/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "art_method.h" #include "lambda/art_lambda_method.h" #include "lambda/closure.h" #include "lambda/closure_builder.h" #include "lambda/closure_builder-inl.h" #include "utils.h" #include <numeric> #include <stdint.h> #include <type_traits> #include "gtest/gtest.h" // Turn this on for some extra printfs to help with debugging, since some code is optimized out. static constexpr const bool kDebuggingClosureTest = true; namespace std { using Closure = art::lambda::Closure; // Specialize std::default_delete so it knows how to properly delete closures // through the way we allocate them in this test. // // This is test-only because we don't want the rest of Art to do this. template <> struct default_delete<Closure> { void operator()(Closure* closure) const { delete[] reinterpret_cast<char*>(closure); } }; } // namespace std namespace art { // Fake lock acquisition to please clang lock checker. // This doesn't actually acquire any locks because we don't need multiple threads in this gtest. struct SCOPED_CAPABILITY ScopedFakeLock { explicit ScopedFakeLock(MutatorMutex& mu) ACQUIRE(mu) : mu_(mu) { } ~ScopedFakeLock() RELEASE() {} MutatorMutex& mu_; }; namespace lambda { class ClosureTest : public ::testing::Test { public: ClosureTest() = default; ~ClosureTest() = default; protected: static void SetUpTestCase() { } virtual void SetUp() { // Create a completely dummy method here. // It's "OK" because the Closure never needs to look inside of the ArtMethod // (it just needs to be non-null). uintptr_t ignore = 0xbadbad; fake_method_ = reinterpret_cast<ArtMethod*>(ignore); } static ::testing::AssertionResult IsResultSuccessful(bool result) { if (result) { return ::testing::AssertionSuccess(); } else { return ::testing::AssertionFailure(); } } // Create a closure that captures the static variables from 'args' by-value. // The lambda method's captured variables types must match the ones in 'args'. // -- This creates the closure directly in-memory by using memcpy. template <typename ... Args> static std::unique_ptr<Closure> CreateClosureStaticVariables(ArtLambdaMethod* lambda_method, Args&& ... args) { constexpr size_t header_size = sizeof(ArtLambdaMethod*); const size_t static_size = GetArgsSize(args ...) + header_size; EXPECT_GE(static_size, sizeof(Closure)); // Can't just 'new' the Closure since we don't know the size up front. char* closure_as_char_array = new char[static_size]; Closure* closure_ptr = new (closure_as_char_array) Closure; // Set up the data closure_ptr->lambda_info_ = lambda_method; CopyArgs(closure_ptr->captured_[0].static_variables_, args ...); // Make sure the entire thing is deleted once the unique_ptr goes out of scope. return std::unique_ptr<Closure>(closure_ptr); // NOLINT [whitespace/braces] [5] } // Copy variadic arguments into the destination array with memcpy. template <typename T, typename ... Args> static void CopyArgs(uint8_t destination[], T&& arg, Args&& ... args) { memcpy(destination, &arg, sizeof(arg)); CopyArgs(destination + sizeof(arg), args ...); } // Base case: Done. static void CopyArgs(uint8_t destination[]) { UNUSED(destination); } // Create a closure that captures the static variables from 'args' by-value. // The lambda method's captured variables types must match the ones in 'args'. // -- This uses ClosureBuilder interface to set up the closure indirectly. template <typename ... Args> static std::unique_ptr<Closure> CreateClosureStaticVariablesFromBuilder( ArtLambdaMethod* lambda_method, Args&& ... args) { // Acquire a fake lock since closure_builder needs it. ScopedFakeLock fake_lock(*Locks::mutator_lock_); ClosureBuilder closure_builder; CaptureVariableFromArgsList(/*out*/closure_builder, args ...); EXPECT_EQ(sizeof...(args), closure_builder.GetCaptureCount()); constexpr size_t header_size = sizeof(ArtLambdaMethod*); const size_t static_size = GetArgsSize(args ...) + header_size; EXPECT_GE(static_size, sizeof(Closure)); // For static variables, no nested closure, so size must match exactly. EXPECT_EQ(static_size, closure_builder.GetSize()); // Can't just 'new' the Closure since we don't know the size up front. char* closure_as_char_array = new char[static_size]; Closure* closure_ptr = new (closure_as_char_array) Closure; // The closure builder packs the captured variables into a Closure. closure_builder.CreateInPlace(closure_ptr, lambda_method); // Make sure the entire thing is deleted once the unique_ptr goes out of scope. return std::unique_ptr<Closure>(closure_ptr); // NOLINT [whitespace/braces] [5] } // Call the correct ClosureBuilder::CaptureVariableXYZ function based on the type of args. // Invokes for each arg in args. template <typename ... Args> static void CaptureVariableFromArgsList(/*out*/ClosureBuilder& closure_builder, Args ... args) { int ignore[] = { (CaptureVariableFromArgs(/*out*/closure_builder, args),0)... // NOLINT [whitespace/comma] [3] }; UNUSED(ignore); } // ClosureBuilder::CaptureVariablePrimitive for types that are primitive only. template <typename T> typename std::enable_if<ShortyFieldTypeTraits::IsPrimitiveType<T>()>::type static CaptureVariableFromArgs(/*out*/ClosureBuilder& closure_builder, T value) { static_assert(ShortyFieldTypeTraits::IsPrimitiveType<T>(), "T must be a shorty primitive"); closure_builder.CaptureVariablePrimitive<T, ShortyFieldTypeSelectEnum<T>::value>(value); } // ClosureBuilder::CaptureVariableObject for types that are objects only. template <typename T> typename std::enable_if<ShortyFieldTypeTraits::IsObjectType<T>()>::type static CaptureVariableFromArgs(/*out*/ClosureBuilder& closure_builder, const T* object) { ScopedFakeLock fake_lock(*Locks::mutator_lock_); closure_builder.CaptureVariableObject(object); } // Sum of sizeof(Args...). template <typename T, typename ... Args> static constexpr size_t GetArgsSize(T&& arg, Args&& ... args) { return sizeof(arg) + GetArgsSize(args ...); } // Base case: Done. static constexpr size_t GetArgsSize() { return 0; } // Take "U" and memcpy it into a "T". T starts out as (T)0. template <typename T, typename U> static T ExpandingBitCast(const U& val) { static_assert(sizeof(T) >= sizeof(U), "U too large"); T new_val = static_cast<T>(0); memcpy(&new_val, &val, sizeof(U)); return new_val; } // Templatized extraction from closures by checking their type with enable_if. template <typename T> static typename std::enable_if<ShortyFieldTypeTraits::IsPrimitiveNarrowType<T>()>::type ExpectCapturedVariable(const Closure* closure, size_t index, T value) { EXPECT_EQ(ExpandingBitCast<uint32_t>(value), closure->GetCapturedPrimitiveNarrow(index)) << " with index " << index; } template <typename T> static typename std::enable_if<ShortyFieldTypeTraits::IsPrimitiveWideType<T>()>::type ExpectCapturedVariable(const Closure* closure, size_t index, T value) { EXPECT_EQ(ExpandingBitCast<uint64_t>(value), closure->GetCapturedPrimitiveWide(index)) << " with index " << index; } // Templatized SFINAE for Objects so we can get better error messages. template <typename T> static typename std::enable_if<ShortyFieldTypeTraits::IsObjectType<T>()>::type ExpectCapturedVariable(const Closure* closure, size_t index, const T* object) { EXPECT_EQ(object, closure->GetCapturedObject(index)) << " with index " << index; } template <typename ... Args> void TestPrimitive(const char *descriptor, Args ... args) { const char* shorty = descriptor; SCOPED_TRACE(descriptor); ASSERT_EQ(strlen(shorty), sizeof...(args)) << "test error: descriptor must have same # of types as the # of captured variables"; // Important: This fake lambda method needs to out-live any Closures we create with it. ArtLambdaMethod lambda_method{fake_method_, // NOLINT [whitespace/braces] [5] descriptor, // NOLINT [whitespace/blank_line] [2] shorty, }; std::unique_ptr<Closure> closure_a; std::unique_ptr<Closure> closure_b; // Test the closure twice when it's constructed in different ways. { // Create the closure in a "raw" manner, that is directly with memcpy // since we know the underlying data format. // This simulates how the compiler would lay out the data directly. SCOPED_TRACE("raw closure"); std::unique_ptr<Closure> closure_raw = CreateClosureStaticVariables(&lambda_method, args ...); if (kDebuggingClosureTest) { std::cerr << "closure raw address: " << closure_raw.get() << std::endl; } TestPrimitiveWithClosure(closure_raw.get(), descriptor, shorty, args ...); closure_a = std::move(closure_raw); } { // Create the closure with the ClosureBuilder, which is done indirectly. // This simulates how the interpreter would create the closure dynamically at runtime. SCOPED_TRACE("closure from builder"); std::unique_ptr<Closure> closure_built = CreateClosureStaticVariablesFromBuilder(&lambda_method, args ...); if (kDebuggingClosureTest) { std::cerr << "closure built address: " << closure_built.get() << std::endl; } TestPrimitiveWithClosure(closure_built.get(), descriptor, shorty, args ...); closure_b = std::move(closure_built); } // The closures should be identical memory-wise as well. EXPECT_EQ(closure_a->GetSize(), closure_b->GetSize()); EXPECT_TRUE(memcmp(closure_a.get(), closure_b.get(), std::min(closure_a->GetSize(), closure_b->GetSize())) == 0); } template <typename ... Args> static void TestPrimitiveWithClosure(Closure* closure, const char* descriptor, const char* shorty, Args ... args) { EXPECT_EQ(sizeof(ArtLambdaMethod*) + GetArgsSize(args...), closure->GetSize()); EXPECT_EQ(sizeof...(args), closure->GetNumberOfCapturedVariables()); EXPECT_STREQ(descriptor, closure->GetCapturedVariablesTypeDescriptor()); TestPrimitiveExpects(closure, shorty, /*index*/0, args ...); } // Call EXPECT_EQ for each argument in the closure's #GetCapturedX. template <typename T, typename ... Args> static void TestPrimitiveExpects( const Closure* closure, const char* shorty, size_t index, T arg, Args ... args) { ASSERT_EQ(ShortyFieldType(shorty[index]).GetStaticSize(), sizeof(T)) << "Test error: Type mismatch at index " << index; ExpectCapturedVariable(closure, index, arg); EXPECT_EQ(ShortyFieldType(shorty[index]), closure->GetCapturedShortyType(index)); TestPrimitiveExpects(closure, shorty, index + 1, args ...); } // Base case for EXPECT_EQ. static void TestPrimitiveExpects(const Closure* closure, const char* shorty, size_t index) { UNUSED(closure, shorty, index); } ArtMethod* fake_method_; }; TEST_F(ClosureTest, TestTrivial) { ArtLambdaMethod lambda_method{fake_method_, // NOLINT [whitespace/braces] [5] "", // No captured variables // NOLINT [whitespace/blank_line] [2] "", // No captured variables }; std::unique_ptr<Closure> closure = CreateClosureStaticVariables(&lambda_method); EXPECT_EQ(sizeof(ArtLambdaMethod*), closure->GetSize()); EXPECT_EQ(0u, closure->GetNumberOfCapturedVariables()); } // TEST_F TEST_F(ClosureTest, TestPrimitiveSingle) { TestPrimitive("Z", true); TestPrimitive("B", int8_t(0xde)); TestPrimitive("C", uint16_t(0xbeef)); TestPrimitive("S", int16_t(0xdead)); TestPrimitive("I", int32_t(0xdeadbeef)); TestPrimitive("F", 0.123f); TestPrimitive("J", int64_t(0xdeadbeef00c0ffee)); TestPrimitive("D", 123.456); } // TEST_F TEST_F(ClosureTest, TestPrimitiveMany) { TestPrimitive("ZZ", true, false); TestPrimitive("ZZZ", true, false, true); TestPrimitive("BBBB", int8_t(0xde), int8_t(0xa0), int8_t(0xff), int8_t(0xcc)); TestPrimitive("CC", uint16_t(0xbeef), uint16_t(0xdead)); TestPrimitive("SSSS", int16_t(0xdead), int16_t(0xc0ff), int16_t(0xf000), int16_t(0xbaba)); TestPrimitive("III", int32_t(0xdeadbeef), int32_t(0xc0ffee), int32_t(0xbeefdead)); TestPrimitive("FF", 0.123f, 555.666f); TestPrimitive("JJJ", int64_t(0xdeadbeef00c0ffee), int64_t(0x123), int64_t(0xc0ffee)); TestPrimitive("DD", 123.456, 777.888); } // TEST_F TEST_F(ClosureTest, TestPrimitiveMixed) { TestPrimitive("ZZBBCCSSIIFFJJDD", true, false, int8_t(0xde), int8_t(0xa0), uint16_t(0xbeef), uint16_t(0xdead), int16_t(0xdead), int16_t(0xc0ff), int32_t(0xdeadbeef), int32_t(0xc0ffee), 0.123f, 555.666f, int64_t(0xdeadbeef00c0ffee), int64_t(0x123), 123.456, 777.888); } // TEST_F } // namespace lambda } // namespace art