/* * Copyright (C) 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* Art assembly interpreter notes: First validate assembly code by implementing ExecuteXXXImpl() style body (doesn't handle invoke, allows higher-level code to create frame & shadow frame. Once that's working, support direct entry code & eliminate shadow frame (and excess locals allocation. Some (hopefully) temporary ugliness. We'll treat rFP as pointing to the base of the vreg array within the shadow frame. Access the other fields, dex_pc_, method_ and number_of_vregs_ via negative offsets. For now, we'll continue the shadow frame mechanism of double-storing object references - via rFP & number_of_vregs_. */ /* x86 ABI general notes: Caller save set: eax, edx, ecx, st(0)-st(7) Callee save set: ebx, esi, edi, ebp Return regs: 32-bit in eax 64-bit in edx:eax (low-order 32 in eax) fp on top of fp stack st(0) Parameters passed on stack, pushed right-to-left. On entry to target, first parm is at 4(%esp). Traditional entry code is: functEntry: push %ebp # save old frame pointer mov %ebp,%esp # establish new frame pointer sub FrameSize,%esp # Allocate storage for spill, locals & outs Once past the prologue, arguments are referenced at ((argno + 2)*4)(%ebp) Stack must be 16-byte aligned to support SSE in native code. If we're not doing variable stack allocation (alloca), the frame pointer can be eliminated and all arg references adjusted to be esp relative. */ /* Mterp and x86 notes: Some key interpreter variables will be assigned to registers. nick reg purpose rPC esi interpreted program counter, used for fetching instructions rFP edi interpreted frame pointer, used for accessing locals and args rINSTw bx first 16-bit code of current instruction rINSTbl bl opcode portion of instruction word rINSTbh bh high byte of inst word, usually contains src/tgt reg names rIBASE edx base of instruction handler table rREFS ebp base of object references in shadow frame. Notes: o High order 16 bits of ebx must be zero on entry to handler o rPC, rFP, rINSTw/rINSTbl valid on handler entry and exit o eax and ecx are scratch, rINSTw/ebx sometimes scratch Macros are provided for common operations. Each macro MUST emit only one instruction to make instruction-counting easier. They MUST NOT alter unspecified registers or condition codes. */ /* * This is a #include, not a %include, because we want the C pre-processor * to expand the macros into assembler assignment statements. */ #include "asm_support.h" /* * Handle mac compiler specific */ #if defined(__APPLE__) #define MACRO_LITERAL(value) $$(value) #define FUNCTION_TYPE(name) #define SIZE(start,end) // Mac OS' symbols have an _ prefix. #define SYMBOL(name) _ ## name #else #define MACRO_LITERAL(value) $$value #define FUNCTION_TYPE(name) .type name, @function #define SIZE(start,end) .size start, .-end #define SYMBOL(name) name #endif .macro PUSH _reg pushl \_reg .cfi_adjust_cfa_offset 4 .cfi_rel_offset \_reg, 0 .endm .macro POP _reg popl \_reg .cfi_adjust_cfa_offset -4 .cfi_restore \_reg .endm /* * Instead of holding a pointer to the shadow frame, we keep rFP at the base of the vregs. So, * to access other shadow frame fields, we need to use a backwards offset. Define those here. */ #define OFF_FP(a) (a - SHADOWFRAME_VREGS_OFFSET) #define OFF_FP_NUMBER_OF_VREGS OFF_FP(SHADOWFRAME_NUMBER_OF_VREGS_OFFSET) #define OFF_FP_DEX_PC OFF_FP(SHADOWFRAME_DEX_PC_OFFSET) #define OFF_FP_LINK OFF_FP(SHADOWFRAME_LINK_OFFSET) #define OFF_FP_METHOD OFF_FP(SHADOWFRAME_METHOD_OFFSET) #define OFF_FP_RESULT_REGISTER OFF_FP(SHADOWFRAME_RESULT_REGISTER_OFFSET) #define OFF_FP_DEX_PC_PTR OFF_FP(SHADOWFRAME_DEX_PC_PTR_OFFSET) #define OFF_FP_CODE_ITEM OFF_FP(SHADOWFRAME_CODE_ITEM_OFFSET) #define OFF_FP_COUNTDOWN_OFFSET OFF_FP(SHADOWFRAME_HOTNESS_COUNTDOWN_OFFSET) #define OFF_FP_SHADOWFRAME OFF_FP(0) /* Frame size must be 16-byte aligned. * Remember about 4 bytes for return address + 4 * 4 for spills */ #define FRAME_SIZE 28 /* Frame diagram while executing ExecuteMterpImpl, high to low addresses */ #define IN_ARG3 (FRAME_SIZE + 16 + 16) #define IN_ARG2 (FRAME_SIZE + 16 + 12) #define IN_ARG1 (FRAME_SIZE + 16 + 8) #define IN_ARG0 (FRAME_SIZE + 16 + 4) /* Spill offsets relative to %esp */ #define LOCAL0 (FRAME_SIZE - 4) #define LOCAL1 (FRAME_SIZE - 8) #define LOCAL2 (FRAME_SIZE - 12) /* Out Arg offsets, relative to %esp */ #define OUT_ARG3 ( 12) #define OUT_ARG2 ( 8) #define OUT_ARG1 ( 4) #define OUT_ARG0 ( 0) /* <- ExecuteMterpImpl esp + 0 */ /* During bringup, we'll use the shadow frame model instead of rFP */ /* single-purpose registers, given names for clarity */ #define rSELF IN_ARG0(%esp) #define rPC %esi #define rFP %edi #define rINST %ebx #define rINSTw %bx #define rINSTbh %bh #define rINSTbl %bl #define rIBASE %edx #define rREFS %ebp #define rPROFILE OFF_FP_COUNTDOWN_OFFSET(rFP) #define MTERP_LOGGING 0 /* * "export" the PC to dex_pc field in the shadow frame, f/b/o future exception objects. Must * be done *before* something throws. * * It's okay to do this more than once. * * NOTE: the fast interpreter keeps track of dex pc as a direct pointer to the mapped * dex byte codes. However, the rest of the runtime expects dex pc to be an instruction * offset into the code_items_[] array. For effiency, we will "export" the * current dex pc as a direct pointer using the EXPORT_PC macro, and rely on GetDexPC * to convert to a dex pc when needed. */ .macro EXPORT_PC movl rPC, OFF_FP_DEX_PC_PTR(rFP) .endm /* * Refresh handler table. */ .macro REFRESH_IBASE movl rSELF, rIBASE movl THREAD_CURRENT_IBASE_OFFSET(rIBASE), rIBASE .endm /* * Refresh handler table. * IBase handles uses the caller save register so we must restore it after each call. * Also it is used as a result of some 64-bit operations (like imul) and we should * restore it in such cases also. * * TODO: Consider spilling the IBase instead of restoring it from Thread structure. */ .macro RESTORE_IBASE movl rSELF, rIBASE movl THREAD_CURRENT_IBASE_OFFSET(rIBASE), rIBASE .endm /* * If rSELF is already loaded then we can use it from known reg. */ .macro RESTORE_IBASE_FROM_SELF _reg movl THREAD_CURRENT_IBASE_OFFSET(\_reg), rIBASE .endm /* * Refresh rINST. * At enter to handler rINST does not contain the opcode number. * However some utilities require the full value, so this macro * restores the opcode number. */ .macro REFRESH_INST _opnum movb rINSTbl, rINSTbh movb MACRO_LITERAL(\_opnum), rINSTbl .endm /* * Fetch the next instruction from rPC into rINSTw. Does not advance rPC. */ .macro FETCH_INST movzwl (rPC), rINST .endm /* * Remove opcode from rINST, compute the address of handler and jump to it. */ .macro GOTO_NEXT movzx rINSTbl,%eax movzbl rINSTbh,rINST shll MACRO_LITERAL(${handler_size_bits}), %eax addl rIBASE, %eax jmp *%eax .endm /* * Advance rPC by instruction count. */ .macro ADVANCE_PC _count leal 2*\_count(rPC), rPC .endm /* * Advance rPC by instruction count, fetch instruction and jump to handler. */ .macro ADVANCE_PC_FETCH_AND_GOTO_NEXT _count ADVANCE_PC \_count FETCH_INST GOTO_NEXT .endm /* * Get/set the 32-bit value from a Dalvik register. */ #define VREG_ADDRESS(_vreg) (rFP,_vreg,4) #define VREG_HIGH_ADDRESS(_vreg) 4(rFP,_vreg,4) #define VREG_REF_ADDRESS(_vreg) (rREFS,_vreg,4) #define VREG_REF_HIGH_ADDRESS(_vreg) 4(rREFS,_vreg,4) .macro GET_VREG _reg _vreg movl (rFP,\_vreg,4), \_reg .endm /* Read wide value to xmm. */ .macro GET_WIDE_FP_VREG _reg _vreg movq (rFP,\_vreg,4), \_reg .endm .macro SET_VREG _reg _vreg movl \_reg, (rFP,\_vreg,4) movl MACRO_LITERAL(0), (rREFS,\_vreg,4) .endm /* Write wide value from xmm. xmm is clobbered. */ .macro SET_WIDE_FP_VREG _reg _vreg movq \_reg, (rFP,\_vreg,4) pxor \_reg, \_reg movq \_reg, (rREFS,\_vreg,4) .endm .macro SET_VREG_OBJECT _reg _vreg movl \_reg, (rFP,\_vreg,4) movl \_reg, (rREFS,\_vreg,4) .endm .macro GET_VREG_HIGH _reg _vreg movl 4(rFP,\_vreg,4), \_reg .endm .macro SET_VREG_HIGH _reg _vreg movl \_reg, 4(rFP,\_vreg,4) movl MACRO_LITERAL(0), 4(rREFS,\_vreg,4) .endm .macro CLEAR_REF _vreg movl MACRO_LITERAL(0), (rREFS,\_vreg,4) .endm .macro CLEAR_WIDE_REF _vreg movl MACRO_LITERAL(0), (rREFS,\_vreg,4) movl MACRO_LITERAL(0), 4(rREFS,\_vreg,4) .endm