"); bool BigEndianSafe = R->getValueAsBit("BigEndianSafe"); std::string Guard = R->getValueAsString("ArchGuard"); bool IsUnavailable = OperationRec->getValueAsBit("Unavailable"); // Set the global current record. This allows assert_with_loc to produce // decent location information even when highly nested. CurrentRecord = R; ListInit *Body = OperationRec->getValueAsListInit("Ops"); std::vector<TypeSpec> TypeSpecs = TypeSpec::fromTypeSpecs(Types); ClassKind CK = ClassNone; if (R->getSuperClasses().size() >= 2) CK = ClassMap[R->getSuperClasses()[1]]; std::vector<std::pair<TypeSpec, TypeSpec>> NewTypeSpecs; for (auto TS : TypeSpecs) { if (CartesianProductOfTypes) { Type DefaultT(TS, 'd'); for (auto SrcTS : TypeSpecs) { Type DefaultSrcT(SrcTS, 'd'); if (TS == SrcTS || DefaultSrcT.getSizeInBits() != DefaultT.getSizeInBits()) continue; NewTypeSpecs.push_back(std::make_pair(TS, SrcTS)); } } else { NewTypeSpecs.push_back(std::make_pair(TS, TS)); } } std::sort(NewTypeSpecs.begin(), NewTypeSpecs.end()); NewTypeSpecs.erase(std::unique(NewTypeSpecs.begin(), NewTypeSpecs.end()), NewTypeSpecs.end()); auto &Entry = IntrinsicMap[Name]; for (auto &I : NewTypeSpecs) { Entry.emplace_back(R, Name, Proto, I.first, I.second, CK, Body, *this, Guard, IsUnavailable, BigEndianSafe); Out.push_back(&Entry.back()); } CurrentRecord = nullptr; } /// genBuiltinsDef: Generate the BuiltinsARM.def and BuiltinsAArch64.def /// declaration of builtins, checking for unique builtin declarations. void NeonEmitter::genBuiltinsDef(raw_ostream &OS, SmallVectorImpl<Intrinsic *> &Defs) { OS << "#ifdef GET_NEON_BUILTINS\n"; // We only want to emit a builtin once, and we want to emit them in // alphabetical order, so use a std::set. std::set<std::string> Builtins; for (auto *Def : Defs) { if (Def->hasBody()) continue; // Functions with 'a' (the splat code) in the type prototype should not get // their own builtin as they use the non-splat variant. if (Def->hasSplat()) continue; std::string S = "BUILTIN(__builtin_neon_" + Def->getMangledName() + ", \""; S += Def->getBuiltinTypeStr(); S += "\", \"n\")"; Builtins.insert(S); } for (auto &S : Builtins) OS << S << "\n"; OS << "#endif\n\n"; } /// Generate the ARM and AArch64 overloaded type checking code for /// SemaChecking.cpp, checking for unique builtin declarations. void NeonEmitter::genOverloadTypeCheckCode(raw_ostream &OS, SmallVectorImpl<Intrinsic *> &Defs) { OS << "#ifdef GET_NEON_OVERLOAD_CHECK\n"; // We record each overload check line before emitting because subsequent Inst // definitions may extend the number of permitted types (i.e. augment the // Mask). Use std::map to avoid sorting the table by hash number. struct OverloadInfo { uint64_t Mask; int PtrArgNum; bool HasConstPtr; OverloadInfo() : Mask(0ULL), PtrArgNum(0), HasConstPtr(false) {} }; std::map<std::string, OverloadInfo> OverloadMap; for (auto *Def : Defs) { // If the def has a body (that is, it has Operation DAGs), it won't call // __builtin_neon_* so we don't need to generate a definition for it. if (Def->hasBody()) continue; // Functions with 'a' (the splat code) in the type prototype should not get // their own builtin as they use the non-splat variant. if (Def->hasSplat()) continue; // Functions which have a scalar argument cannot be overloaded, no need to // check them if we are emitting the type checking code. if (Def->protoHasScalar()) continue; uint64_t Mask = 0ULL; Type Ty = Def->getReturnType(); if (Def->getProto()[0] == 'v' || isFloatingPointProtoModifier(Def->getProto()[0])) Ty = Def->getParamType(0); if (Ty.isPointer()) Ty = Def->getParamType(1); Mask |= 1ULL << Ty.getNeonEnum(); // Check if the function has a pointer or const pointer argument. std::string Proto = Def->getProto(); int PtrArgNum = -1; bool HasConstPtr = false; for (unsigned I = 0; I < Def->getNumParams(); ++I) { char ArgType = Proto[I + 1]; if (ArgType == 'c') { HasConstPtr = true; PtrArgNum = I; break; } if (ArgType == 'p') { PtrArgNum = I; break; } } // For sret builtins, adjust the pointer argument index. if (PtrArgNum >= 0 && Def->getReturnType().getNumVectors() > 1) PtrArgNum += 1; std::string Name = Def->getName(); // Omit type checking for the pointer arguments of vld1_lane, vld1_dup, // and vst1_lane intrinsics. Using a pointer to the vector element // type with one of those operations causes codegen to select an aligned // load/store instruction. If you want an unaligned operation, // the pointer argument needs to have less alignment than element type, // so just accept any pointer type. if (Name == "vld1_lane" || Name == "vld1_dup" || Name == "vst1_lane") { PtrArgNum = -1; HasConstPtr = false; } if (Mask) { std::string Name = Def->getMangledName(); OverloadMap.insert(std::make_pair(Name, OverloadInfo())); OverloadInfo &OI = OverloadMap[Name]; OI.Mask |= Mask; OI.PtrArgNum |= PtrArgNum; OI.HasConstPtr = HasConstPtr; } } for (auto &I : OverloadMap) { OverloadInfo &OI = I.second; OS << "case NEON::BI__builtin_neon_" << I.first << ": "; OS << "mask = 0x" << utohexstr(OI.Mask) << "ULL"; if (OI.PtrArgNum >= 0) OS << "; PtrArgNum = " << OI.PtrArgNum; if (OI.HasConstPtr) OS << "; HasConstPtr = true"; OS << "; break;\n"; } OS << "#endif\n\n"; } void NeonEmitter::genIntrinsicRangeCheckCode(raw_ostream &OS, SmallVectorImpl<Intrinsic *> &Defs) { OS << "#ifdef GET_NEON_IMMEDIATE_CHECK\n"; std::set<std::string> Emitted; for (auto *Def : Defs) { if (Def->hasBody()) continue; // Functions with 'a' (the splat code) in the type prototype should not get // their own builtin as they use the non-splat variant. if (Def->hasSplat()) continue; // Functions which do not have an immediate do not need to have range // checking code emitted. if (!Def->hasImmediate()) continue; if (Emitted.find(Def->getMangledName()) != Emitted.end()) continue; std::string LowerBound, UpperBound; Record *R = Def->getRecord(); if (R->getValueAsBit("isVCVT_N")) { // VCVT between floating- and fixed-point values takes an immediate // in the range [1, 32) for f32 or [1, 64) for f64. LowerBound = "1"; if (Def->getBaseType().getElementSizeInBits() == 32) UpperBound = "31"; else UpperBound = "63"; } else if (R->getValueAsBit("isScalarShift")) { // Right shifts have an 'r' in the name, left shifts do not. Convert // instructions have the same bounds and right shifts. if (Def->getName().find('r') != std::string::npos || Def->getName().find("cvt") != std::string::npos) LowerBound = "1"; UpperBound = utostr(Def->getReturnType().getElementSizeInBits() - 1); } else if (R->getValueAsBit("isShift")) { // Builtins which are overloaded by type will need to have their upper // bound computed at Sema time based on the type constant. // Right shifts have an 'r' in the name, left shifts do not. if (Def->getName().find('r') != std::string::npos) LowerBound = "1"; UpperBound = "RFT(TV, true)"; } else if (Def->getClassKind(true) == ClassB) { // ClassB intrinsics have a type (and hence lane number) that is only // known at runtime. if (R->getValueAsBit("isLaneQ")) UpperBound = "RFT(TV, false, true)"; else UpperBound = "RFT(TV, false, false)"; } else { // The immediate generally refers to a lane in the preceding argument. assert(Def->getImmediateIdx() > 0); Type T = Def->getParamType(Def->getImmediateIdx() - 1); UpperBound = utostr(T.getNumElements() - 1); } // Calculate the index of the immediate that should be range checked. unsigned Idx = Def->getNumParams(); if (Def->hasImmediate()) Idx = Def->getGeneratedParamIdx(Def->getImmediateIdx()); OS << "case NEON::BI__builtin_neon_" << Def->getMangledName() << ": " << "i = " << Idx << ";"; if (LowerBound.size()) OS << " l = " << LowerBound << ";"; if (UpperBound.size()) OS << " u = " << UpperBound << ";"; OS << " break;\n"; Emitted.insert(Def->getMangledName()); } OS << "#endif\n\n"; } /// runHeader - Emit a file with sections defining: /// 1. the NEON section of BuiltinsARM.def and BuiltinsAArch64.def. /// 2. the SemaChecking code for the type overload checking. /// 3. the SemaChecking code for validation of intrinsic immediate arguments. void NeonEmitter::runHeader(raw_ostream &OS) { std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst"); SmallVector<Intrinsic *, 128> Defs; for (auto *R : RV) createIntrinsic(R, Defs); // Generate shared BuiltinsXXX.def genBuiltinsDef(OS, Defs); // Generate ARM overloaded type checking code for SemaChecking.cpp genOverloadTypeCheckCode(OS, Defs); // Generate ARM range checking code for shift/lane immediates. genIntrinsicRangeCheckCode(OS, Defs); } /// run - Read the records in arm_neon.td and output arm_neon.h. arm_neon.h /// is comprised of type definitions and function declarations. void NeonEmitter::run(raw_ostream &OS) { OS << "/*===---- arm_neon.h - ARM Neon intrinsics " "------------------------------" "---===\n" " *\n" " * Permission is hereby granted, free of charge, to any person " "obtaining " "a copy\n" " * of this software and associated documentation files (the " "\"Software\")," " to deal\n" " * in the Software without restriction, including without limitation " "the " "rights\n" " * to use, copy, modify, merge, publish, distribute, sublicense, " "and/or sell\n" " * copies of the Software, and to permit persons to whom the Software " "is\n" " * furnished to do so, subject to the following conditions:\n" " *\n" " * The above copyright notice and this permission notice shall be " "included in\n" " * all copies or substantial portions of the Software.\n" " *\n" " * THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, " "EXPRESS OR\n" " * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF " "MERCHANTABILITY,\n" " * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT " "SHALL THE\n" " * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR " "OTHER\n" " * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, " "ARISING FROM,\n" " * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER " "DEALINGS IN\n" " * THE SOFTWARE.\n" " *\n" " *===-----------------------------------------------------------------" "---" "---===\n" " */\n\n"; OS << "#ifndef __ARM_NEON_H\n"; OS << "#define __ARM_NEON_H\n\n"; OS << "#if !defined(__ARM_NEON)\n"; OS << "#error \"NEON support not enabled\"\n"; OS << "#endif\n\n"; OS << "#include <stdint.h>\n\n"; // Emit NEON-specific scalar typedefs. OS << "typedef float float32_t;\n"; OS << "typedef __fp16 float16_t;\n"; OS << "#ifdef __aarch64__\n"; OS << "typedef double float64_t;\n"; OS << "#endif\n\n"; // For now, signedness of polynomial types depends on target OS << "#ifdef __aarch64__\n"; OS << "typedef uint8_t poly8_t;\n"; OS << "typedef uint16_t poly16_t;\n"; OS << "typedef uint64_t poly64_t;\n"; OS << "typedef __uint128_t poly128_t;\n"; OS << "#else\n"; OS << "typedef int8_t poly8_t;\n"; OS << "typedef int16_t poly16_t;\n"; OS << "#endif\n"; // Emit Neon vector typedefs. std::string TypedefTypes( "cQcsQsiQilQlUcQUcUsQUsUiQUiUlQUlhQhfQfdQdPcQPcPsQPsPlQPl"); std::vector<TypeSpec> TDTypeVec = TypeSpec::fromTypeSpecs(TypedefTypes); // Emit vector typedefs. bool InIfdef = false; for (auto &TS : TDTypeVec) { bool IsA64 = false; Type T(TS, 'd'); if (T.isDouble() || (T.isPoly() && T.isLong())) IsA64 = true; if (InIfdef && !IsA64) { OS << "#endif\n"; InIfdef = false; } if (!InIfdef && IsA64) { OS << "#ifdef __aarch64__\n"; InIfdef = true; } if (T.isPoly()) OS << "typedef __attribute__((neon_polyvector_type("; else OS << "typedef __attribute__((neon_vector_type("; Type T2 = T; T2.makeScalar(); OS << utostr(T.getNumElements()) << "))) "; OS << T2.str(); OS << " " << T.str() << ";\n"; } if (InIfdef) OS << "#endif\n"; OS << "\n"; // Emit struct typedefs. InIfdef = false; for (unsigned NumMembers = 2; NumMembers <= 4; ++NumMembers) { for (auto &TS : TDTypeVec) { bool IsA64 = false; Type T(TS, 'd'); if (T.isDouble() || (T.isPoly() && T.isLong())) IsA64 = true; if (InIfdef && !IsA64) { OS << "#endif\n"; InIfdef = false; } if (!InIfdef && IsA64) { OS << "#ifdef __aarch64__\n"; InIfdef = true; } char M = '2' + (NumMembers - 2); Type VT(TS, M); OS << "typedef struct " << VT.str() << " {\n"; OS << " " << T.str() << " val"; OS << "[" << utostr(NumMembers) << "]"; OS << ";\n} "; OS << VT.str() << ";\n"; OS << "\n"; } } if (InIfdef) OS << "#endif\n"; OS << "\n"; OS << "#define __ai static inline __attribute__((__always_inline__, " "__nodebug__))\n\n"; SmallVector<Intrinsic *, 128> Defs; std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst"); for (auto *R : RV) createIntrinsic(R, Defs); for (auto *I : Defs) I->indexBody(); std::stable_sort( Defs.begin(), Defs.end(), [](const Intrinsic *A, const Intrinsic *B) { return *A < *B; }); // Only emit a def when its requirements have been met. // FIXME: This loop could be made faster, but it's fast enough for now. bool MadeProgress = true; std::string InGuard = ""; while (!Defs.empty() && MadeProgress) { MadeProgress = false; for (SmallVector<Intrinsic *, 128>::iterator I = Defs.begin(); I != Defs.end(); /*No step*/) { bool DependenciesSatisfied = true; for (auto *II : (*I)->getDependencies()) { if (std::find(Defs.begin(), Defs.end(), II) != Defs.end()) DependenciesSatisfied = false; } if (!DependenciesSatisfied) { // Try the next one. ++I; continue; } // Emit #endif/#if pair if needed. if ((*I)->getGuard() != InGuard) { if (!InGuard.empty()) OS << "#endif\n"; InGuard = (*I)->getGuard(); if (!InGuard.empty()) OS << "#if " << InGuard << "\n"; } // Actually generate the intrinsic code. OS << (*I)->generate(); MadeProgress = true; I = Defs.erase(I); } } assert(Defs.empty() && "Some requirements were not satisfied!"); if (!InGuard.empty()) OS << "#endif\n"; OS << "\n"; OS << "#undef __ai\n\n"; OS << "#endif /* __ARM_NEON_H */\n"; } namespace clang { void EmitNeon(RecordKeeper &Records, raw_ostream &OS) { NeonEmitter(Records).run(OS); } void EmitNeonSema(RecordKeeper &Records, raw_ostream &OS) { NeonEmitter(Records).runHeader(OS); } void EmitNeonTest(RecordKeeper &Records, raw_ostream &OS) { llvm_unreachable("Neon test generation no longer implemented!"); } } // End namespace clang