/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "interpreter_common.h" #include <cmath> #include "debugger.h" #include "entrypoints/runtime_asm_entrypoints.h" #include "jit/jit.h" #include "mirror/array-inl.h" #include "stack.h" #include "unstarted_runtime.h" #include "verifier/method_verifier.h" namespace art { namespace interpreter { // All lambda closures have to be a consecutive pair of virtual registers. static constexpr size_t kLambdaVirtualRegisterWidth = 2; void ThrowNullPointerExceptionFromInterpreter() { ThrowNullPointerExceptionFromDexPC(); } template<FindFieldType find_type, Primitive::Type field_type, bool do_access_check> bool DoFieldGet(Thread* self, ShadowFrame& shadow_frame, const Instruction* inst, uint16_t inst_data) { const bool is_static = (find_type == StaticObjectRead) || (find_type == StaticPrimitiveRead); const uint32_t field_idx = is_static ? inst->VRegB_21c() : inst->VRegC_22c(); ArtField* f = FindFieldFromCode<find_type, do_access_check>(field_idx, shadow_frame.GetMethod(), self, Primitive::ComponentSize(field_type)); if (UNLIKELY(f == nullptr)) { CHECK(self->IsExceptionPending()); return false; } Object* obj; if (is_static) { obj = f->GetDeclaringClass(); } else { obj = shadow_frame.GetVRegReference(inst->VRegB_22c(inst_data)); if (UNLIKELY(obj == nullptr)) { ThrowNullPointerExceptionForFieldAccess(f, true); return false; } } f->GetDeclaringClass()->AssertInitializedOrInitializingInThread(self); // Report this field access to instrumentation if needed. instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation(); if (UNLIKELY(instrumentation->HasFieldReadListeners())) { Object* this_object = f->IsStatic() ? nullptr : obj; instrumentation->FieldReadEvent(self, this_object, shadow_frame.GetMethod(), shadow_frame.GetDexPC(), f); } uint32_t vregA = is_static ? inst->VRegA_21c(inst_data) : inst->VRegA_22c(inst_data); switch (field_type) { case Primitive::kPrimBoolean: shadow_frame.SetVReg(vregA, f->GetBoolean(obj)); break; case Primitive::kPrimByte: shadow_frame.SetVReg(vregA, f->GetByte(obj)); break; case Primitive::kPrimChar: shadow_frame.SetVReg(vregA, f->GetChar(obj)); break; case Primitive::kPrimShort: shadow_frame.SetVReg(vregA, f->GetShort(obj)); break; case Primitive::kPrimInt: shadow_frame.SetVReg(vregA, f->GetInt(obj)); break; case Primitive::kPrimLong: shadow_frame.SetVRegLong(vregA, f->GetLong(obj)); break; case Primitive::kPrimNot: shadow_frame.SetVRegReference(vregA, f->GetObject(obj)); break; default: LOG(FATAL) << "Unreachable: " << field_type; UNREACHABLE(); } return true; } // Explicitly instantiate all DoFieldGet functions. #define EXPLICIT_DO_FIELD_GET_TEMPLATE_DECL(_find_type, _field_type, _do_check) \ template bool DoFieldGet<_find_type, _field_type, _do_check>(Thread* self, \ ShadowFrame& shadow_frame, \ const Instruction* inst, \ uint16_t inst_data) #define EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(_find_type, _field_type) \ EXPLICIT_DO_FIELD_GET_TEMPLATE_DECL(_find_type, _field_type, false); \ EXPLICIT_DO_FIELD_GET_TEMPLATE_DECL(_find_type, _field_type, true); // iget-XXX EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(InstancePrimitiveRead, Primitive::kPrimBoolean) EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(InstancePrimitiveRead, Primitive::kPrimByte) EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(InstancePrimitiveRead, Primitive::kPrimChar) EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(InstancePrimitiveRead, Primitive::kPrimShort) EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(InstancePrimitiveRead, Primitive::kPrimInt) EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(InstancePrimitiveRead, Primitive::kPrimLong) EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(InstanceObjectRead, Primitive::kPrimNot) // sget-XXX EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(StaticPrimitiveRead, Primitive::kPrimBoolean) EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(StaticPrimitiveRead, Primitive::kPrimByte) EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(StaticPrimitiveRead, Primitive::kPrimChar) EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(StaticPrimitiveRead, Primitive::kPrimShort) EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(StaticPrimitiveRead, Primitive::kPrimInt) EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(StaticPrimitiveRead, Primitive::kPrimLong) EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(StaticObjectRead, Primitive::kPrimNot) #undef EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL #undef EXPLICIT_DO_FIELD_GET_TEMPLATE_DECL // Handles iget-quick, iget-wide-quick and iget-object-quick instructions. // Returns true on success, otherwise throws an exception and returns false. template<Primitive::Type field_type> bool DoIGetQuick(ShadowFrame& shadow_frame, const Instruction* inst, uint16_t inst_data) { Object* obj = shadow_frame.GetVRegReference(inst->VRegB_22c(inst_data)); if (UNLIKELY(obj == nullptr)) { // We lost the reference to the field index so we cannot get a more // precised exception message. ThrowNullPointerExceptionFromDexPC(); return false; } MemberOffset field_offset(inst->VRegC_22c()); // Report this field access to instrumentation if needed. Since we only have the offset of // the field from the base of the object, we need to look for it first. instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation(); if (UNLIKELY(instrumentation->HasFieldReadListeners())) { ArtField* f = ArtField::FindInstanceFieldWithOffset(obj->GetClass(), field_offset.Uint32Value()); DCHECK(f != nullptr); DCHECK(!f->IsStatic()); instrumentation->FieldReadEvent(Thread::Current(), obj, shadow_frame.GetMethod(), shadow_frame.GetDexPC(), f); } // Note: iget-x-quick instructions are only for non-volatile fields. const uint32_t vregA = inst->VRegA_22c(inst_data); switch (field_type) { case Primitive::kPrimInt: shadow_frame.SetVReg(vregA, static_cast<int32_t>(obj->GetField32(field_offset))); break; case Primitive::kPrimBoolean: shadow_frame.SetVReg(vregA, static_cast<int32_t>(obj->GetFieldBoolean(field_offset))); break; case Primitive::kPrimByte: shadow_frame.SetVReg(vregA, static_cast<int32_t>(obj->GetFieldByte(field_offset))); break; case Primitive::kPrimChar: shadow_frame.SetVReg(vregA, static_cast<int32_t>(obj->GetFieldChar(field_offset))); break; case Primitive::kPrimShort: shadow_frame.SetVReg(vregA, static_cast<int32_t>(obj->GetFieldShort(field_offset))); break; case Primitive::kPrimLong: shadow_frame.SetVRegLong(vregA, static_cast<int64_t>(obj->GetField64(field_offset))); break; case Primitive::kPrimNot: shadow_frame.SetVRegReference(vregA, obj->GetFieldObject<mirror::Object>(field_offset)); break; default: LOG(FATAL) << "Unreachable: " << field_type; UNREACHABLE(); } return true; } // Explicitly instantiate all DoIGetQuick functions. #define EXPLICIT_DO_IGET_QUICK_TEMPLATE_DECL(_field_type) \ template bool DoIGetQuick<_field_type>(ShadowFrame& shadow_frame, const Instruction* inst, \ uint16_t inst_data) EXPLICIT_DO_IGET_QUICK_TEMPLATE_DECL(Primitive::kPrimInt); // iget-quick. EXPLICIT_DO_IGET_QUICK_TEMPLATE_DECL(Primitive::kPrimBoolean); // iget-boolean-quick. EXPLICIT_DO_IGET_QUICK_TEMPLATE_DECL(Primitive::kPrimByte); // iget-byte-quick. EXPLICIT_DO_IGET_QUICK_TEMPLATE_DECL(Primitive::kPrimChar); // iget-char-quick. EXPLICIT_DO_IGET_QUICK_TEMPLATE_DECL(Primitive::kPrimShort); // iget-short-quick. EXPLICIT_DO_IGET_QUICK_TEMPLATE_DECL(Primitive::kPrimLong); // iget-wide-quick. EXPLICIT_DO_IGET_QUICK_TEMPLATE_DECL(Primitive::kPrimNot); // iget-object-quick. #undef EXPLICIT_DO_IGET_QUICK_TEMPLATE_DECL template<Primitive::Type field_type> static JValue GetFieldValue(const ShadowFrame& shadow_frame, uint32_t vreg) SHARED_REQUIRES(Locks::mutator_lock_) { JValue field_value; switch (field_type) { case Primitive::kPrimBoolean: field_value.SetZ(static_cast<uint8_t>(shadow_frame.GetVReg(vreg))); break; case Primitive::kPrimByte: field_value.SetB(static_cast<int8_t>(shadow_frame.GetVReg(vreg))); break; case Primitive::kPrimChar: field_value.SetC(static_cast<uint16_t>(shadow_frame.GetVReg(vreg))); break; case Primitive::kPrimShort: field_value.SetS(static_cast<int16_t>(shadow_frame.GetVReg(vreg))); break; case Primitive::kPrimInt: field_value.SetI(shadow_frame.GetVReg(vreg)); break; case Primitive::kPrimLong: field_value.SetJ(shadow_frame.GetVRegLong(vreg)); break; case Primitive::kPrimNot: field_value.SetL(shadow_frame.GetVRegReference(vreg)); break; default: LOG(FATAL) << "Unreachable: " << field_type; UNREACHABLE(); } return field_value; } template<FindFieldType find_type, Primitive::Type field_type, bool do_access_check, bool transaction_active> bool DoFieldPut(Thread* self, const ShadowFrame& shadow_frame, const Instruction* inst, uint16_t inst_data) { bool do_assignability_check = do_access_check; bool is_static = (find_type == StaticObjectWrite) || (find_type == StaticPrimitiveWrite); uint32_t field_idx = is_static ? inst->VRegB_21c() : inst->VRegC_22c(); ArtField* f = FindFieldFromCode<find_type, do_access_check>(field_idx, shadow_frame.GetMethod(), self, Primitive::ComponentSize(field_type)); if (UNLIKELY(f == nullptr)) { CHECK(self->IsExceptionPending()); return false; } Object* obj; if (is_static) { obj = f->GetDeclaringClass(); } else { obj = shadow_frame.GetVRegReference(inst->VRegB_22c(inst_data)); if (UNLIKELY(obj == nullptr)) { ThrowNullPointerExceptionForFieldAccess(f, false); return false; } } f->GetDeclaringClass()->AssertInitializedOrInitializingInThread(self); uint32_t vregA = is_static ? inst->VRegA_21c(inst_data) : inst->VRegA_22c(inst_data); // Report this field access to instrumentation if needed. Since we only have the offset of // the field from the base of the object, we need to look for it first. instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation(); if (UNLIKELY(instrumentation->HasFieldWriteListeners())) { JValue field_value = GetFieldValue<field_type>(shadow_frame, vregA); Object* this_object = f->IsStatic() ? nullptr : obj; instrumentation->FieldWriteEvent(self, this_object, shadow_frame.GetMethod(), shadow_frame.GetDexPC(), f, field_value); } switch (field_type) { case Primitive::kPrimBoolean: f->SetBoolean<transaction_active>(obj, shadow_frame.GetVReg(vregA)); break; case Primitive::kPrimByte: f->SetByte<transaction_active>(obj, shadow_frame.GetVReg(vregA)); break; case Primitive::kPrimChar: f->SetChar<transaction_active>(obj, shadow_frame.GetVReg(vregA)); break; case Primitive::kPrimShort: f->SetShort<transaction_active>(obj, shadow_frame.GetVReg(vregA)); break; case Primitive::kPrimInt: f->SetInt<transaction_active>(obj, shadow_frame.GetVReg(vregA)); break; case Primitive::kPrimLong: f->SetLong<transaction_active>(obj, shadow_frame.GetVRegLong(vregA)); break; case Primitive::kPrimNot: { Object* reg = shadow_frame.GetVRegReference(vregA); if (do_assignability_check && reg != nullptr) { // FieldHelper::GetType can resolve classes, use a handle wrapper which will restore the // object in the destructor. Class* field_class; { StackHandleScope<2> hs(self); HandleWrapper<mirror::Object> h_reg(hs.NewHandleWrapper(®)); HandleWrapper<mirror::Object> h_obj(hs.NewHandleWrapper(&obj)); field_class = f->GetType<true>(); } if (!reg->VerifierInstanceOf(field_class)) { // This should never happen. std::string temp1, temp2, temp3; self->ThrowNewExceptionF("Ljava/lang/VirtualMachineError;", "Put '%s' that is not instance of field '%s' in '%s'", reg->GetClass()->GetDescriptor(&temp1), field_class->GetDescriptor(&temp2), f->GetDeclaringClass()->GetDescriptor(&temp3)); return false; } } f->SetObj<transaction_active>(obj, reg); break; } default: LOG(FATAL) << "Unreachable: " << field_type; UNREACHABLE(); } return true; } // Explicitly instantiate all DoFieldPut functions. #define EXPLICIT_DO_FIELD_PUT_TEMPLATE_DECL(_find_type, _field_type, _do_check, _transaction_active) \ template bool DoFieldPut<_find_type, _field_type, _do_check, _transaction_active>(Thread* self, \ const ShadowFrame& shadow_frame, const Instruction* inst, uint16_t inst_data) #define EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(_find_type, _field_type) \ EXPLICIT_DO_FIELD_PUT_TEMPLATE_DECL(_find_type, _field_type, false, false); \ EXPLICIT_DO_FIELD_PUT_TEMPLATE_DECL(_find_type, _field_type, true, false); \ EXPLICIT_DO_FIELD_PUT_TEMPLATE_DECL(_find_type, _field_type, false, true); \ EXPLICIT_DO_FIELD_PUT_TEMPLATE_DECL(_find_type, _field_type, true, true); // iput-XXX EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(InstancePrimitiveWrite, Primitive::kPrimBoolean) EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(InstancePrimitiveWrite, Primitive::kPrimByte) EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(InstancePrimitiveWrite, Primitive::kPrimChar) EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(InstancePrimitiveWrite, Primitive::kPrimShort) EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(InstancePrimitiveWrite, Primitive::kPrimInt) EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(InstancePrimitiveWrite, Primitive::kPrimLong) EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(InstanceObjectWrite, Primitive::kPrimNot) // sput-XXX EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(StaticPrimitiveWrite, Primitive::kPrimBoolean) EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(StaticPrimitiveWrite, Primitive::kPrimByte) EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(StaticPrimitiveWrite, Primitive::kPrimChar) EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(StaticPrimitiveWrite, Primitive::kPrimShort) EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(StaticPrimitiveWrite, Primitive::kPrimInt) EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(StaticPrimitiveWrite, Primitive::kPrimLong) EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(StaticObjectWrite, Primitive::kPrimNot) #undef EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL #undef EXPLICIT_DO_FIELD_PUT_TEMPLATE_DECL template<Primitive::Type field_type, bool transaction_active> bool DoIPutQuick(const ShadowFrame& shadow_frame, const Instruction* inst, uint16_t inst_data) { Object* obj = shadow_frame.GetVRegReference(inst->VRegB_22c(inst_data)); if (UNLIKELY(obj == nullptr)) { // We lost the reference to the field index so we cannot get a more // precised exception message. ThrowNullPointerExceptionFromDexPC(); return false; } MemberOffset field_offset(inst->VRegC_22c()); const uint32_t vregA = inst->VRegA_22c(inst_data); // Report this field modification to instrumentation if needed. Since we only have the offset of // the field from the base of the object, we need to look for it first. instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation(); if (UNLIKELY(instrumentation->HasFieldWriteListeners())) { ArtField* f = ArtField::FindInstanceFieldWithOffset(obj->GetClass(), field_offset.Uint32Value()); DCHECK(f != nullptr); DCHECK(!f->IsStatic()); JValue field_value = GetFieldValue<field_type>(shadow_frame, vregA); instrumentation->FieldWriteEvent(Thread::Current(), obj, shadow_frame.GetMethod(), shadow_frame.GetDexPC(), f, field_value); } // Note: iput-x-quick instructions are only for non-volatile fields. switch (field_type) { case Primitive::kPrimBoolean: obj->SetFieldBoolean<transaction_active>(field_offset, shadow_frame.GetVReg(vregA)); break; case Primitive::kPrimByte: obj->SetFieldByte<transaction_active>(field_offset, shadow_frame.GetVReg(vregA)); break; case Primitive::kPrimChar: obj->SetFieldChar<transaction_active>(field_offset, shadow_frame.GetVReg(vregA)); break; case Primitive::kPrimShort: obj->SetFieldShort<transaction_active>(field_offset, shadow_frame.GetVReg(vregA)); break; case Primitive::kPrimInt: obj->SetField32<transaction_active>(field_offset, shadow_frame.GetVReg(vregA)); break; case Primitive::kPrimLong: obj->SetField64<transaction_active>(field_offset, shadow_frame.GetVRegLong(vregA)); break; case Primitive::kPrimNot: obj->SetFieldObject<transaction_active>(field_offset, shadow_frame.GetVRegReference(vregA)); break; default: LOG(FATAL) << "Unreachable: " << field_type; UNREACHABLE(); } return true; } // Explicitly instantiate all DoIPutQuick functions. #define EXPLICIT_DO_IPUT_QUICK_TEMPLATE_DECL(_field_type, _transaction_active) \ template bool DoIPutQuick<_field_type, _transaction_active>(const ShadowFrame& shadow_frame, \ const Instruction* inst, \ uint16_t inst_data) #define EXPLICIT_DO_IPUT_QUICK_ALL_TEMPLATE_DECL(_field_type) \ EXPLICIT_DO_IPUT_QUICK_TEMPLATE_DECL(_field_type, false); \ EXPLICIT_DO_IPUT_QUICK_TEMPLATE_DECL(_field_type, true); EXPLICIT_DO_IPUT_QUICK_ALL_TEMPLATE_DECL(Primitive::kPrimInt) // iput-quick. EXPLICIT_DO_IPUT_QUICK_ALL_TEMPLATE_DECL(Primitive::kPrimBoolean) // iput-boolean-quick. EXPLICIT_DO_IPUT_QUICK_ALL_TEMPLATE_DECL(Primitive::kPrimByte) // iput-byte-quick. EXPLICIT_DO_IPUT_QUICK_ALL_TEMPLATE_DECL(Primitive::kPrimChar) // iput-char-quick. EXPLICIT_DO_IPUT_QUICK_ALL_TEMPLATE_DECL(Primitive::kPrimShort) // iput-short-quick. EXPLICIT_DO_IPUT_QUICK_ALL_TEMPLATE_DECL(Primitive::kPrimLong) // iput-wide-quick. EXPLICIT_DO_IPUT_QUICK_ALL_TEMPLATE_DECL(Primitive::kPrimNot) // iput-object-quick. #undef EXPLICIT_DO_IPUT_QUICK_ALL_TEMPLATE_DECL #undef EXPLICIT_DO_IPUT_QUICK_TEMPLATE_DECL // We accept a null Instrumentation* meaning we must not report anything to the instrumentation. uint32_t FindNextInstructionFollowingException( Thread* self, ShadowFrame& shadow_frame, uint32_t dex_pc, const instrumentation::Instrumentation* instrumentation) { self->VerifyStack(); StackHandleScope<2> hs(self); Handle<mirror::Throwable> exception(hs.NewHandle(self->GetException())); if (instrumentation != nullptr && instrumentation->HasExceptionCaughtListeners() && self->IsExceptionThrownByCurrentMethod(exception.Get())) { instrumentation->ExceptionCaughtEvent(self, exception.Get()); } bool clear_exception = false; uint32_t found_dex_pc = shadow_frame.GetMethod()->FindCatchBlock( hs.NewHandle(exception->GetClass()), dex_pc, &clear_exception); if (found_dex_pc == DexFile::kDexNoIndex && instrumentation != nullptr) { // Exception is not caught by the current method. We will unwind to the // caller. Notify any instrumentation listener. instrumentation->MethodUnwindEvent(self, shadow_frame.GetThisObject(), shadow_frame.GetMethod(), dex_pc); } else { // Exception is caught in the current method. We will jump to the found_dex_pc. if (clear_exception) { self->ClearException(); } } return found_dex_pc; } void UnexpectedOpcode(const Instruction* inst, const ShadowFrame& shadow_frame) { LOG(FATAL) << "Unexpected instruction: " << inst->DumpString(shadow_frame.GetMethod()->GetDexFile()); UNREACHABLE(); } // Assign register 'src_reg' from shadow_frame to register 'dest_reg' into new_shadow_frame. static inline void AssignRegister(ShadowFrame* new_shadow_frame, const ShadowFrame& shadow_frame, size_t dest_reg, size_t src_reg) SHARED_REQUIRES(Locks::mutator_lock_) { // Uint required, so that sign extension does not make this wrong on 64b systems uint32_t src_value = shadow_frame.GetVReg(src_reg); mirror::Object* o = shadow_frame.GetVRegReference<kVerifyNone>(src_reg); // If both register locations contains the same value, the register probably holds a reference. // Note: As an optimization, non-moving collectors leave a stale reference value // in the references array even after the original vreg was overwritten to a non-reference. if (src_value == reinterpret_cast<uintptr_t>(o)) { new_shadow_frame->SetVRegReference(dest_reg, o); } else { new_shadow_frame->SetVReg(dest_reg, src_value); } } void AbortTransactionF(Thread* self, const char* fmt, ...) { va_list args; va_start(args, fmt); AbortTransactionV(self, fmt, args); va_end(args); } void AbortTransactionV(Thread* self, const char* fmt, va_list args) { CHECK(Runtime::Current()->IsActiveTransaction()); // Constructs abort message. std::string abort_msg; StringAppendV(&abort_msg, fmt, args); // Throws an exception so we can abort the transaction and rollback every change. Runtime::Current()->AbortTransactionAndThrowAbortError(self, abort_msg); } // Separate declaration is required solely for the attributes. template <bool is_range, bool do_assignability_check, size_t kVarArgMax> SHARED_REQUIRES(Locks::mutator_lock_) static inline bool DoCallCommon(ArtMethod* called_method, Thread* self, ShadowFrame& shadow_frame, JValue* result, uint16_t number_of_inputs, uint32_t (&arg)[kVarArgMax], uint32_t vregC) ALWAYS_INLINE; void ArtInterpreterToCompiledCodeBridge(Thread* self, ArtMethod* caller, const DexFile::CodeItem* code_item, ShadowFrame* shadow_frame, JValue* result) SHARED_REQUIRES(Locks::mutator_lock_) { ArtMethod* method = shadow_frame->GetMethod(); // Ensure static methods are initialized. if (method->IsStatic()) { mirror::Class* declaringClass = method->GetDeclaringClass(); if (UNLIKELY(!declaringClass->IsInitialized())) { self->PushShadowFrame(shadow_frame); StackHandleScope<1> hs(self); Handle<mirror::Class> h_class(hs.NewHandle(declaringClass)); if (UNLIKELY(!Runtime::Current()->GetClassLinker()->EnsureInitialized(self, h_class, true, true))) { self->PopShadowFrame(); DCHECK(self->IsExceptionPending()); return; } self->PopShadowFrame(); CHECK(h_class->IsInitializing()); // Reload from shadow frame in case the method moved, this is faster than adding a handle. method = shadow_frame->GetMethod(); } } uint16_t arg_offset = (code_item == nullptr) ? 0 : code_item->registers_size_ - code_item->ins_size_; jit::Jit* jit = Runtime::Current()->GetJit(); if (jit != nullptr && caller != nullptr) { jit->NotifyInterpreterToCompiledCodeTransition(self, caller); } method->Invoke(self, shadow_frame->GetVRegArgs(arg_offset), (shadow_frame->NumberOfVRegs() - arg_offset) * sizeof(uint32_t), result, method->GetInterfaceMethodIfProxy(sizeof(void*))->GetShorty()); } void SetStringInitValueToAllAliases(ShadowFrame* shadow_frame, uint16_t this_obj_vreg, JValue result) SHARED_REQUIRES(Locks::mutator_lock_) { Object* existing = shadow_frame->GetVRegReference(this_obj_vreg); if (existing == nullptr) { // If it's null, we come from compiled code that was deoptimized. Nothing to do, // as the compiler verified there was no alias. // Set the new string result of the StringFactory. shadow_frame->SetVRegReference(this_obj_vreg, result.GetL()); return; } // Set the string init result into all aliases. for (uint32_t i = 0, e = shadow_frame->NumberOfVRegs(); i < e; ++i) { if (shadow_frame->GetVRegReference(i) == existing) { DCHECK_EQ(shadow_frame->GetVRegReference(i), reinterpret_cast<mirror::Object*>(shadow_frame->GetVReg(i))); shadow_frame->SetVRegReference(i, result.GetL()); DCHECK_EQ(shadow_frame->GetVRegReference(i), reinterpret_cast<mirror::Object*>(shadow_frame->GetVReg(i))); } } } template <bool is_range, bool do_assignability_check, size_t kVarArgMax> static inline bool DoCallCommon(ArtMethod* called_method, Thread* self, ShadowFrame& shadow_frame, JValue* result, uint16_t number_of_inputs, uint32_t (&arg)[kVarArgMax], uint32_t vregC) { bool string_init = false; // Replace calls to String.<init> with equivalent StringFactory call. if (UNLIKELY(called_method->GetDeclaringClass()->IsStringClass() && called_method->IsConstructor())) { ScopedObjectAccessUnchecked soa(self); jmethodID mid = soa.EncodeMethod(called_method); called_method = soa.DecodeMethod(WellKnownClasses::StringInitToStringFactoryMethodID(mid)); string_init = true; } // Compute method information. const DexFile::CodeItem* code_item = called_method->GetCodeItem(); // Number of registers for the callee's call frame. uint16_t num_regs; if (LIKELY(code_item != nullptr)) { num_regs = code_item->registers_size_; DCHECK_EQ(string_init ? number_of_inputs - 1 : number_of_inputs, code_item->ins_size_); } else { DCHECK(called_method->IsNative() || called_method->IsProxyMethod()); num_regs = number_of_inputs; } // Hack for String init: // // Rewrite invoke-x java.lang.String.<init>(this, a, b, c, ...) into: // invoke-x StringFactory(a, b, c, ...) // by effectively dropping the first virtual register from the invoke. // // (at this point the ArtMethod has already been replaced, // so we just need to fix-up the arguments) // // Note that FindMethodFromCode in entrypoint_utils-inl.h was also special-cased // to handle the compiler optimization of replacing `this` with null without // throwing NullPointerException. uint32_t string_init_vreg_this = is_range ? vregC : arg[0]; if (UNLIKELY(string_init)) { DCHECK_GT(num_regs, 0u); // As the method is an instance method, there should be at least 1. // The new StringFactory call is static and has one fewer argument. if (code_item == nullptr) { DCHECK(called_method->IsNative() || called_method->IsProxyMethod()); num_regs--; } // else ... don't need to change num_regs since it comes up from the string_init's code item number_of_inputs--; // Rewrite the var-args, dropping the 0th argument ("this") for (uint32_t i = 1; i < arraysize(arg); ++i) { arg[i - 1] = arg[i]; } arg[arraysize(arg) - 1] = 0; // Rewrite the non-var-arg case vregC++; // Skips the 0th vreg in the range ("this"). } // Parameter registers go at the end of the shadow frame. DCHECK_GE(num_regs, number_of_inputs); size_t first_dest_reg = num_regs - number_of_inputs; DCHECK_NE(first_dest_reg, (size_t)-1); // Allocate shadow frame on the stack. const char* old_cause = self->StartAssertNoThreadSuspension("DoCallCommon"); ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr = CREATE_SHADOW_FRAME(num_regs, &shadow_frame, called_method, /* dex pc */ 0); ShadowFrame* new_shadow_frame = shadow_frame_unique_ptr.get(); // Initialize new shadow frame by copying the registers from the callee shadow frame. if (do_assignability_check) { // Slow path. // We might need to do class loading, which incurs a thread state change to kNative. So // register the shadow frame as under construction and allow suspension again. ScopedStackedShadowFramePusher pusher( self, new_shadow_frame, StackedShadowFrameType::kShadowFrameUnderConstruction); self->EndAssertNoThreadSuspension(old_cause); // ArtMethod here is needed to check type information of the call site against the callee. // Type information is retrieved from a DexFile/DexCache for that respective declared method. // // As a special case for proxy methods, which are not dex-backed, // we have to retrieve type information from the proxy's method // interface method instead (which is dex backed since proxies are never interfaces). ArtMethod* method = new_shadow_frame->GetMethod()->GetInterfaceMethodIfProxy(sizeof(void*)); // We need to do runtime check on reference assignment. We need to load the shorty // to get the exact type of each reference argument. const DexFile::TypeList* params = method->GetParameterTypeList(); uint32_t shorty_len = 0; const char* shorty = method->GetShorty(&shorty_len); // Handle receiver apart since it's not part of the shorty. size_t dest_reg = first_dest_reg; size_t arg_offset = 0; if (!method->IsStatic()) { size_t receiver_reg = is_range ? vregC : arg[0]; new_shadow_frame->SetVRegReference(dest_reg, shadow_frame.GetVRegReference(receiver_reg)); ++dest_reg; ++arg_offset; DCHECK(!string_init); // All StringFactory methods are static. } // Copy the caller's invoke-* arguments into the callee's parameter registers. for (uint32_t shorty_pos = 0; dest_reg < num_regs; ++shorty_pos, ++dest_reg, ++arg_offset) { // Skip the 0th 'shorty' type since it represents the return type. DCHECK_LT(shorty_pos + 1, shorty_len) << "for shorty '" << shorty << "'"; const size_t src_reg = (is_range) ? vregC + arg_offset : arg[arg_offset]; switch (shorty[shorty_pos + 1]) { // Handle Object references. 1 virtual register slot. case 'L': { Object* o = shadow_frame.GetVRegReference(src_reg); if (do_assignability_check && o != nullptr) { size_t pointer_size = Runtime::Current()->GetClassLinker()->GetImagePointerSize(); Class* arg_type = method->GetClassFromTypeIndex( params->GetTypeItem(shorty_pos).type_idx_, true /* resolve */, pointer_size); if (arg_type == nullptr) { CHECK(self->IsExceptionPending()); return false; } if (!o->VerifierInstanceOf(arg_type)) { // This should never happen. std::string temp1, temp2; self->ThrowNewExceptionF("Ljava/lang/VirtualMachineError;", "Invoking %s with bad arg %d, type '%s' not instance of '%s'", new_shadow_frame->GetMethod()->GetName(), shorty_pos, o->GetClass()->GetDescriptor(&temp1), arg_type->GetDescriptor(&temp2)); return false; } } new_shadow_frame->SetVRegReference(dest_reg, o); break; } // Handle doubles and longs. 2 consecutive virtual register slots. case 'J': case 'D': { uint64_t wide_value = (static_cast<uint64_t>(shadow_frame.GetVReg(src_reg + 1)) << BitSizeOf<uint32_t>()) | static_cast<uint32_t>(shadow_frame.GetVReg(src_reg)); new_shadow_frame->SetVRegLong(dest_reg, wide_value); // Skip the next virtual register slot since we already used it. ++dest_reg; ++arg_offset; break; } // Handle all other primitives that are always 1 virtual register slot. default: new_shadow_frame->SetVReg(dest_reg, shadow_frame.GetVReg(src_reg)); break; } } } else { size_t arg_index = 0; // Fast path: no extra checks. if (is_range) { // TODO: Implement the range version of invoke-lambda uint16_t first_src_reg = vregC; for (size_t src_reg = first_src_reg, dest_reg = first_dest_reg; dest_reg < num_regs; ++dest_reg, ++src_reg) { AssignRegister(new_shadow_frame, shadow_frame, dest_reg, src_reg); } } else { DCHECK_LE(number_of_inputs, arraysize(arg)); for (; arg_index < number_of_inputs; ++arg_index) { AssignRegister(new_shadow_frame, shadow_frame, first_dest_reg + arg_index, arg[arg_index]); } } self->EndAssertNoThreadSuspension(old_cause); } // Do the call now. if (LIKELY(Runtime::Current()->IsStarted())) { ArtMethod* target = new_shadow_frame->GetMethod(); if (ClassLinker::ShouldUseInterpreterEntrypoint( target, target->GetEntryPointFromQuickCompiledCode())) { ArtInterpreterToInterpreterBridge(self, code_item, new_shadow_frame, result); } else { ArtInterpreterToCompiledCodeBridge( self, shadow_frame.GetMethod(), code_item, new_shadow_frame, result); } } else { UnstartedRuntime::Invoke(self, code_item, new_shadow_frame, result, first_dest_reg); } if (string_init && !self->IsExceptionPending()) { SetStringInitValueToAllAliases(&shadow_frame, string_init_vreg_this, *result); } return !self->IsExceptionPending(); } template<bool is_range, bool do_assignability_check> bool DoLambdaCall(ArtMethod* called_method, Thread* self, ShadowFrame& shadow_frame, const Instruction* inst, uint16_t inst_data ATTRIBUTE_UNUSED, JValue* result) { const uint4_t num_additional_registers = inst->VRegB_25x(); // Argument word count. const uint16_t number_of_inputs = num_additional_registers + kLambdaVirtualRegisterWidth; // The lambda closure register is always present and is not encoded in the count. // Furthermore, the lambda closure register is always wide, so it counts as 2 inputs. // TODO: find a cleaner way to separate non-range and range information without duplicating // code. uint32_t arg[Instruction::kMaxVarArgRegs25x]; // only used in invoke-XXX. uint32_t vregC = 0; // only used in invoke-XXX-range. if (is_range) { vregC = inst->VRegC_3rc(); } else { // TODO(iam): See if it's possible to remove inst_data dependency from 35x to avoid this path inst->GetAllArgs25x(arg); } // TODO: if there's an assignability check, throw instead? DCHECK(called_method->IsStatic()); return DoCallCommon<is_range, do_assignability_check>( called_method, self, shadow_frame, result, number_of_inputs, arg, vregC); } template<bool is_range, bool do_assignability_check> bool DoCall(ArtMethod* called_method, Thread* self, ShadowFrame& shadow_frame, const Instruction* inst, uint16_t inst_data, JValue* result) { // Argument word count. const uint16_t number_of_inputs = (is_range) ? inst->VRegA_3rc(inst_data) : inst->VRegA_35c(inst_data); // TODO: find a cleaner way to separate non-range and range information without duplicating // code. uint32_t arg[Instruction::kMaxVarArgRegs] = {}; // only used in invoke-XXX. uint32_t vregC = 0; if (is_range) { vregC = inst->VRegC_3rc(); } else { vregC = inst->VRegC_35c(); inst->GetVarArgs(arg, inst_data); } return DoCallCommon<is_range, do_assignability_check>( called_method, self, shadow_frame, result, number_of_inputs, arg, vregC); } template <bool is_range, bool do_access_check, bool transaction_active> bool DoFilledNewArray(const Instruction* inst, const ShadowFrame& shadow_frame, Thread* self, JValue* result) { DCHECK(inst->Opcode() == Instruction::FILLED_NEW_ARRAY || inst->Opcode() == Instruction::FILLED_NEW_ARRAY_RANGE); const int32_t length = is_range ? inst->VRegA_3rc() : inst->VRegA_35c(); if (!is_range) { // Checks FILLED_NEW_ARRAY's length does not exceed 5 arguments. CHECK_LE(length, 5); } if (UNLIKELY(length < 0)) { ThrowNegativeArraySizeException(length); return false; } uint16_t type_idx = is_range ? inst->VRegB_3rc() : inst->VRegB_35c(); Class* array_class = ResolveVerifyAndClinit(type_idx, shadow_frame.GetMethod(), self, false, do_access_check); if (UNLIKELY(array_class == nullptr)) { DCHECK(self->IsExceptionPending()); return false; } CHECK(array_class->IsArrayClass()); Class* component_class = array_class->GetComponentType(); const bool is_primitive_int_component = component_class->IsPrimitiveInt(); if (UNLIKELY(component_class->IsPrimitive() && !is_primitive_int_component)) { if (component_class->IsPrimitiveLong() || component_class->IsPrimitiveDouble()) { ThrowRuntimeException("Bad filled array request for type %s", PrettyDescriptor(component_class).c_str()); } else { self->ThrowNewExceptionF("Ljava/lang/InternalError;", "Found type %s; filled-new-array not implemented for anything but 'int'", PrettyDescriptor(component_class).c_str()); } return false; } Object* new_array = Array::Alloc<true>(self, array_class, length, array_class->GetComponentSizeShift(), Runtime::Current()->GetHeap()->GetCurrentAllocator()); if (UNLIKELY(new_array == nullptr)) { self->AssertPendingOOMException(); return false; } uint32_t arg[Instruction::kMaxVarArgRegs]; // only used in filled-new-array. uint32_t vregC = 0; // only used in filled-new-array-range. if (is_range) { vregC = inst->VRegC_3rc(); } else { inst->GetVarArgs(arg); } for (int32_t i = 0; i < length; ++i) { size_t src_reg = is_range ? vregC + i : arg[i]; if (is_primitive_int_component) { new_array->AsIntArray()->SetWithoutChecks<transaction_active>( i, shadow_frame.GetVReg(src_reg)); } else { new_array->AsObjectArray<Object>()->SetWithoutChecks<transaction_active>( i, shadow_frame.GetVRegReference(src_reg)); } } result->SetL(new_array); return true; } // TODO fix thread analysis: should be SHARED_REQUIRES(Locks::mutator_lock_). template<typename T> static void RecordArrayElementsInTransactionImpl(mirror::PrimitiveArray<T>* array, int32_t count) NO_THREAD_SAFETY_ANALYSIS { Runtime* runtime = Runtime::Current(); for (int32_t i = 0; i < count; ++i) { runtime->RecordWriteArray(array, i, array->GetWithoutChecks(i)); } } void RecordArrayElementsInTransaction(mirror::Array* array, int32_t count) SHARED_REQUIRES(Locks::mutator_lock_) { DCHECK(Runtime::Current()->IsActiveTransaction()); DCHECK(array != nullptr); DCHECK_LE(count, array->GetLength()); Primitive::Type primitive_component_type = array->GetClass()->GetComponentType()->GetPrimitiveType(); switch (primitive_component_type) { case Primitive::kPrimBoolean: RecordArrayElementsInTransactionImpl(array->AsBooleanArray(), count); break; case Primitive::kPrimByte: RecordArrayElementsInTransactionImpl(array->AsByteArray(), count); break; case Primitive::kPrimChar: RecordArrayElementsInTransactionImpl(array->AsCharArray(), count); break; case Primitive::kPrimShort: RecordArrayElementsInTransactionImpl(array->AsShortArray(), count); break; case Primitive::kPrimInt: RecordArrayElementsInTransactionImpl(array->AsIntArray(), count); break; case Primitive::kPrimFloat: RecordArrayElementsInTransactionImpl(array->AsFloatArray(), count); break; case Primitive::kPrimLong: RecordArrayElementsInTransactionImpl(array->AsLongArray(), count); break; case Primitive::kPrimDouble: RecordArrayElementsInTransactionImpl(array->AsDoubleArray(), count); break; default: LOG(FATAL) << "Unsupported primitive type " << primitive_component_type << " in fill-array-data"; break; } } // Explicit DoCall template function declarations. #define EXPLICIT_DO_CALL_TEMPLATE_DECL(_is_range, _do_assignability_check) \ template SHARED_REQUIRES(Locks::mutator_lock_) \ bool DoCall<_is_range, _do_assignability_check>(ArtMethod* method, Thread* self, \ ShadowFrame& shadow_frame, \ const Instruction* inst, uint16_t inst_data, \ JValue* result) EXPLICIT_DO_CALL_TEMPLATE_DECL(false, false); EXPLICIT_DO_CALL_TEMPLATE_DECL(false, true); EXPLICIT_DO_CALL_TEMPLATE_DECL(true, false); EXPLICIT_DO_CALL_TEMPLATE_DECL(true, true); #undef EXPLICIT_DO_CALL_TEMPLATE_DECL // Explicit DoLambdaCall template function declarations. #define EXPLICIT_DO_LAMBDA_CALL_TEMPLATE_DECL(_is_range, _do_assignability_check) \ template SHARED_REQUIRES(Locks::mutator_lock_) \ bool DoLambdaCall<_is_range, _do_assignability_check>(ArtMethod* method, Thread* self, \ ShadowFrame& shadow_frame, \ const Instruction* inst, \ uint16_t inst_data, \ JValue* result) EXPLICIT_DO_LAMBDA_CALL_TEMPLATE_DECL(false, false); EXPLICIT_DO_LAMBDA_CALL_TEMPLATE_DECL(false, true); EXPLICIT_DO_LAMBDA_CALL_TEMPLATE_DECL(true, false); EXPLICIT_DO_LAMBDA_CALL_TEMPLATE_DECL(true, true); #undef EXPLICIT_DO_LAMBDA_CALL_TEMPLATE_DECL // Explicit DoFilledNewArray template function declarations. #define EXPLICIT_DO_FILLED_NEW_ARRAY_TEMPLATE_DECL(_is_range_, _check, _transaction_active) \ template SHARED_REQUIRES(Locks::mutator_lock_) \ bool DoFilledNewArray<_is_range_, _check, _transaction_active>(const Instruction* inst, \ const ShadowFrame& shadow_frame, \ Thread* self, JValue* result) #define EXPLICIT_DO_FILLED_NEW_ARRAY_ALL_TEMPLATE_DECL(_transaction_active) \ EXPLICIT_DO_FILLED_NEW_ARRAY_TEMPLATE_DECL(false, false, _transaction_active); \ EXPLICIT_DO_FILLED_NEW_ARRAY_TEMPLATE_DECL(false, true, _transaction_active); \ EXPLICIT_DO_FILLED_NEW_ARRAY_TEMPLATE_DECL(true, false, _transaction_active); \ EXPLICIT_DO_FILLED_NEW_ARRAY_TEMPLATE_DECL(true, true, _transaction_active) EXPLICIT_DO_FILLED_NEW_ARRAY_ALL_TEMPLATE_DECL(false); EXPLICIT_DO_FILLED_NEW_ARRAY_ALL_TEMPLATE_DECL(true); #undef EXPLICIT_DO_FILLED_NEW_ARRAY_ALL_TEMPLATE_DECL #undef EXPLICIT_DO_FILLED_NEW_ARRAY_TEMPLATE_DECL } // namespace interpreter } // namespace art