//== SymbolManager.h - Management of Symbolic Values ------------*- C++ -*--==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines SymbolManager, a class that manages symbolic values // created for use by ExprEngine and related classes. // //===----------------------------------------------------------------------===// #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h" #include "clang/Analysis/Analyses/LiveVariables.h" #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h" #include "clang/StaticAnalyzer/Core/PathSensitive/Store.h" #include "llvm/Support/raw_ostream.h" using namespace clang; using namespace ento; void SymExpr::anchor() { } void SymExpr::dump() const { dumpToStream(llvm::errs()); } void SymIntExpr::dumpToStream(raw_ostream &os) const { os << '('; getLHS()->dumpToStream(os); os << ") " << BinaryOperator::getOpcodeStr(getOpcode()) << ' ' << getRHS().getZExtValue(); if (getRHS().isUnsigned()) os << 'U'; } void IntSymExpr::dumpToStream(raw_ostream &os) const { os << getLHS().getZExtValue(); if (getLHS().isUnsigned()) os << 'U'; os << ' ' << BinaryOperator::getOpcodeStr(getOpcode()) << " ("; getRHS()->dumpToStream(os); os << ')'; } void SymSymExpr::dumpToStream(raw_ostream &os) const { os << '('; getLHS()->dumpToStream(os); os << ") " << BinaryOperator::getOpcodeStr(getOpcode()) << " ("; getRHS()->dumpToStream(os); os << ')'; } void SymbolCast::dumpToStream(raw_ostream &os) const { os << '(' << ToTy.getAsString() << ") ("; Operand->dumpToStream(os); os << ')'; } void SymbolConjured::dumpToStream(raw_ostream &os) const { os << "conj_$" << getSymbolID() << '{' << T.getAsString() << '}'; } void SymbolDerived::dumpToStream(raw_ostream &os) const { os << "derived_$" << getSymbolID() << '{' << getParentSymbol() << ',' << getRegion() << '}'; } void SymbolExtent::dumpToStream(raw_ostream &os) const { os << "extent_$" << getSymbolID() << '{' << getRegion() << '}'; } void SymbolMetadata::dumpToStream(raw_ostream &os) const { os << "meta_$" << getSymbolID() << '{' << getRegion() << ',' << T.getAsString() << '}'; } void SymbolData::anchor() { } void SymbolRegionValue::dumpToStream(raw_ostream &os) const { os << "reg_$" << getSymbolID() << "<" << R << ">"; } bool SymExpr::symbol_iterator::operator==(const symbol_iterator &X) const { return itr == X.itr; } bool SymExpr::symbol_iterator::operator!=(const symbol_iterator &X) const { return itr != X.itr; } SymExpr::symbol_iterator::symbol_iterator(const SymExpr *SE) { itr.push_back(SE); } SymExpr::symbol_iterator &SymExpr::symbol_iterator::operator++() { assert(!itr.empty() && "attempting to iterate on an 'end' iterator"); expand(); return *this; } SymbolRef SymExpr::symbol_iterator::operator*() { assert(!itr.empty() && "attempting to dereference an 'end' iterator"); return itr.back(); } void SymExpr::symbol_iterator::expand() { const SymExpr *SE = itr.pop_back_val(); switch (SE->getKind()) { case SymExpr::RegionValueKind: case SymExpr::ConjuredKind: case SymExpr::DerivedKind: case SymExpr::ExtentKind: case SymExpr::MetadataKind: return; case SymExpr::CastSymbolKind: itr.push_back(cast<SymbolCast>(SE)->getOperand()); return; case SymExpr::SymIntKind: itr.push_back(cast<SymIntExpr>(SE)->getLHS()); return; case SymExpr::IntSymKind: itr.push_back(cast<IntSymExpr>(SE)->getRHS()); return; case SymExpr::SymSymKind: { const SymSymExpr *x = cast<SymSymExpr>(SE); itr.push_back(x->getLHS()); itr.push_back(x->getRHS()); return; } } llvm_unreachable("unhandled expansion case"); } unsigned SymExpr::computeComplexity() const { unsigned R = 0; for (symbol_iterator I = symbol_begin(), E = symbol_end(); I != E; ++I) R++; return R; } const SymbolRegionValue* SymbolManager::getRegionValueSymbol(const TypedValueRegion* R) { llvm::FoldingSetNodeID profile; SymbolRegionValue::Profile(profile, R); void *InsertPos; SymExpr *SD = DataSet.FindNodeOrInsertPos(profile, InsertPos); if (!SD) { SD = (SymExpr*) BPAlloc.Allocate<SymbolRegionValue>(); new (SD) SymbolRegionValue(SymbolCounter, R); DataSet.InsertNode(SD, InsertPos); ++SymbolCounter; } return cast<SymbolRegionValue>(SD); } const SymbolConjured* SymbolManager::conjureSymbol(const Stmt *E, const LocationContext *LCtx, QualType T, unsigned Count, const void *SymbolTag) { llvm::FoldingSetNodeID profile; SymbolConjured::Profile(profile, E, T, Count, LCtx, SymbolTag); void *InsertPos; SymExpr *SD = DataSet.FindNodeOrInsertPos(profile, InsertPos); if (!SD) { SD = (SymExpr*) BPAlloc.Allocate<SymbolConjured>(); new (SD) SymbolConjured(SymbolCounter, E, LCtx, T, Count, SymbolTag); DataSet.InsertNode(SD, InsertPos); ++SymbolCounter; } return cast<SymbolConjured>(SD); } const SymbolDerived* SymbolManager::getDerivedSymbol(SymbolRef parentSymbol, const TypedValueRegion *R) { llvm::FoldingSetNodeID profile; SymbolDerived::Profile(profile, parentSymbol, R); void *InsertPos; SymExpr *SD = DataSet.FindNodeOrInsertPos(profile, InsertPos); if (!SD) { SD = (SymExpr*) BPAlloc.Allocate<SymbolDerived>(); new (SD) SymbolDerived(SymbolCounter, parentSymbol, R); DataSet.InsertNode(SD, InsertPos); ++SymbolCounter; } return cast<SymbolDerived>(SD); } const SymbolExtent* SymbolManager::getExtentSymbol(const SubRegion *R) { llvm::FoldingSetNodeID profile; SymbolExtent::Profile(profile, R); void *InsertPos; SymExpr *SD = DataSet.FindNodeOrInsertPos(profile, InsertPos); if (!SD) { SD = (SymExpr*) BPAlloc.Allocate<SymbolExtent>(); new (SD) SymbolExtent(SymbolCounter, R); DataSet.InsertNode(SD, InsertPos); ++SymbolCounter; } return cast<SymbolExtent>(SD); } const SymbolMetadata* SymbolManager::getMetadataSymbol(const MemRegion* R, const Stmt *S, QualType T, unsigned Count, const void *SymbolTag) { llvm::FoldingSetNodeID profile; SymbolMetadata::Profile(profile, R, S, T, Count, SymbolTag); void *InsertPos; SymExpr *SD = DataSet.FindNodeOrInsertPos(profile, InsertPos); if (!SD) { SD = (SymExpr*) BPAlloc.Allocate<SymbolMetadata>(); new (SD) SymbolMetadata(SymbolCounter, R, S, T, Count, SymbolTag); DataSet.InsertNode(SD, InsertPos); ++SymbolCounter; } return cast<SymbolMetadata>(SD); } const SymbolCast* SymbolManager::getCastSymbol(const SymExpr *Op, QualType From, QualType To) { llvm::FoldingSetNodeID ID; SymbolCast::Profile(ID, Op, From, To); void *InsertPos; SymExpr *data = DataSet.FindNodeOrInsertPos(ID, InsertPos); if (!data) { data = (SymbolCast*) BPAlloc.Allocate<SymbolCast>(); new (data) SymbolCast(Op, From, To); DataSet.InsertNode(data, InsertPos); } return cast<SymbolCast>(data); } const SymIntExpr *SymbolManager::getSymIntExpr(const SymExpr *lhs, BinaryOperator::Opcode op, const llvm::APSInt& v, QualType t) { llvm::FoldingSetNodeID ID; SymIntExpr::Profile(ID, lhs, op, v, t); void *InsertPos; SymExpr *data = DataSet.FindNodeOrInsertPos(ID, InsertPos); if (!data) { data = (SymIntExpr*) BPAlloc.Allocate<SymIntExpr>(); new (data) SymIntExpr(lhs, op, v, t); DataSet.InsertNode(data, InsertPos); } return cast<SymIntExpr>(data); } const IntSymExpr *SymbolManager::getIntSymExpr(const llvm::APSInt& lhs, BinaryOperator::Opcode op, const SymExpr *rhs, QualType t) { llvm::FoldingSetNodeID ID; IntSymExpr::Profile(ID, lhs, op, rhs, t); void *InsertPos; SymExpr *data = DataSet.FindNodeOrInsertPos(ID, InsertPos); if (!data) { data = (IntSymExpr*) BPAlloc.Allocate<IntSymExpr>(); new (data) IntSymExpr(lhs, op, rhs, t); DataSet.InsertNode(data, InsertPos); } return cast<IntSymExpr>(data); } const SymSymExpr *SymbolManager::getSymSymExpr(const SymExpr *lhs, BinaryOperator::Opcode op, const SymExpr *rhs, QualType t) { llvm::FoldingSetNodeID ID; SymSymExpr::Profile(ID, lhs, op, rhs, t); void *InsertPos; SymExpr *data = DataSet.FindNodeOrInsertPos(ID, InsertPos); if (!data) { data = (SymSymExpr*) BPAlloc.Allocate<SymSymExpr>(); new (data) SymSymExpr(lhs, op, rhs, t); DataSet.InsertNode(data, InsertPos); } return cast<SymSymExpr>(data); } QualType SymbolConjured::getType() const { return T; } QualType SymbolDerived::getType() const { return R->getValueType(); } QualType SymbolExtent::getType() const { ASTContext &Ctx = R->getMemRegionManager()->getContext(); return Ctx.getSizeType(); } QualType SymbolMetadata::getType() const { return T; } QualType SymbolRegionValue::getType() const { return R->getValueType(); } SymbolManager::~SymbolManager() { llvm::DeleteContainerSeconds(SymbolDependencies); } bool SymbolManager::canSymbolicate(QualType T) { T = T.getCanonicalType(); if (Loc::isLocType(T)) return true; if (T->isIntegralOrEnumerationType()) return true; if (T->isRecordType() && !T->isUnionType()) return true; return false; } void SymbolManager::addSymbolDependency(const SymbolRef Primary, const SymbolRef Dependent) { SymbolDependTy::iterator I = SymbolDependencies.find(Primary); SymbolRefSmallVectorTy *dependencies = nullptr; if (I == SymbolDependencies.end()) { dependencies = new SymbolRefSmallVectorTy(); SymbolDependencies[Primary] = dependencies; } else { dependencies = I->second; } dependencies->push_back(Dependent); } const SymbolRefSmallVectorTy *SymbolManager::getDependentSymbols( const SymbolRef Primary) { SymbolDependTy::const_iterator I = SymbolDependencies.find(Primary); if (I == SymbolDependencies.end()) return nullptr; return I->second; } void SymbolReaper::markDependentsLive(SymbolRef sym) { // Do not mark dependents more then once. SymbolMapTy::iterator LI = TheLiving.find(sym); assert(LI != TheLiving.end() && "The primary symbol is not live."); if (LI->second == HaveMarkedDependents) return; LI->second = HaveMarkedDependents; if (const SymbolRefSmallVectorTy *Deps = SymMgr.getDependentSymbols(sym)) { for (SymbolRefSmallVectorTy::const_iterator I = Deps->begin(), E = Deps->end(); I != E; ++I) { if (TheLiving.find(*I) != TheLiving.end()) continue; markLive(*I); } } } void SymbolReaper::markLive(SymbolRef sym) { TheLiving[sym] = NotProcessed; TheDead.erase(sym); markDependentsLive(sym); } void SymbolReaper::markLive(const MemRegion *region) { RegionRoots.insert(region); markElementIndicesLive(region); } void SymbolReaper::markElementIndicesLive(const MemRegion *region) { for (auto SR = dyn_cast<SubRegion>(region); SR; SR = dyn_cast<SubRegion>(SR->getSuperRegion())) { if (auto ER = dyn_cast<ElementRegion>(SR)) { SVal Idx = ER->getIndex(); for (auto SI = Idx.symbol_begin(), SE = Idx.symbol_end(); SI != SE; ++SI) markLive(*SI); } } } void SymbolReaper::markInUse(SymbolRef sym) { if (isa<SymbolMetadata>(sym)) MetadataInUse.insert(sym); } bool SymbolReaper::maybeDead(SymbolRef sym) { if (isLive(sym)) return false; TheDead.insert(sym); return true; } bool SymbolReaper::isLiveRegion(const MemRegion *MR) { if (RegionRoots.count(MR)) return true; MR = MR->getBaseRegion(); if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(MR)) return isLive(SR->getSymbol()); if (const VarRegion *VR = dyn_cast<VarRegion>(MR)) return isLive(VR, true); // FIXME: This is a gross over-approximation. What we really need is a way to // tell if anything still refers to this region. Unlike SymbolicRegions, // AllocaRegions don't have associated symbols, though, so we don't actually // have a way to track their liveness. if (isa<AllocaRegion>(MR)) return true; if (isa<CXXThisRegion>(MR)) return true; if (isa<MemSpaceRegion>(MR)) return true; if (isa<CodeTextRegion>(MR)) return true; return false; } bool SymbolReaper::isLive(SymbolRef sym) { if (TheLiving.count(sym)) { markDependentsLive(sym); return true; } bool KnownLive; switch (sym->getKind()) { case SymExpr::RegionValueKind: KnownLive = isLiveRegion(cast<SymbolRegionValue>(sym)->getRegion()); break; case SymExpr::ConjuredKind: KnownLive = false; break; case SymExpr::DerivedKind: KnownLive = isLive(cast<SymbolDerived>(sym)->getParentSymbol()); break; case SymExpr::ExtentKind: KnownLive = isLiveRegion(cast<SymbolExtent>(sym)->getRegion()); break; case SymExpr::MetadataKind: KnownLive = MetadataInUse.count(sym) && isLiveRegion(cast<SymbolMetadata>(sym)->getRegion()); if (KnownLive) MetadataInUse.erase(sym); break; case SymExpr::SymIntKind: KnownLive = isLive(cast<SymIntExpr>(sym)->getLHS()); break; case SymExpr::IntSymKind: KnownLive = isLive(cast<IntSymExpr>(sym)->getRHS()); break; case SymExpr::SymSymKind: KnownLive = isLive(cast<SymSymExpr>(sym)->getLHS()) && isLive(cast<SymSymExpr>(sym)->getRHS()); break; case SymExpr::CastSymbolKind: KnownLive = isLive(cast<SymbolCast>(sym)->getOperand()); break; } if (KnownLive) markLive(sym); return KnownLive; } bool SymbolReaper::isLive(const Stmt *ExprVal, const LocationContext *ELCtx) const { if (LCtx == nullptr) return false; if (LCtx != ELCtx) { // If the reaper's location context is a parent of the expression's // location context, then the expression value is now "out of scope". if (LCtx->isParentOf(ELCtx)) return false; return true; } // If no statement is provided, everything is this and parent contexts is live. if (!Loc) return true; return LCtx->getAnalysis<RelaxedLiveVariables>()->isLive(Loc, ExprVal); } bool SymbolReaper::isLive(const VarRegion *VR, bool includeStoreBindings) const{ const StackFrameContext *VarContext = VR->getStackFrame(); if (!VarContext) return true; if (!LCtx) return false; const StackFrameContext *CurrentContext = LCtx->getCurrentStackFrame(); if (VarContext == CurrentContext) { // If no statement is provided, everything is live. if (!Loc) return true; if (LCtx->getAnalysis<RelaxedLiveVariables>()->isLive(Loc, VR->getDecl())) return true; if (!includeStoreBindings) return false; unsigned &cachedQuery = const_cast<SymbolReaper*>(this)->includedRegionCache[VR]; if (cachedQuery) { return cachedQuery == 1; } // Query the store to see if the region occurs in any live bindings. if (Store store = reapedStore.getStore()) { bool hasRegion = reapedStore.getStoreManager().includedInBindings(store, VR); cachedQuery = hasRegion ? 1 : 2; return hasRegion; } return false; } return VarContext->isParentOf(CurrentContext); }