//===--- UnwrappedLineFormatter.cpp - Format C++ code ---------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "UnwrappedLineFormatter.h" #include "WhitespaceManager.h" #include "llvm/Support/Debug.h" #define DEBUG_TYPE "format-formatter" namespace clang { namespace format { namespace { bool startsExternCBlock(const AnnotatedLine &Line) { const FormatToken *Next = Line.First->getNextNonComment(); const FormatToken *NextNext = Next ? Next->getNextNonComment() : nullptr; return Line.startsWith(tok::kw_extern) && Next && Next->isStringLiteral() && NextNext && NextNext->is(tok::l_brace); } /// \brief Tracks the indent level of \c AnnotatedLines across levels. /// /// \c nextLine must be called for each \c AnnotatedLine, after which \c /// getIndent() will return the indent for the last line \c nextLine was called /// with. /// If the line is not formatted (and thus the indent does not change), calling /// \c adjustToUnmodifiedLine after the call to \c nextLine will cause /// subsequent lines on the same level to be indented at the same level as the /// given line. class LevelIndentTracker { public: LevelIndentTracker(const FormatStyle &Style, const AdditionalKeywords &Keywords, unsigned StartLevel, int AdditionalIndent) : Style(Style), Keywords(Keywords), AdditionalIndent(AdditionalIndent) { for (unsigned i = 0; i != StartLevel; ++i) IndentForLevel.push_back(Style.IndentWidth * i + AdditionalIndent); } /// \brief Returns the indent for the current line. unsigned getIndent() const { return Indent; } /// \brief Update the indent state given that \p Line is going to be formatted /// next. void nextLine(const AnnotatedLine &Line) { Offset = getIndentOffset(*Line.First); // Update the indent level cache size so that we can rely on it // having the right size in adjustToUnmodifiedline. while (IndentForLevel.size() <= Line.Level) IndentForLevel.push_back(-1); if (Line.InPPDirective) { Indent = Line.Level * Style.IndentWidth + AdditionalIndent; } else { IndentForLevel.resize(Line.Level + 1); Indent = getIndent(IndentForLevel, Line.Level); } if (static_cast<int>(Indent) + Offset >= 0) Indent += Offset; } /// \brief Update the level indent to adapt to the given \p Line. /// /// When a line is not formatted, we move the subsequent lines on the same /// level to the same indent. /// Note that \c nextLine must have been called before this method. void adjustToUnmodifiedLine(const AnnotatedLine &Line) { unsigned LevelIndent = Line.First->OriginalColumn; if (static_cast<int>(LevelIndent) - Offset >= 0) LevelIndent -= Offset; if ((!Line.First->is(tok::comment) || IndentForLevel[Line.Level] == -1) && !Line.InPPDirective) IndentForLevel[Line.Level] = LevelIndent; } private: /// \brief Get the offset of the line relatively to the level. /// /// For example, 'public:' labels in classes are offset by 1 or 2 /// characters to the left from their level. int getIndentOffset(const FormatToken &RootToken) { if (Style.Language == FormatStyle::LK_Java || Style.Language == FormatStyle::LK_JavaScript) return 0; if (RootToken.isAccessSpecifier(false) || RootToken.isObjCAccessSpecifier() || (RootToken.isOneOf(Keywords.kw_signals, Keywords.kw_qsignals) && RootToken.Next && RootToken.Next->is(tok::colon))) return Style.AccessModifierOffset; return 0; } /// \brief Get the indent of \p Level from \p IndentForLevel. /// /// \p IndentForLevel must contain the indent for the level \c l /// at \p IndentForLevel[l], or a value < 0 if the indent for /// that level is unknown. unsigned getIndent(ArrayRef<int> IndentForLevel, unsigned Level) { if (IndentForLevel[Level] != -1) return IndentForLevel[Level]; if (Level == 0) return 0; return getIndent(IndentForLevel, Level - 1) + Style.IndentWidth; } const FormatStyle &Style; const AdditionalKeywords &Keywords; const unsigned AdditionalIndent; /// \brief The indent in characters for each level. std::vector<int> IndentForLevel; /// \brief Offset of the current line relative to the indent level. /// /// For example, the 'public' keywords is often indented with a negative /// offset. int Offset = 0; /// \brief The current line's indent. unsigned Indent = 0; }; class LineJoiner { public: LineJoiner(const FormatStyle &Style, const AdditionalKeywords &Keywords, const SmallVectorImpl<AnnotatedLine *> &Lines) : Style(Style), Keywords(Keywords), End(Lines.end()), Next(Lines.begin()) {} /// \brief Returns the next line, merging multiple lines into one if possible. const AnnotatedLine *getNextMergedLine(bool DryRun, LevelIndentTracker &IndentTracker) { if (Next == End) return nullptr; const AnnotatedLine *Current = *Next; IndentTracker.nextLine(*Current); unsigned MergedLines = tryFitMultipleLinesInOne(IndentTracker.getIndent(), Next, End); if (MergedLines > 0 && Style.ColumnLimit == 0) // Disallow line merging if there is a break at the start of one of the // input lines. for (unsigned i = 0; i < MergedLines; ++i) if (Next[i + 1]->First->NewlinesBefore > 0) MergedLines = 0; if (!DryRun) for (unsigned i = 0; i < MergedLines; ++i) join(*Next[i], *Next[i + 1]); Next = Next + MergedLines + 1; return Current; } private: /// \brief Calculates how many lines can be merged into 1 starting at \p I. unsigned tryFitMultipleLinesInOne(unsigned Indent, SmallVectorImpl<AnnotatedLine *>::const_iterator I, SmallVectorImpl<AnnotatedLine *>::const_iterator E) { // Can't join the last line with anything. if (I + 1 == E) return 0; // We can never merge stuff if there are trailing line comments. const AnnotatedLine *TheLine = *I; if (TheLine->Last->is(TT_LineComment)) return 0; if (I[1]->Type == LT_Invalid || I[1]->First->MustBreakBefore) return 0; if (TheLine->InPPDirective && (!I[1]->InPPDirective || I[1]->First->HasUnescapedNewline)) return 0; if (Style.ColumnLimit > 0 && Indent > Style.ColumnLimit) return 0; unsigned Limit = Style.ColumnLimit == 0 ? UINT_MAX : Style.ColumnLimit - Indent; // If we already exceed the column limit, we set 'Limit' to 0. The different // tryMerge..() functions can then decide whether to still do merging. Limit = TheLine->Last->TotalLength > Limit ? 0 : Limit - TheLine->Last->TotalLength; // FIXME: TheLine->Level != 0 might or might not be the right check to do. // If necessary, change to something smarter. bool MergeShortFunctions = Style.AllowShortFunctionsOnASingleLine == FormatStyle::SFS_All || (Style.AllowShortFunctionsOnASingleLine >= FormatStyle::SFS_Empty && I[1]->First->is(tok::r_brace)) || (Style.AllowShortFunctionsOnASingleLine == FormatStyle::SFS_Inline && TheLine->Level != 0); if (TheLine->Last->is(TT_FunctionLBrace) && TheLine->First != TheLine->Last) { return MergeShortFunctions ? tryMergeSimpleBlock(I, E, Limit) : 0; } if (TheLine->Last->is(tok::l_brace)) { return !Style.BraceWrapping.AfterFunction ? tryMergeSimpleBlock(I, E, Limit) : 0; } if (I[1]->First->is(TT_FunctionLBrace) && Style.BraceWrapping.AfterFunction) { if (I[1]->Last->is(TT_LineComment)) return 0; // Check for Limit <= 2 to account for the " {". if (Limit <= 2 || (Style.ColumnLimit == 0 && containsMustBreak(TheLine))) return 0; Limit -= 2; unsigned MergedLines = 0; if (MergeShortFunctions) { MergedLines = tryMergeSimpleBlock(I + 1, E, Limit); // If we managed to merge the block, count the function header, which is // on a separate line. if (MergedLines > 0) ++MergedLines; } return MergedLines; } if (TheLine->First->is(tok::kw_if)) { return Style.AllowShortIfStatementsOnASingleLine ? tryMergeSimpleControlStatement(I, E, Limit) : 0; } if (TheLine->First->isOneOf(tok::kw_for, tok::kw_while)) { return Style.AllowShortLoopsOnASingleLine ? tryMergeSimpleControlStatement(I, E, Limit) : 0; } if (TheLine->First->isOneOf(tok::kw_case, tok::kw_default)) { return Style.AllowShortCaseLabelsOnASingleLine ? tryMergeShortCaseLabels(I, E, Limit) : 0; } if (TheLine->InPPDirective && (TheLine->First->HasUnescapedNewline || TheLine->First->IsFirst)) { return tryMergeSimplePPDirective(I, E, Limit); } return 0; } unsigned tryMergeSimplePPDirective(SmallVectorImpl<AnnotatedLine *>::const_iterator I, SmallVectorImpl<AnnotatedLine *>::const_iterator E, unsigned Limit) { if (Limit == 0) return 0; if (I + 2 != E && I[2]->InPPDirective && !I[2]->First->HasUnescapedNewline) return 0; if (1 + I[1]->Last->TotalLength > Limit) return 0; return 1; } unsigned tryMergeSimpleControlStatement( SmallVectorImpl<AnnotatedLine *>::const_iterator I, SmallVectorImpl<AnnotatedLine *>::const_iterator E, unsigned Limit) { if (Limit == 0) return 0; if (Style.BraceWrapping.AfterControlStatement && (I[1]->First->is(tok::l_brace) && !Style.AllowShortBlocksOnASingleLine)) return 0; if (I[1]->InPPDirective != (*I)->InPPDirective || (I[1]->InPPDirective && I[1]->First->HasUnescapedNewline)) return 0; Limit = limitConsideringMacros(I + 1, E, Limit); AnnotatedLine &Line = **I; if (Line.Last->isNot(tok::r_paren)) return 0; if (1 + I[1]->Last->TotalLength > Limit) return 0; if (I[1]->First->isOneOf(tok::semi, tok::kw_if, tok::kw_for, tok::kw_while, TT_LineComment)) return 0; // Only inline simple if's (no nested if or else). if (I + 2 != E && Line.startsWith(tok::kw_if) && I[2]->First->is(tok::kw_else)) return 0; return 1; } unsigned tryMergeShortCaseLabels(SmallVectorImpl<AnnotatedLine *>::const_iterator I, SmallVectorImpl<AnnotatedLine *>::const_iterator E, unsigned Limit) { if (Limit == 0 || I + 1 == E || I[1]->First->isOneOf(tok::kw_case, tok::kw_default)) return 0; unsigned NumStmts = 0; unsigned Length = 0; bool InPPDirective = I[0]->InPPDirective; for (; NumStmts < 3; ++NumStmts) { if (I + 1 + NumStmts == E) break; const AnnotatedLine *Line = I[1 + NumStmts]; if (Line->InPPDirective != InPPDirective) break; if (Line->First->isOneOf(tok::kw_case, tok::kw_default, tok::r_brace)) break; if (Line->First->isOneOf(tok::kw_if, tok::kw_for, tok::kw_switch, tok::kw_while, tok::comment) || Line->Last->is(tok::comment)) return 0; Length += I[1 + NumStmts]->Last->TotalLength + 1; // 1 for the space. } if (NumStmts == 0 || NumStmts == 3 || Length > Limit) return 0; return NumStmts; } unsigned tryMergeSimpleBlock(SmallVectorImpl<AnnotatedLine *>::const_iterator I, SmallVectorImpl<AnnotatedLine *>::const_iterator E, unsigned Limit) { AnnotatedLine &Line = **I; // Don't merge ObjC @ keywords and methods. // FIXME: If an option to allow short exception handling clauses on a single // line is added, change this to not return for @try and friends. if (Style.Language != FormatStyle::LK_Java && Line.First->isOneOf(tok::at, tok::minus, tok::plus)) return 0; // Check that the current line allows merging. This depends on whether we // are in a control flow statements as well as several style flags. if (Line.First->isOneOf(tok::kw_else, tok::kw_case) || (Line.First->Next && Line.First->Next->is(tok::kw_else))) return 0; if (Line.First->isOneOf(tok::kw_if, tok::kw_while, tok::kw_do, tok::kw_try, tok::kw___try, tok::kw_catch, tok::kw___finally, tok::kw_for, tok::r_brace, Keywords.kw___except)) { if (!Style.AllowShortBlocksOnASingleLine) return 0; if (!Style.AllowShortIfStatementsOnASingleLine && Line.startsWith(tok::kw_if)) return 0; if (!Style.AllowShortLoopsOnASingleLine && Line.First->isOneOf(tok::kw_while, tok::kw_do, tok::kw_for)) return 0; // FIXME: Consider an option to allow short exception handling clauses on // a single line. // FIXME: This isn't covered by tests. // FIXME: For catch, __except, __finally the first token on the line // is '}', so this isn't correct here. if (Line.First->isOneOf(tok::kw_try, tok::kw___try, tok::kw_catch, Keywords.kw___except, tok::kw___finally)) return 0; } FormatToken *Tok = I[1]->First; if (Tok->is(tok::r_brace) && !Tok->MustBreakBefore && (Tok->getNextNonComment() == nullptr || Tok->getNextNonComment()->is(tok::semi))) { // We merge empty blocks even if the line exceeds the column limit. Tok->SpacesRequiredBefore = 0; Tok->CanBreakBefore = true; return 1; } else if (Limit != 0 && !Line.startsWith(tok::kw_namespace) && !startsExternCBlock(Line)) { // We don't merge short records. if (Line.First->isOneOf(tok::kw_class, tok::kw_union, tok::kw_struct, Keywords.kw_interface)) return 0; // Check that we still have three lines and they fit into the limit. if (I + 2 == E || I[2]->Type == LT_Invalid) return 0; Limit = limitConsideringMacros(I + 2, E, Limit); if (!nextTwoLinesFitInto(I, Limit)) return 0; // Second, check that the next line does not contain any braces - if it // does, readability declines when putting it into a single line. if (I[1]->Last->is(TT_LineComment)) return 0; do { if (Tok->is(tok::l_brace) && Tok->BlockKind != BK_BracedInit) return 0; Tok = Tok->Next; } while (Tok); // Last, check that the third line starts with a closing brace. Tok = I[2]->First; if (Tok->isNot(tok::r_brace)) return 0; // Don't merge "if (a) { .. } else {". if (Tok->Next && Tok->Next->is(tok::kw_else)) return 0; return 2; } return 0; } /// Returns the modified column limit for \p I if it is inside a macro and /// needs a trailing '\'. unsigned limitConsideringMacros(SmallVectorImpl<AnnotatedLine *>::const_iterator I, SmallVectorImpl<AnnotatedLine *>::const_iterator E, unsigned Limit) { if (I[0]->InPPDirective && I + 1 != E && !I[1]->First->HasUnescapedNewline && !I[1]->First->is(tok::eof)) { return Limit < 2 ? 0 : Limit - 2; } return Limit; } bool nextTwoLinesFitInto(SmallVectorImpl<AnnotatedLine *>::const_iterator I, unsigned Limit) { if (I[1]->First->MustBreakBefore || I[2]->First->MustBreakBefore) return false; return 1 + I[1]->Last->TotalLength + 1 + I[2]->Last->TotalLength <= Limit; } bool containsMustBreak(const AnnotatedLine *Line) { for (const FormatToken *Tok = Line->First; Tok; Tok = Tok->Next) { if (Tok->MustBreakBefore) return true; } return false; } void join(AnnotatedLine &A, const AnnotatedLine &B) { assert(!A.Last->Next); assert(!B.First->Previous); if (B.Affected) A.Affected = true; A.Last->Next = B.First; B.First->Previous = A.Last; B.First->CanBreakBefore = true; unsigned LengthA = A.Last->TotalLength + B.First->SpacesRequiredBefore; for (FormatToken *Tok = B.First; Tok; Tok = Tok->Next) { Tok->TotalLength += LengthA; A.Last = Tok; } } const FormatStyle &Style; const AdditionalKeywords &Keywords; const SmallVectorImpl<AnnotatedLine *>::const_iterator End; SmallVectorImpl<AnnotatedLine *>::const_iterator Next; }; static void markFinalized(FormatToken *Tok) { for (; Tok; Tok = Tok->Next) { Tok->Finalized = true; for (AnnotatedLine *Child : Tok->Children) markFinalized(Child->First); } } #ifndef NDEBUG static void printLineState(const LineState &State) { llvm::dbgs() << "State: "; for (const ParenState &P : State.Stack) { llvm::dbgs() << P.Indent << "|" << P.LastSpace << "|" << P.NestedBlockIndent << " "; } llvm::dbgs() << State.NextToken->TokenText << "\n"; } #endif /// \brief Base class for classes that format one \c AnnotatedLine. class LineFormatter { public: LineFormatter(ContinuationIndenter *Indenter, WhitespaceManager *Whitespaces, const FormatStyle &Style, UnwrappedLineFormatter *BlockFormatter) : Indenter(Indenter), Whitespaces(Whitespaces), Style(Style), BlockFormatter(BlockFormatter) {} virtual ~LineFormatter() {} /// \brief Formats an \c AnnotatedLine and returns the penalty. /// /// If \p DryRun is \c false, directly applies the changes. virtual unsigned formatLine(const AnnotatedLine &Line, unsigned FirstIndent, bool DryRun) = 0; protected: /// \brief If the \p State's next token is an r_brace closing a nested block, /// format the nested block before it. /// /// Returns \c true if all children could be placed successfully and adapts /// \p Penalty as well as \p State. If \p DryRun is false, also directly /// creates changes using \c Whitespaces. /// /// The crucial idea here is that children always get formatted upon /// encountering the closing brace right after the nested block. Now, if we /// are currently trying to keep the "}" on the same line (i.e. \p NewLine is /// \c false), the entire block has to be kept on the same line (which is only /// possible if it fits on the line, only contains a single statement, etc. /// /// If \p NewLine is true, we format the nested block on separate lines, i.e. /// break after the "{", format all lines with correct indentation and the put /// the closing "}" on yet another new line. /// /// This enables us to keep the simple structure of the /// \c UnwrappedLineFormatter, where we only have two options for each token: /// break or don't break. bool formatChildren(LineState &State, bool NewLine, bool DryRun, unsigned &Penalty) { const FormatToken *LBrace = State.NextToken->getPreviousNonComment(); FormatToken &Previous = *State.NextToken->Previous; if (!LBrace || LBrace->isNot(tok::l_brace) || LBrace->BlockKind != BK_Block || Previous.Children.size() == 0) // The previous token does not open a block. Nothing to do. We don't // assert so that we can simply call this function for all tokens. return true; if (NewLine) { int AdditionalIndent = State.Stack.back().Indent - Previous.Children[0]->Level * Style.IndentWidth; Penalty += BlockFormatter->format(Previous.Children, DryRun, AdditionalIndent, /*FixBadIndentation=*/true); return true; } if (Previous.Children[0]->First->MustBreakBefore) return false; // Cannot merge multiple statements into a single line. if (Previous.Children.size() > 1) return false; // Cannot merge into one line if this line ends on a comment. if (Previous.is(tok::comment)) return false; // We can't put the closing "}" on a line with a trailing comment. if (Previous.Children[0]->Last->isTrailingComment()) return false; // If the child line exceeds the column limit, we wouldn't want to merge it. // We add +2 for the trailing " }". if (Style.ColumnLimit > 0 && Previous.Children[0]->Last->TotalLength + State.Column + 2 > Style.ColumnLimit) return false; if (!DryRun) { Whitespaces->replaceWhitespace( *Previous.Children[0]->First, /*Newlines=*/0, /*IndentLevel=*/0, /*Spaces=*/1, /*StartOfTokenColumn=*/State.Column, State.Line->InPPDirective); } Penalty += formatLine(*Previous.Children[0], State.Column + 1, DryRun); State.Column += 1 + Previous.Children[0]->Last->TotalLength; return true; } ContinuationIndenter *Indenter; private: WhitespaceManager *Whitespaces; const FormatStyle &Style; UnwrappedLineFormatter *BlockFormatter; }; /// \brief Formatter that keeps the existing line breaks. class NoColumnLimitLineFormatter : public LineFormatter { public: NoColumnLimitLineFormatter(ContinuationIndenter *Indenter, WhitespaceManager *Whitespaces, const FormatStyle &Style, UnwrappedLineFormatter *BlockFormatter) : LineFormatter(Indenter, Whitespaces, Style, BlockFormatter) {} /// \brief Formats the line, simply keeping all of the input's line breaking /// decisions. unsigned formatLine(const AnnotatedLine &Line, unsigned FirstIndent, bool DryRun) override { assert(!DryRun); LineState State = Indenter->getInitialState(FirstIndent, &Line, /*DryRun=*/false); while (State.NextToken) { bool Newline = Indenter->mustBreak(State) || (Indenter->canBreak(State) && State.NextToken->NewlinesBefore > 0); unsigned Penalty = 0; formatChildren(State, Newline, /*DryRun=*/false, Penalty); Indenter->addTokenToState(State, Newline, /*DryRun=*/false); } return 0; } }; /// \brief Formatter that puts all tokens into a single line without breaks. class NoLineBreakFormatter : public LineFormatter { public: NoLineBreakFormatter(ContinuationIndenter *Indenter, WhitespaceManager *Whitespaces, const FormatStyle &Style, UnwrappedLineFormatter *BlockFormatter) : LineFormatter(Indenter, Whitespaces, Style, BlockFormatter) {} /// \brief Puts all tokens into a single line. unsigned formatLine(const AnnotatedLine &Line, unsigned FirstIndent, bool DryRun) override { unsigned Penalty = 0; LineState State = Indenter->getInitialState(FirstIndent, &Line, DryRun); while (State.NextToken) { formatChildren(State, /*Newline=*/false, DryRun, Penalty); Indenter->addTokenToState(State, /*Newline=*/false, DryRun); } return Penalty; } }; /// \brief Finds the best way to break lines. class OptimizingLineFormatter : public LineFormatter { public: OptimizingLineFormatter(ContinuationIndenter *Indenter, WhitespaceManager *Whitespaces, const FormatStyle &Style, UnwrappedLineFormatter *BlockFormatter) : LineFormatter(Indenter, Whitespaces, Style, BlockFormatter) {} /// \brief Formats the line by finding the best line breaks with line lengths /// below the column limit. unsigned formatLine(const AnnotatedLine &Line, unsigned FirstIndent, bool DryRun) override { LineState State = Indenter->getInitialState(FirstIndent, &Line, DryRun); // If the ObjC method declaration does not fit on a line, we should format // it with one arg per line. if (State.Line->Type == LT_ObjCMethodDecl) State.Stack.back().BreakBeforeParameter = true; // Find best solution in solution space. return analyzeSolutionSpace(State, DryRun); } private: struct CompareLineStatePointers { bool operator()(LineState *obj1, LineState *obj2) const { return *obj1 < *obj2; } }; /// \brief A pair of <penalty, count> that is used to prioritize the BFS on. /// /// In case of equal penalties, we want to prefer states that were inserted /// first. During state generation we make sure that we insert states first /// that break the line as late as possible. typedef std::pair<unsigned, unsigned> OrderedPenalty; /// \brief An edge in the solution space from \c Previous->State to \c State, /// inserting a newline dependent on the \c NewLine. struct StateNode { StateNode(const LineState &State, bool NewLine, StateNode *Previous) : State(State), NewLine(NewLine), Previous(Previous) {} LineState State; bool NewLine; StateNode *Previous; }; /// \brief An item in the prioritized BFS search queue. The \c StateNode's /// \c State has the given \c OrderedPenalty. typedef std::pair<OrderedPenalty, StateNode *> QueueItem; /// \brief The BFS queue type. typedef std::priority_queue<QueueItem, std::vector<QueueItem>, std::greater<QueueItem>> QueueType; /// \brief Analyze the entire solution space starting from \p InitialState. /// /// This implements a variant of Dijkstra's algorithm on the graph that spans /// the solution space (\c LineStates are the nodes). The algorithm tries to /// find the shortest path (the one with lowest penalty) from \p InitialState /// to a state where all tokens are placed. Returns the penalty. /// /// If \p DryRun is \c false, directly applies the changes. unsigned analyzeSolutionSpace(LineState &InitialState, bool DryRun) { std::set<LineState *, CompareLineStatePointers> Seen; // Increasing count of \c StateNode items we have created. This is used to // create a deterministic order independent of the container. unsigned Count = 0; QueueType Queue; // Insert start element into queue. StateNode *Node = new (Allocator.Allocate()) StateNode(InitialState, false, nullptr); Queue.push(QueueItem(OrderedPenalty(0, Count), Node)); ++Count; unsigned Penalty = 0; // While not empty, take first element and follow edges. while (!Queue.empty()) { Penalty = Queue.top().first.first; StateNode *Node = Queue.top().second; if (!Node->State.NextToken) { DEBUG(llvm::dbgs() << "\n---\nPenalty for line: " << Penalty << "\n"); break; } Queue.pop(); // Cut off the analysis of certain solutions if the analysis gets too // complex. See description of IgnoreStackForComparison. if (Count > 50000) Node->State.IgnoreStackForComparison = true; if (!Seen.insert(&Node->State).second) // State already examined with lower penalty. continue; FormatDecision LastFormat = Node->State.NextToken->Decision; if (LastFormat == FD_Unformatted || LastFormat == FD_Continue) addNextStateToQueue(Penalty, Node, /*NewLine=*/false, &Count, &Queue); if (LastFormat == FD_Unformatted || LastFormat == FD_Break) addNextStateToQueue(Penalty, Node, /*NewLine=*/true, &Count, &Queue); } if (Queue.empty()) { // We were unable to find a solution, do nothing. // FIXME: Add diagnostic? DEBUG(llvm::dbgs() << "Could not find a solution.\n"); return 0; } // Reconstruct the solution. if (!DryRun) reconstructPath(InitialState, Queue.top().second); DEBUG(llvm::dbgs() << "Total number of analyzed states: " << Count << "\n"); DEBUG(llvm::dbgs() << "---\n"); return Penalty; } /// \brief Add the following state to the analysis queue \c Queue. /// /// Assume the current state is \p PreviousNode and has been reached with a /// penalty of \p Penalty. Insert a line break if \p NewLine is \c true. void addNextStateToQueue(unsigned Penalty, StateNode *PreviousNode, bool NewLine, unsigned *Count, QueueType *Queue) { if (NewLine && !Indenter->canBreak(PreviousNode->State)) return; if (!NewLine && Indenter->mustBreak(PreviousNode->State)) return; StateNode *Node = new (Allocator.Allocate()) StateNode(PreviousNode->State, NewLine, PreviousNode); if (!formatChildren(Node->State, NewLine, /*DryRun=*/true, Penalty)) return; Penalty += Indenter->addTokenToState(Node->State, NewLine, true); Queue->push(QueueItem(OrderedPenalty(Penalty, *Count), Node)); ++(*Count); } /// \brief Applies the best formatting by reconstructing the path in the /// solution space that leads to \c Best. void reconstructPath(LineState &State, StateNode *Best) { std::deque<StateNode *> Path; // We do not need a break before the initial token. while (Best->Previous) { Path.push_front(Best); Best = Best->Previous; } for (std::deque<StateNode *>::iterator I = Path.begin(), E = Path.end(); I != E; ++I) { unsigned Penalty = 0; formatChildren(State, (*I)->NewLine, /*DryRun=*/false, Penalty); Penalty += Indenter->addTokenToState(State, (*I)->NewLine, false); DEBUG({ printLineState((*I)->Previous->State); if ((*I)->NewLine) { llvm::dbgs() << "Penalty for placing " << (*I)->Previous->State.NextToken->Tok.getName() << ": " << Penalty << "\n"; } }); } } llvm::SpecificBumpPtrAllocator<StateNode> Allocator; }; } // anonymous namespace unsigned UnwrappedLineFormatter::format(const SmallVectorImpl<AnnotatedLine *> &Lines, bool DryRun, int AdditionalIndent, bool FixBadIndentation) { LineJoiner Joiner(Style, Keywords, Lines); // Try to look up already computed penalty in DryRun-mode. std::pair<const SmallVectorImpl<AnnotatedLine *> *, unsigned> CacheKey( &Lines, AdditionalIndent); auto CacheIt = PenaltyCache.find(CacheKey); if (DryRun && CacheIt != PenaltyCache.end()) return CacheIt->second; assert(!Lines.empty()); unsigned Penalty = 0; LevelIndentTracker IndentTracker(Style, Keywords, Lines[0]->Level, AdditionalIndent); const AnnotatedLine *PreviousLine = nullptr; const AnnotatedLine *NextLine = nullptr; // The minimum level of consecutive lines that have been formatted. unsigned RangeMinLevel = UINT_MAX; for (const AnnotatedLine *Line = Joiner.getNextMergedLine(DryRun, IndentTracker); Line; Line = NextLine) { const AnnotatedLine &TheLine = *Line; unsigned Indent = IndentTracker.getIndent(); // We continue formatting unchanged lines to adjust their indent, e.g. if a // scope was added. However, we need to carefully stop doing this when we // exit the scope of affected lines to prevent indenting a the entire // remaining file if it currently missing a closing brace. bool ContinueFormatting = TheLine.Level > RangeMinLevel || (TheLine.Level == RangeMinLevel && !TheLine.startsWith(tok::r_brace)); bool FixIndentation = (FixBadIndentation || ContinueFormatting) && Indent != TheLine.First->OriginalColumn; bool ShouldFormat = TheLine.Affected || FixIndentation; // We cannot format this line; if the reason is that the line had a // parsing error, remember that. if (ShouldFormat && TheLine.Type == LT_Invalid && IncompleteFormat) *IncompleteFormat = true; if (ShouldFormat && TheLine.Type != LT_Invalid) { if (!DryRun) formatFirstToken(*TheLine.First, PreviousLine, TheLine.Level, Indent, TheLine.InPPDirective); NextLine = Joiner.getNextMergedLine(DryRun, IndentTracker); unsigned ColumnLimit = getColumnLimit(TheLine.InPPDirective, NextLine); bool FitsIntoOneLine = TheLine.Last->TotalLength + Indent <= ColumnLimit || TheLine.Type == LT_ImportStatement; if (Style.ColumnLimit == 0) NoColumnLimitLineFormatter(Indenter, Whitespaces, Style, this) .formatLine(TheLine, Indent, DryRun); else if (FitsIntoOneLine) Penalty += NoLineBreakFormatter(Indenter, Whitespaces, Style, this) .formatLine(TheLine, Indent, DryRun); else Penalty += OptimizingLineFormatter(Indenter, Whitespaces, Style, this) .formatLine(TheLine, Indent, DryRun); RangeMinLevel = std::min(RangeMinLevel, TheLine.Level); } else { // If no token in the current line is affected, we still need to format // affected children. if (TheLine.ChildrenAffected) format(TheLine.Children, DryRun); // Adapt following lines on the current indent level to the same level // unless the current \c AnnotatedLine is not at the beginning of a line. bool StartsNewLine = TheLine.First->NewlinesBefore > 0 || TheLine.First->IsFirst; if (StartsNewLine) IndentTracker.adjustToUnmodifiedLine(TheLine); if (!DryRun) { bool ReformatLeadingWhitespace = StartsNewLine && ((PreviousLine && PreviousLine->Affected) || TheLine.LeadingEmptyLinesAffected); // Format the first token. if (ReformatLeadingWhitespace) formatFirstToken(*TheLine.First, PreviousLine, TheLine.Level, TheLine.First->OriginalColumn, TheLine.InPPDirective); else Whitespaces->addUntouchableToken(*TheLine.First, TheLine.InPPDirective); // Notify the WhitespaceManager about the unchanged whitespace. for (FormatToken *Tok = TheLine.First->Next; Tok; Tok = Tok->Next) Whitespaces->addUntouchableToken(*Tok, TheLine.InPPDirective); } NextLine = Joiner.getNextMergedLine(DryRun, IndentTracker); RangeMinLevel = UINT_MAX; } if (!DryRun) markFinalized(TheLine.First); PreviousLine = &TheLine; } PenaltyCache[CacheKey] = Penalty; return Penalty; } void UnwrappedLineFormatter::formatFirstToken(FormatToken &RootToken, const AnnotatedLine *PreviousLine, unsigned IndentLevel, unsigned Indent, bool InPPDirective) { if (RootToken.is(tok::eof)) { unsigned Newlines = std::min(RootToken.NewlinesBefore, 1u); Whitespaces->replaceWhitespace(RootToken, Newlines, /*IndentLevel=*/0, /*Spaces=*/0, /*TargetColumn=*/0); return; } unsigned Newlines = std::min(RootToken.NewlinesBefore, Style.MaxEmptyLinesToKeep + 1); // Remove empty lines before "}" where applicable. if (RootToken.is(tok::r_brace) && (!RootToken.Next || (RootToken.Next->is(tok::semi) && !RootToken.Next->Next))) Newlines = std::min(Newlines, 1u); if (Newlines == 0 && !RootToken.IsFirst) Newlines = 1; if (RootToken.IsFirst && !RootToken.HasUnescapedNewline) Newlines = 0; // Remove empty lines after "{". if (!Style.KeepEmptyLinesAtTheStartOfBlocks && PreviousLine && PreviousLine->Last->is(tok::l_brace) && PreviousLine->First->isNot(tok::kw_namespace) && !startsExternCBlock(*PreviousLine)) Newlines = 1; // Insert extra new line before access specifiers. if (PreviousLine && PreviousLine->Last->isOneOf(tok::semi, tok::r_brace) && RootToken.isAccessSpecifier() && RootToken.NewlinesBefore == 1) ++Newlines; // Remove empty lines after access specifiers. if (PreviousLine && PreviousLine->First->isAccessSpecifier() && (!PreviousLine->InPPDirective || !RootToken.HasUnescapedNewline)) Newlines = std::min(1u, Newlines); Whitespaces->replaceWhitespace(RootToken, Newlines, IndentLevel, Indent, Indent, InPPDirective && !RootToken.HasUnescapedNewline); } unsigned UnwrappedLineFormatter::getColumnLimit(bool InPPDirective, const AnnotatedLine *NextLine) const { // In preprocessor directives reserve two chars for trailing " \" if the // next line continues the preprocessor directive. bool ContinuesPPDirective = InPPDirective && // If there is no next line, this is likely a child line and the parent // continues the preprocessor directive. (!NextLine || (NextLine->InPPDirective && // If there is an unescaped newline between this line and the next, the // next line starts a new preprocessor directive. !NextLine->First->HasUnescapedNewline)); return Style.ColumnLimit - (ContinuesPPDirective ? 2 : 0); } } // namespace format } // namespace clang