/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "heap.h" #include <limits> #include <memory> #include <unwind.h> // For GC verification. #include <vector> #include "art_field-inl.h" #include "base/allocator.h" #include "base/arena_allocator.h" #include "base/dumpable.h" #include "base/histogram-inl.h" #include "base/stl_util.h" #include "base/systrace.h" #include "base/time_utils.h" #include "common_throws.h" #include "cutils/sched_policy.h" #include "debugger.h" #include "dex_file-inl.h" #include "gc/accounting/atomic_stack.h" #include "gc/accounting/card_table-inl.h" #include "gc/accounting/heap_bitmap-inl.h" #include "gc/accounting/mod_union_table-inl.h" #include "gc/accounting/remembered_set.h" #include "gc/accounting/space_bitmap-inl.h" #include "gc/collector/concurrent_copying.h" #include "gc/collector/mark_compact.h" #include "gc/collector/mark_sweep.h" #include "gc/collector/partial_mark_sweep.h" #include "gc/collector/semi_space.h" #include "gc/collector/sticky_mark_sweep.h" #include "gc/reference_processor.h" #include "gc/space/bump_pointer_space.h" #include "gc/space/dlmalloc_space-inl.h" #include "gc/space/image_space.h" #include "gc/space/large_object_space.h" #include "gc/space/region_space.h" #include "gc/space/rosalloc_space-inl.h" #include "gc/space/space-inl.h" #include "gc/space/zygote_space.h" #include "gc/task_processor.h" #include "entrypoints/quick/quick_alloc_entrypoints.h" #include "heap-inl.h" #include "image.h" #include "intern_table.h" #include "jit/jit.h" #include "jit/jit_code_cache.h" #include "mirror/class-inl.h" #include "mirror/object-inl.h" #include "mirror/object_array-inl.h" #include "mirror/reference-inl.h" #include "os.h" #include "reflection.h" #include "runtime.h" #include "ScopedLocalRef.h" #include "scoped_thread_state_change.h" #include "handle_scope-inl.h" #include "thread_list.h" #include "well_known_classes.h" namespace art { namespace gc { static constexpr size_t kCollectorTransitionStressIterations = 0; static constexpr size_t kCollectorTransitionStressWait = 10 * 1000; // Microseconds // Minimum amount of remaining bytes before a concurrent GC is triggered. static constexpr size_t kMinConcurrentRemainingBytes = 128 * KB; static constexpr size_t kMaxConcurrentRemainingBytes = 512 * KB; // Sticky GC throughput adjustment, divided by 4. Increasing this causes sticky GC to occur more // relative to partial/full GC. This may be desirable since sticky GCs interfere less with mutator // threads (lower pauses, use less memory bandwidth). static constexpr double kStickyGcThroughputAdjustment = 1.0; // Whether or not we compact the zygote in PreZygoteFork. static constexpr bool kCompactZygote = kMovingCollector; // How many reserve entries are at the end of the allocation stack, these are only needed if the // allocation stack overflows. static constexpr size_t kAllocationStackReserveSize = 1024; // Default mark stack size in bytes. static const size_t kDefaultMarkStackSize = 64 * KB; // Define space name. static const char* kDlMallocSpaceName[2] = {"main dlmalloc space", "main dlmalloc space 1"}; static const char* kRosAllocSpaceName[2] = {"main rosalloc space", "main rosalloc space 1"}; static const char* kMemMapSpaceName[2] = {"main space", "main space 1"}; static const char* kNonMovingSpaceName = "non moving space"; static const char* kZygoteSpaceName = "zygote space"; static constexpr size_t kGSSBumpPointerSpaceCapacity = 32 * MB; static constexpr bool kGCALotMode = false; // GC alot mode uses a small allocation stack to stress test a lot of GC. static constexpr size_t kGcAlotAllocationStackSize = 4 * KB / sizeof(mirror::HeapReference<mirror::Object>); // Verify objet has a small allocation stack size since searching the allocation stack is slow. static constexpr size_t kVerifyObjectAllocationStackSize = 16 * KB / sizeof(mirror::HeapReference<mirror::Object>); static constexpr size_t kDefaultAllocationStackSize = 8 * MB / sizeof(mirror::HeapReference<mirror::Object>); // System.runFinalization can deadlock with native allocations, to deal with this, we have a // timeout on how long we wait for finalizers to run. b/21544853 static constexpr uint64_t kNativeAllocationFinalizeTimeout = MsToNs(250u); // For deterministic compilation, we need the heap to be at a well-known address. static constexpr uint32_t kAllocSpaceBeginForDeterministicAoT = 0x40000000; // Dump the rosalloc stats on SIGQUIT. static constexpr bool kDumpRosAllocStatsOnSigQuit = false; static constexpr size_t kNativeAllocationHistogramBuckets = 16; static inline bool CareAboutPauseTimes() { return Runtime::Current()->InJankPerceptibleProcessState(); } Heap::Heap(size_t initial_size, size_t growth_limit, size_t min_free, size_t max_free, double target_utilization, double foreground_heap_growth_multiplier, size_t capacity, size_t non_moving_space_capacity, const std::string& image_file_name, const InstructionSet image_instruction_set, CollectorType foreground_collector_type, CollectorType background_collector_type, space::LargeObjectSpaceType large_object_space_type, size_t large_object_threshold, size_t parallel_gc_threads, size_t conc_gc_threads, bool low_memory_mode, size_t long_pause_log_threshold, size_t long_gc_log_threshold, bool ignore_max_footprint, bool use_tlab, bool verify_pre_gc_heap, bool verify_pre_sweeping_heap, bool verify_post_gc_heap, bool verify_pre_gc_rosalloc, bool verify_pre_sweeping_rosalloc, bool verify_post_gc_rosalloc, bool gc_stress_mode, bool use_homogeneous_space_compaction_for_oom, uint64_t min_interval_homogeneous_space_compaction_by_oom) : non_moving_space_(nullptr), rosalloc_space_(nullptr), dlmalloc_space_(nullptr), main_space_(nullptr), collector_type_(kCollectorTypeNone), foreground_collector_type_(foreground_collector_type), background_collector_type_(background_collector_type), desired_collector_type_(foreground_collector_type_), pending_task_lock_(nullptr), parallel_gc_threads_(parallel_gc_threads), conc_gc_threads_(conc_gc_threads), low_memory_mode_(low_memory_mode), long_pause_log_threshold_(long_pause_log_threshold), long_gc_log_threshold_(long_gc_log_threshold), ignore_max_footprint_(ignore_max_footprint), zygote_creation_lock_("zygote creation lock", kZygoteCreationLock), zygote_space_(nullptr), large_object_threshold_(large_object_threshold), disable_thread_flip_count_(0), thread_flip_running_(false), collector_type_running_(kCollectorTypeNone), last_gc_type_(collector::kGcTypeNone), next_gc_type_(collector::kGcTypePartial), capacity_(capacity), growth_limit_(growth_limit), max_allowed_footprint_(initial_size), native_footprint_gc_watermark_(initial_size), native_need_to_run_finalization_(false), concurrent_start_bytes_(std::numeric_limits<size_t>::max()), total_bytes_freed_ever_(0), total_objects_freed_ever_(0), num_bytes_allocated_(0), native_bytes_allocated_(0), native_histogram_lock_("Native allocation lock"), native_allocation_histogram_("Native allocation sizes", 1U, kNativeAllocationHistogramBuckets), native_free_histogram_("Native free sizes", 1U, kNativeAllocationHistogramBuckets), num_bytes_freed_revoke_(0), verify_missing_card_marks_(false), verify_system_weaks_(false), verify_pre_gc_heap_(verify_pre_gc_heap), verify_pre_sweeping_heap_(verify_pre_sweeping_heap), verify_post_gc_heap_(verify_post_gc_heap), verify_mod_union_table_(false), verify_pre_gc_rosalloc_(verify_pre_gc_rosalloc), verify_pre_sweeping_rosalloc_(verify_pre_sweeping_rosalloc), verify_post_gc_rosalloc_(verify_post_gc_rosalloc), gc_stress_mode_(gc_stress_mode), /* For GC a lot mode, we limit the allocations stacks to be kGcAlotInterval allocations. This * causes a lot of GC since we do a GC for alloc whenever the stack is full. When heap * verification is enabled, we limit the size of allocation stacks to speed up their * searching. */ max_allocation_stack_size_(kGCALotMode ? kGcAlotAllocationStackSize : (kVerifyObjectSupport > kVerifyObjectModeFast) ? kVerifyObjectAllocationStackSize : kDefaultAllocationStackSize), current_allocator_(kAllocatorTypeDlMalloc), current_non_moving_allocator_(kAllocatorTypeNonMoving), bump_pointer_space_(nullptr), temp_space_(nullptr), region_space_(nullptr), min_free_(min_free), max_free_(max_free), target_utilization_(target_utilization), foreground_heap_growth_multiplier_(foreground_heap_growth_multiplier), total_wait_time_(0), verify_object_mode_(kVerifyObjectModeDisabled), disable_moving_gc_count_(0), is_running_on_memory_tool_(Runtime::Current()->IsRunningOnMemoryTool()), use_tlab_(use_tlab), main_space_backup_(nullptr), min_interval_homogeneous_space_compaction_by_oom_( min_interval_homogeneous_space_compaction_by_oom), last_time_homogeneous_space_compaction_by_oom_(NanoTime()), pending_collector_transition_(nullptr), pending_heap_trim_(nullptr), use_homogeneous_space_compaction_for_oom_(use_homogeneous_space_compaction_for_oom), running_collection_is_blocking_(false), blocking_gc_count_(0U), blocking_gc_time_(0U), last_update_time_gc_count_rate_histograms_( // Round down by the window duration. (NanoTime() / kGcCountRateHistogramWindowDuration) * kGcCountRateHistogramWindowDuration), gc_count_last_window_(0U), blocking_gc_count_last_window_(0U), gc_count_rate_histogram_("gc count rate histogram", 1U, kGcCountRateMaxBucketCount), blocking_gc_count_rate_histogram_("blocking gc count rate histogram", 1U, kGcCountRateMaxBucketCount), alloc_tracking_enabled_(false), backtrace_lock_(nullptr), seen_backtrace_count_(0u), unique_backtrace_count_(0u), gc_disabled_for_shutdown_(false) { if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) { LOG(INFO) << "Heap() entering"; } ScopedTrace trace(__FUNCTION__); Runtime* const runtime = Runtime::Current(); // If we aren't the zygote, switch to the default non zygote allocator. This may update the // entrypoints. const bool is_zygote = runtime->IsZygote(); if (!is_zygote) { // Background compaction is currently not supported for command line runs. if (background_collector_type_ != foreground_collector_type_) { VLOG(heap) << "Disabling background compaction for non zygote"; background_collector_type_ = foreground_collector_type_; } } ChangeCollector(desired_collector_type_); live_bitmap_.reset(new accounting::HeapBitmap(this)); mark_bitmap_.reset(new accounting::HeapBitmap(this)); // Requested begin for the alloc space, to follow the mapped image and oat files uint8_t* requested_alloc_space_begin = nullptr; if (foreground_collector_type_ == kCollectorTypeCC) { // Need to use a low address so that we can allocate a contiguous // 2 * Xmx space when there's no image (dex2oat for target). CHECK_GE(300 * MB, non_moving_space_capacity); requested_alloc_space_begin = reinterpret_cast<uint8_t*>(300 * MB) - non_moving_space_capacity; } // Load image space(s). if (!image_file_name.empty()) { // For code reuse, handle this like a work queue. std::vector<std::string> image_file_names; image_file_names.push_back(image_file_name); // The loaded spaces. Secondary images may fail to load, in which case we need to remove // already added spaces. std::vector<space::Space*> added_image_spaces; uint8_t* const original_requested_alloc_space_begin = requested_alloc_space_begin; for (size_t index = 0; index < image_file_names.size(); ++index) { std::string& image_name = image_file_names[index]; std::string error_msg; space::ImageSpace* boot_image_space = space::ImageSpace::CreateBootImage( image_name.c_str(), image_instruction_set, index > 0, &error_msg); if (boot_image_space != nullptr) { AddSpace(boot_image_space); added_image_spaces.push_back(boot_image_space); // Oat files referenced by image files immediately follow them in memory, ensure alloc space // isn't going to get in the middle uint8_t* oat_file_end_addr = boot_image_space->GetImageHeader().GetOatFileEnd(); CHECK_GT(oat_file_end_addr, boot_image_space->End()); requested_alloc_space_begin = AlignUp(oat_file_end_addr, kPageSize); boot_image_spaces_.push_back(boot_image_space); if (index == 0) { // If this was the first space, check whether there are more images to load. const OatFile* boot_oat_file = boot_image_space->GetOatFile(); if (boot_oat_file == nullptr) { continue; } const OatHeader& boot_oat_header = boot_oat_file->GetOatHeader(); const char* boot_classpath = boot_oat_header.GetStoreValueByKey(OatHeader::kBootClassPathKey); if (boot_classpath == nullptr) { continue; } space::ImageSpace::CreateMultiImageLocations(image_file_name, boot_classpath, &image_file_names); } } else { LOG(ERROR) << "Could not create image space with image file '" << image_file_name << "'. " << "Attempting to fall back to imageless running. Error was: " << error_msg << "\nAttempted image: " << image_name; // Remove already loaded spaces. for (space::Space* loaded_space : added_image_spaces) { RemoveSpace(loaded_space); delete loaded_space; } boot_image_spaces_.clear(); requested_alloc_space_begin = original_requested_alloc_space_begin; break; } } } /* requested_alloc_space_begin -> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- +- nonmoving space (non_moving_space_capacity)+- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- +-????????????????????????????????????????????+- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- +-main alloc space / bump space 1 (capacity_) +- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- +-????????????????????????????????????????????+- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- +-main alloc space2 / bump space 2 (capacity_)+- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- */ // We don't have hspace compaction enabled with GSS or CC. if (foreground_collector_type_ == kCollectorTypeGSS || foreground_collector_type_ == kCollectorTypeCC) { use_homogeneous_space_compaction_for_oom_ = false; } bool support_homogeneous_space_compaction = background_collector_type_ == gc::kCollectorTypeHomogeneousSpaceCompact || use_homogeneous_space_compaction_for_oom_; // We may use the same space the main space for the non moving space if we don't need to compact // from the main space. // This is not the case if we support homogeneous compaction or have a moving background // collector type. bool separate_non_moving_space = is_zygote || support_homogeneous_space_compaction || IsMovingGc(foreground_collector_type_) || IsMovingGc(background_collector_type_); if (foreground_collector_type_ == kCollectorTypeGSS) { separate_non_moving_space = false; } std::unique_ptr<MemMap> main_mem_map_1; std::unique_ptr<MemMap> main_mem_map_2; // Gross hack to make dex2oat deterministic. if (foreground_collector_type_ == kCollectorTypeMS && requested_alloc_space_begin == nullptr && Runtime::Current()->IsAotCompiler()) { // Currently only enabled for MS collector since that is what the deterministic dex2oat uses. // b/26849108 requested_alloc_space_begin = reinterpret_cast<uint8_t*>(kAllocSpaceBeginForDeterministicAoT); } uint8_t* request_begin = requested_alloc_space_begin; if (request_begin != nullptr && separate_non_moving_space) { request_begin += non_moving_space_capacity; } std::string error_str; std::unique_ptr<MemMap> non_moving_space_mem_map; if (separate_non_moving_space) { ScopedTrace trace2("Create separate non moving space"); // If we are the zygote, the non moving space becomes the zygote space when we run // PreZygoteFork the first time. In this case, call the map "zygote space" since we can't // rename the mem map later. const char* space_name = is_zygote ? kZygoteSpaceName: kNonMovingSpaceName; // Reserve the non moving mem map before the other two since it needs to be at a specific // address. non_moving_space_mem_map.reset( MemMap::MapAnonymous(space_name, requested_alloc_space_begin, non_moving_space_capacity, PROT_READ | PROT_WRITE, true, false, &error_str)); CHECK(non_moving_space_mem_map != nullptr) << error_str; // Try to reserve virtual memory at a lower address if we have a separate non moving space. request_begin = reinterpret_cast<uint8_t*>(300 * MB); } // Attempt to create 2 mem maps at or after the requested begin. if (foreground_collector_type_ != kCollectorTypeCC) { ScopedTrace trace2("Create main mem map"); if (separate_non_moving_space || !is_zygote) { main_mem_map_1.reset(MapAnonymousPreferredAddress(kMemMapSpaceName[0], request_begin, capacity_, &error_str)); } else { // If no separate non-moving space and we are the zygote, the main space must come right // after the image space to avoid a gap. This is required since we want the zygote space to // be adjacent to the image space. main_mem_map_1.reset(MemMap::MapAnonymous(kMemMapSpaceName[0], request_begin, capacity_, PROT_READ | PROT_WRITE, true, false, &error_str)); } CHECK(main_mem_map_1.get() != nullptr) << error_str; } if (support_homogeneous_space_compaction || background_collector_type_ == kCollectorTypeSS || foreground_collector_type_ == kCollectorTypeSS) { ScopedTrace trace2("Create main mem map 2"); main_mem_map_2.reset(MapAnonymousPreferredAddress(kMemMapSpaceName[1], main_mem_map_1->End(), capacity_, &error_str)); CHECK(main_mem_map_2.get() != nullptr) << error_str; } // Create the non moving space first so that bitmaps don't take up the address range. if (separate_non_moving_space) { ScopedTrace trace2("Add non moving space"); // Non moving space is always dlmalloc since we currently don't have support for multiple // active rosalloc spaces. const size_t size = non_moving_space_mem_map->Size(); non_moving_space_ = space::DlMallocSpace::CreateFromMemMap( non_moving_space_mem_map.release(), "zygote / non moving space", kDefaultStartingSize, initial_size, size, size, false); non_moving_space_->SetFootprintLimit(non_moving_space_->Capacity()); CHECK(non_moving_space_ != nullptr) << "Failed creating non moving space " << requested_alloc_space_begin; AddSpace(non_moving_space_); } // Create other spaces based on whether or not we have a moving GC. if (foreground_collector_type_ == kCollectorTypeCC) { region_space_ = space::RegionSpace::Create("Region space", capacity_ * 2, request_begin); AddSpace(region_space_); } else if (IsMovingGc(foreground_collector_type_) && foreground_collector_type_ != kCollectorTypeGSS) { // Create bump pointer spaces. // We only to create the bump pointer if the foreground collector is a compacting GC. // TODO: Place bump-pointer spaces somewhere to minimize size of card table. bump_pointer_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 1", main_mem_map_1.release()); CHECK(bump_pointer_space_ != nullptr) << "Failed to create bump pointer space"; AddSpace(bump_pointer_space_); temp_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 2", main_mem_map_2.release()); CHECK(temp_space_ != nullptr) << "Failed to create bump pointer space"; AddSpace(temp_space_); CHECK(separate_non_moving_space); } else { CreateMainMallocSpace(main_mem_map_1.release(), initial_size, growth_limit_, capacity_); CHECK(main_space_ != nullptr); AddSpace(main_space_); if (!separate_non_moving_space) { non_moving_space_ = main_space_; CHECK(!non_moving_space_->CanMoveObjects()); } if (foreground_collector_type_ == kCollectorTypeGSS) { CHECK_EQ(foreground_collector_type_, background_collector_type_); // Create bump pointer spaces instead of a backup space. main_mem_map_2.release(); bump_pointer_space_ = space::BumpPointerSpace::Create("Bump pointer space 1", kGSSBumpPointerSpaceCapacity, nullptr); CHECK(bump_pointer_space_ != nullptr); AddSpace(bump_pointer_space_); temp_space_ = space::BumpPointerSpace::Create("Bump pointer space 2", kGSSBumpPointerSpaceCapacity, nullptr); CHECK(temp_space_ != nullptr); AddSpace(temp_space_); } else if (main_mem_map_2.get() != nullptr) { const char* name = kUseRosAlloc ? kRosAllocSpaceName[1] : kDlMallocSpaceName[1]; main_space_backup_.reset(CreateMallocSpaceFromMemMap(main_mem_map_2.release(), initial_size, growth_limit_, capacity_, name, true)); CHECK(main_space_backup_.get() != nullptr); // Add the space so its accounted for in the heap_begin and heap_end. AddSpace(main_space_backup_.get()); } } CHECK(non_moving_space_ != nullptr); CHECK(!non_moving_space_->CanMoveObjects()); // Allocate the large object space. if (large_object_space_type == space::LargeObjectSpaceType::kFreeList) { large_object_space_ = space::FreeListSpace::Create("free list large object space", nullptr, capacity_); CHECK(large_object_space_ != nullptr) << "Failed to create large object space"; } else if (large_object_space_type == space::LargeObjectSpaceType::kMap) { large_object_space_ = space::LargeObjectMapSpace::Create("mem map large object space"); CHECK(large_object_space_ != nullptr) << "Failed to create large object space"; } else { // Disable the large object space by making the cutoff excessively large. large_object_threshold_ = std::numeric_limits<size_t>::max(); large_object_space_ = nullptr; } if (large_object_space_ != nullptr) { AddSpace(large_object_space_); } // Compute heap capacity. Continuous spaces are sorted in order of Begin(). CHECK(!continuous_spaces_.empty()); // Relies on the spaces being sorted. uint8_t* heap_begin = continuous_spaces_.front()->Begin(); uint8_t* heap_end = continuous_spaces_.back()->Limit(); size_t heap_capacity = heap_end - heap_begin; // Remove the main backup space since it slows down the GC to have unused extra spaces. // TODO: Avoid needing to do this. if (main_space_backup_.get() != nullptr) { RemoveSpace(main_space_backup_.get()); } // Allocate the card table. // We currently don't support dynamically resizing the card table. // Since we don't know where in the low_4gb the app image will be located, make the card table // cover the whole low_4gb. TODO: Extend the card table in AddSpace. UNUSED(heap_capacity); // Start at 64 KB, we can be sure there are no spaces mapped this low since the address range is // reserved by the kernel. static constexpr size_t kMinHeapAddress = 4 * KB; card_table_.reset(accounting::CardTable::Create(reinterpret_cast<uint8_t*>(kMinHeapAddress), 4 * GB - kMinHeapAddress)); CHECK(card_table_.get() != nullptr) << "Failed to create card table"; if (foreground_collector_type_ == kCollectorTypeCC && kUseTableLookupReadBarrier) { rb_table_.reset(new accounting::ReadBarrierTable()); DCHECK(rb_table_->IsAllCleared()); } if (HasBootImageSpace()) { // Don't add the image mod union table if we are running without an image, this can crash if // we use the CardCache implementation. for (space::ImageSpace* image_space : GetBootImageSpaces()) { accounting::ModUnionTable* mod_union_table = new accounting::ModUnionTableToZygoteAllocspace( "Image mod-union table", this, image_space); CHECK(mod_union_table != nullptr) << "Failed to create image mod-union table"; AddModUnionTable(mod_union_table); } } if (collector::SemiSpace::kUseRememberedSet && non_moving_space_ != main_space_) { accounting::RememberedSet* non_moving_space_rem_set = new accounting::RememberedSet("Non-moving space remembered set", this, non_moving_space_); CHECK(non_moving_space_rem_set != nullptr) << "Failed to create non-moving space remembered set"; AddRememberedSet(non_moving_space_rem_set); } // TODO: Count objects in the image space here? num_bytes_allocated_.StoreRelaxed(0); mark_stack_.reset(accounting::ObjectStack::Create("mark stack", kDefaultMarkStackSize, kDefaultMarkStackSize)); const size_t alloc_stack_capacity = max_allocation_stack_size_ + kAllocationStackReserveSize; allocation_stack_.reset(accounting::ObjectStack::Create( "allocation stack", max_allocation_stack_size_, alloc_stack_capacity)); live_stack_.reset(accounting::ObjectStack::Create( "live stack", max_allocation_stack_size_, alloc_stack_capacity)); // It's still too early to take a lock because there are no threads yet, but we can create locks // now. We don't create it earlier to make it clear that you can't use locks during heap // initialization. gc_complete_lock_ = new Mutex("GC complete lock"); gc_complete_cond_.reset(new ConditionVariable("GC complete condition variable", *gc_complete_lock_)); thread_flip_lock_ = new Mutex("GC thread flip lock"); thread_flip_cond_.reset(new ConditionVariable("GC thread flip condition variable", *thread_flip_lock_)); task_processor_.reset(new TaskProcessor()); reference_processor_.reset(new ReferenceProcessor()); pending_task_lock_ = new Mutex("Pending task lock"); if (ignore_max_footprint_) { SetIdealFootprint(std::numeric_limits<size_t>::max()); concurrent_start_bytes_ = std::numeric_limits<size_t>::max(); } CHECK_NE(max_allowed_footprint_, 0U); // Create our garbage collectors. for (size_t i = 0; i < 2; ++i) { const bool concurrent = i != 0; if ((MayUseCollector(kCollectorTypeCMS) && concurrent) || (MayUseCollector(kCollectorTypeMS) && !concurrent)) { garbage_collectors_.push_back(new collector::MarkSweep(this, concurrent)); garbage_collectors_.push_back(new collector::PartialMarkSweep(this, concurrent)); garbage_collectors_.push_back(new collector::StickyMarkSweep(this, concurrent)); } } if (kMovingCollector) { if (MayUseCollector(kCollectorTypeSS) || MayUseCollector(kCollectorTypeGSS) || MayUseCollector(kCollectorTypeHomogeneousSpaceCompact) || use_homogeneous_space_compaction_for_oom_) { // TODO: Clean this up. const bool generational = foreground_collector_type_ == kCollectorTypeGSS; semi_space_collector_ = new collector::SemiSpace(this, generational, generational ? "generational" : ""); garbage_collectors_.push_back(semi_space_collector_); } if (MayUseCollector(kCollectorTypeCC)) { concurrent_copying_collector_ = new collector::ConcurrentCopying(this); garbage_collectors_.push_back(concurrent_copying_collector_); } if (MayUseCollector(kCollectorTypeMC)) { mark_compact_collector_ = new collector::MarkCompact(this); garbage_collectors_.push_back(mark_compact_collector_); } } if (!GetBootImageSpaces().empty() && non_moving_space_ != nullptr && (is_zygote || separate_non_moving_space || foreground_collector_type_ == kCollectorTypeGSS)) { // Check that there's no gap between the image space and the non moving space so that the // immune region won't break (eg. due to a large object allocated in the gap). This is only // required when we're the zygote or using GSS. // Space with smallest Begin(). space::ImageSpace* first_space = nullptr; for (space::ImageSpace* space : boot_image_spaces_) { if (first_space == nullptr || space->Begin() < first_space->Begin()) { first_space = space; } } bool no_gap = MemMap::CheckNoGaps(first_space->GetMemMap(), non_moving_space_->GetMemMap()); if (!no_gap) { PrintFileToLog("/proc/self/maps", LogSeverity::ERROR); MemMap::DumpMaps(LOG(ERROR), true); LOG(FATAL) << "There's a gap between the image space and the non-moving space"; } } instrumentation::Instrumentation* const instrumentation = runtime->GetInstrumentation(); if (gc_stress_mode_) { backtrace_lock_ = new Mutex("GC complete lock"); } if (is_running_on_memory_tool_ || gc_stress_mode_) { instrumentation->InstrumentQuickAllocEntryPoints(); } if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) { LOG(INFO) << "Heap() exiting"; } } MemMap* Heap::MapAnonymousPreferredAddress(const char* name, uint8_t* request_begin, size_t capacity, std::string* out_error_str) { while (true) { MemMap* map = MemMap::MapAnonymous(name, request_begin, capacity, PROT_READ | PROT_WRITE, true, false, out_error_str); if (map != nullptr || request_begin == nullptr) { return map; } // Retry a second time with no specified request begin. request_begin = nullptr; } } bool Heap::MayUseCollector(CollectorType type) const { return foreground_collector_type_ == type || background_collector_type_ == type; } space::MallocSpace* Heap::CreateMallocSpaceFromMemMap(MemMap* mem_map, size_t initial_size, size_t growth_limit, size_t capacity, const char* name, bool can_move_objects) { space::MallocSpace* malloc_space = nullptr; if (kUseRosAlloc) { // Create rosalloc space. malloc_space = space::RosAllocSpace::CreateFromMemMap(mem_map, name, kDefaultStartingSize, initial_size, growth_limit, capacity, low_memory_mode_, can_move_objects); } else { malloc_space = space::DlMallocSpace::CreateFromMemMap(mem_map, name, kDefaultStartingSize, initial_size, growth_limit, capacity, can_move_objects); } if (collector::SemiSpace::kUseRememberedSet) { accounting::RememberedSet* rem_set = new accounting::RememberedSet(std::string(name) + " remembered set", this, malloc_space); CHECK(rem_set != nullptr) << "Failed to create main space remembered set"; AddRememberedSet(rem_set); } CHECK(malloc_space != nullptr) << "Failed to create " << name; malloc_space->SetFootprintLimit(malloc_space->Capacity()); return malloc_space; } void Heap::CreateMainMallocSpace(MemMap* mem_map, size_t initial_size, size_t growth_limit, size_t capacity) { // Is background compaction is enabled? bool can_move_objects = IsMovingGc(background_collector_type_) != IsMovingGc(foreground_collector_type_) || use_homogeneous_space_compaction_for_oom_; // If we are the zygote and don't yet have a zygote space, it means that the zygote fork will // happen in the future. If this happens and we have kCompactZygote enabled we wish to compact // from the main space to the zygote space. If background compaction is enabled, always pass in // that we can move objets. if (kCompactZygote && Runtime::Current()->IsZygote() && !can_move_objects) { // After the zygote we want this to be false if we don't have background compaction enabled so // that getting primitive array elements is faster. // We never have homogeneous compaction with GSS and don't need a space with movable objects. can_move_objects = !HasZygoteSpace() && foreground_collector_type_ != kCollectorTypeGSS; } if (collector::SemiSpace::kUseRememberedSet && main_space_ != nullptr) { RemoveRememberedSet(main_space_); } const char* name = kUseRosAlloc ? kRosAllocSpaceName[0] : kDlMallocSpaceName[0]; main_space_ = CreateMallocSpaceFromMemMap(mem_map, initial_size, growth_limit, capacity, name, can_move_objects); SetSpaceAsDefault(main_space_); VLOG(heap) << "Created main space " << main_space_; } void Heap::ChangeAllocator(AllocatorType allocator) { if (current_allocator_ != allocator) { // These two allocators are only used internally and don't have any entrypoints. CHECK_NE(allocator, kAllocatorTypeLOS); CHECK_NE(allocator, kAllocatorTypeNonMoving); current_allocator_ = allocator; MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_); SetQuickAllocEntryPointsAllocator(current_allocator_); Runtime::Current()->GetInstrumentation()->ResetQuickAllocEntryPoints(); } } void Heap::DisableMovingGc() { if (IsMovingGc(foreground_collector_type_)) { foreground_collector_type_ = kCollectorTypeCMS; } if (IsMovingGc(background_collector_type_)) { background_collector_type_ = foreground_collector_type_; } TransitionCollector(foreground_collector_type_); Thread* const self = Thread::Current(); ScopedThreadStateChange tsc(self, kSuspended); ScopedSuspendAll ssa(__FUNCTION__); // Something may have caused the transition to fail. if (!IsMovingGc(collector_type_) && non_moving_space_ != main_space_) { CHECK(main_space_ != nullptr); // The allocation stack may have non movable objects in it. We need to flush it since the GC // can't only handle marking allocation stack objects of one non moving space and one main // space. { WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); FlushAllocStack(); } main_space_->DisableMovingObjects(); non_moving_space_ = main_space_; CHECK(!non_moving_space_->CanMoveObjects()); } } std::string Heap::SafeGetClassDescriptor(mirror::Class* klass) { if (!IsValidContinuousSpaceObjectAddress(klass)) { return StringPrintf("<non heap address klass %p>", klass); } mirror::Class* component_type = klass->GetComponentType<kVerifyNone>(); if (IsValidContinuousSpaceObjectAddress(component_type) && klass->IsArrayClass<kVerifyNone>()) { std::string result("["); result += SafeGetClassDescriptor(component_type); return result; } else if (UNLIKELY(klass->IsPrimitive<kVerifyNone>())) { return Primitive::Descriptor(klass->GetPrimitiveType<kVerifyNone>()); } else if (UNLIKELY(klass->IsProxyClass<kVerifyNone>())) { return Runtime::Current()->GetClassLinker()->GetDescriptorForProxy(klass); } else { mirror::DexCache* dex_cache = klass->GetDexCache<kVerifyNone>(); if (!IsValidContinuousSpaceObjectAddress(dex_cache)) { return StringPrintf("<non heap address dex_cache %p>", dex_cache); } const DexFile* dex_file = dex_cache->GetDexFile(); uint16_t class_def_idx = klass->GetDexClassDefIndex(); if (class_def_idx == DexFile::kDexNoIndex16) { return "<class def not found>"; } const DexFile::ClassDef& class_def = dex_file->GetClassDef(class_def_idx); const DexFile::TypeId& type_id = dex_file->GetTypeId(class_def.class_idx_); return dex_file->GetTypeDescriptor(type_id); } } std::string Heap::SafePrettyTypeOf(mirror::Object* obj) { if (obj == nullptr) { return "null"; } mirror::Class* klass = obj->GetClass<kVerifyNone>(); if (klass == nullptr) { return "(class=null)"; } std::string result(SafeGetClassDescriptor(klass)); if (obj->IsClass()) { result += "<" + SafeGetClassDescriptor(obj->AsClass<kVerifyNone>()) + ">"; } return result; } void Heap::DumpObject(std::ostream& stream, mirror::Object* obj) { if (obj == nullptr) { stream << "(obj=null)"; return; } if (IsAligned<kObjectAlignment>(obj)) { space::Space* space = nullptr; // Don't use find space since it only finds spaces which actually contain objects instead of // spaces which may contain objects (e.g. cleared bump pointer spaces). for (const auto& cur_space : continuous_spaces_) { if (cur_space->HasAddress(obj)) { space = cur_space; break; } } // Unprotect all the spaces. for (const auto& con_space : continuous_spaces_) { mprotect(con_space->Begin(), con_space->Capacity(), PROT_READ | PROT_WRITE); } stream << "Object " << obj; if (space != nullptr) { stream << " in space " << *space; } mirror::Class* klass = obj->GetClass<kVerifyNone>(); stream << "\nclass=" << klass; if (klass != nullptr) { stream << " type= " << SafePrettyTypeOf(obj); } // Re-protect the address we faulted on. mprotect(AlignDown(obj, kPageSize), kPageSize, PROT_NONE); } } bool Heap::IsCompilingBoot() const { if (!Runtime::Current()->IsAotCompiler()) { return false; } ScopedObjectAccess soa(Thread::Current()); for (const auto& space : continuous_spaces_) { if (space->IsImageSpace() || space->IsZygoteSpace()) { return false; } } return true; } void Heap::IncrementDisableMovingGC(Thread* self) { // Need to do this holding the lock to prevent races where the GC is about to run / running when // we attempt to disable it. ScopedThreadStateChange tsc(self, kWaitingForGcToComplete); MutexLock mu(self, *gc_complete_lock_); ++disable_moving_gc_count_; if (IsMovingGc(collector_type_running_)) { WaitForGcToCompleteLocked(kGcCauseDisableMovingGc, self); } } void Heap::DecrementDisableMovingGC(Thread* self) { MutexLock mu(self, *gc_complete_lock_); CHECK_GT(disable_moving_gc_count_, 0U); --disable_moving_gc_count_; } void Heap::IncrementDisableThreadFlip(Thread* self) { // Supposed to be called by mutators. If thread_flip_running_ is true, block. Otherwise, go ahead. CHECK(kUseReadBarrier); bool is_nested = self->GetDisableThreadFlipCount() > 0; self->IncrementDisableThreadFlipCount(); if (is_nested) { // If this is a nested JNI critical section enter, we don't need to wait or increment the global // counter. The global counter is incremented only once for a thread for the outermost enter. return; } ScopedThreadStateChange tsc(self, kWaitingForGcThreadFlip); MutexLock mu(self, *thread_flip_lock_); bool has_waited = false; uint64_t wait_start = NanoTime(); while (thread_flip_running_) { has_waited = true; thread_flip_cond_->Wait(self); } ++disable_thread_flip_count_; if (has_waited) { uint64_t wait_time = NanoTime() - wait_start; total_wait_time_ += wait_time; if (wait_time > long_pause_log_threshold_) { LOG(INFO) << __FUNCTION__ << " blocked for " << PrettyDuration(wait_time); } } } void Heap::DecrementDisableThreadFlip(Thread* self) { // Supposed to be called by mutators. Decrement disable_thread_flip_count_ and potentially wake up // the GC waiting before doing a thread flip. CHECK(kUseReadBarrier); self->DecrementDisableThreadFlipCount(); bool is_outermost = self->GetDisableThreadFlipCount() == 0; if (!is_outermost) { // If this is not an outermost JNI critical exit, we don't need to decrement the global counter. // The global counter is decremented only once for a thread for the outermost exit. return; } MutexLock mu(self, *thread_flip_lock_); CHECK_GT(disable_thread_flip_count_, 0U); --disable_thread_flip_count_; if (disable_thread_flip_count_ == 0) { // Potentially notify the GC thread blocking to begin a thread flip. thread_flip_cond_->Broadcast(self); } } void Heap::ThreadFlipBegin(Thread* self) { // Supposed to be called by GC. Set thread_flip_running_ to be true. If disable_thread_flip_count_ // > 0, block. Otherwise, go ahead. CHECK(kUseReadBarrier); ScopedThreadStateChange tsc(self, kWaitingForGcThreadFlip); MutexLock mu(self, *thread_flip_lock_); bool has_waited = false; uint64_t wait_start = NanoTime(); CHECK(!thread_flip_running_); // Set this to true before waiting so that frequent JNI critical enter/exits won't starve // GC. This like a writer preference of a reader-writer lock. thread_flip_running_ = true; while (disable_thread_flip_count_ > 0) { has_waited = true; thread_flip_cond_->Wait(self); } if (has_waited) { uint64_t wait_time = NanoTime() - wait_start; total_wait_time_ += wait_time; if (wait_time > long_pause_log_threshold_) { LOG(INFO) << __FUNCTION__ << " blocked for " << PrettyDuration(wait_time); } } } void Heap::ThreadFlipEnd(Thread* self) { // Supposed to be called by GC. Set thread_flip_running_ to false and potentially wake up mutators // waiting before doing a JNI critical. CHECK(kUseReadBarrier); MutexLock mu(self, *thread_flip_lock_); CHECK(thread_flip_running_); thread_flip_running_ = false; // Potentially notify mutator threads blocking to enter a JNI critical section. thread_flip_cond_->Broadcast(self); } void Heap::UpdateProcessState(ProcessState old_process_state, ProcessState new_process_state) { if (old_process_state != new_process_state) { const bool jank_perceptible = new_process_state == kProcessStateJankPerceptible; for (size_t i = 1; i <= kCollectorTransitionStressIterations; ++i) { // Start at index 1 to avoid "is always false" warning. // Have iteration 1 always transition the collector. TransitionCollector((((i & 1) == 1) == jank_perceptible) ? foreground_collector_type_ : background_collector_type_); usleep(kCollectorTransitionStressWait); } if (jank_perceptible) { // Transition back to foreground right away to prevent jank. RequestCollectorTransition(foreground_collector_type_, 0); } else { // Don't delay for debug builds since we may want to stress test the GC. // If background_collector_type_ is kCollectorTypeHomogeneousSpaceCompact then we have // special handling which does a homogenous space compaction once but then doesn't transition // the collector. RequestCollectorTransition(background_collector_type_, kIsDebugBuild ? 0 : kCollectorTransitionWait); } } } void Heap::CreateThreadPool() { const size_t num_threads = std::max(parallel_gc_threads_, conc_gc_threads_); if (num_threads != 0) { thread_pool_.reset(new ThreadPool("Heap thread pool", num_threads)); } } // Visit objects when threads aren't suspended. If concurrent moving // GC, disable moving GC and suspend threads and then visit objects. void Heap::VisitObjects(ObjectCallback callback, void* arg) { Thread* self = Thread::Current(); Locks::mutator_lock_->AssertSharedHeld(self); DCHECK(!Locks::mutator_lock_->IsExclusiveHeld(self)) << "Call VisitObjectsPaused() instead"; if (IsGcConcurrentAndMoving()) { // Concurrent moving GC. Just suspending threads isn't sufficient // because a collection isn't one big pause and we could suspend // threads in the middle (between phases) of a concurrent moving // collection where it's not easily known which objects are alive // (both the region space and the non-moving space) or which // copies of objects to visit, and the to-space invariant could be // easily broken. Visit objects while GC isn't running by using // IncrementDisableMovingGC() and threads are suspended. IncrementDisableMovingGC(self); { ScopedThreadSuspension sts(self, kWaitingForVisitObjects); ScopedSuspendAll ssa(__FUNCTION__); VisitObjectsInternalRegionSpace(callback, arg); VisitObjectsInternal(callback, arg); } DecrementDisableMovingGC(self); } else { // GCs can move objects, so don't allow this. ScopedAssertNoThreadSuspension ants(self, "Visiting objects"); DCHECK(region_space_ == nullptr); VisitObjectsInternal(callback, arg); } } // Visit objects when threads are already suspended. void Heap::VisitObjectsPaused(ObjectCallback callback, void* arg) { Thread* self = Thread::Current(); Locks::mutator_lock_->AssertExclusiveHeld(self); VisitObjectsInternalRegionSpace(callback, arg); VisitObjectsInternal(callback, arg); } // Visit objects in the region spaces. void Heap::VisitObjectsInternalRegionSpace(ObjectCallback callback, void* arg) { Thread* self = Thread::Current(); Locks::mutator_lock_->AssertExclusiveHeld(self); if (region_space_ != nullptr) { DCHECK(IsGcConcurrentAndMoving()); if (!zygote_creation_lock_.IsExclusiveHeld(self)) { // Exclude the pre-zygote fork time where the semi-space collector // calls VerifyHeapReferences() as part of the zygote compaction // which then would call here without the moving GC disabled, // which is fine. DCHECK(IsMovingGCDisabled(self)); } region_space_->Walk(callback, arg); } } // Visit objects in the other spaces. void Heap::VisitObjectsInternal(ObjectCallback callback, void* arg) { if (bump_pointer_space_ != nullptr) { // Visit objects in bump pointer space. bump_pointer_space_->Walk(callback, arg); } // TODO: Switch to standard begin and end to use ranged a based loop. for (auto* it = allocation_stack_->Begin(), *end = allocation_stack_->End(); it < end; ++it) { mirror::Object* const obj = it->AsMirrorPtr(); if (obj != nullptr && obj->GetClass() != nullptr) { // Avoid the race condition caused by the object not yet being written into the allocation // stack or the class not yet being written in the object. Or, if // kUseThreadLocalAllocationStack, there can be nulls on the allocation stack. callback(obj, arg); } } { ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_); GetLiveBitmap()->Walk(callback, arg); } } void Heap::MarkAllocStackAsLive(accounting::ObjectStack* stack) { space::ContinuousSpace* space1 = main_space_ != nullptr ? main_space_ : non_moving_space_; space::ContinuousSpace* space2 = non_moving_space_; // TODO: Generalize this to n bitmaps? CHECK(space1 != nullptr); CHECK(space2 != nullptr); MarkAllocStack(space1->GetLiveBitmap(), space2->GetLiveBitmap(), (large_object_space_ != nullptr ? large_object_space_->GetLiveBitmap() : nullptr), stack); } void Heap::DeleteThreadPool() { thread_pool_.reset(nullptr); } void Heap::AddSpace(space::Space* space) { CHECK(space != nullptr); WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_); if (space->IsContinuousSpace()) { DCHECK(!space->IsDiscontinuousSpace()); space::ContinuousSpace* continuous_space = space->AsContinuousSpace(); // Continuous spaces don't necessarily have bitmaps. accounting::ContinuousSpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap(); accounting::ContinuousSpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap(); if (live_bitmap != nullptr) { CHECK(mark_bitmap != nullptr); live_bitmap_->AddContinuousSpaceBitmap(live_bitmap); mark_bitmap_->AddContinuousSpaceBitmap(mark_bitmap); } continuous_spaces_.push_back(continuous_space); // Ensure that spaces remain sorted in increasing order of start address. std::sort(continuous_spaces_.begin(), continuous_spaces_.end(), [](const space::ContinuousSpace* a, const space::ContinuousSpace* b) { return a->Begin() < b->Begin(); }); } else { CHECK(space->IsDiscontinuousSpace()); space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace(); live_bitmap_->AddLargeObjectBitmap(discontinuous_space->GetLiveBitmap()); mark_bitmap_->AddLargeObjectBitmap(discontinuous_space->GetMarkBitmap()); discontinuous_spaces_.push_back(discontinuous_space); } if (space->IsAllocSpace()) { alloc_spaces_.push_back(space->AsAllocSpace()); } } void Heap::SetSpaceAsDefault(space::ContinuousSpace* continuous_space) { WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_); if (continuous_space->IsDlMallocSpace()) { dlmalloc_space_ = continuous_space->AsDlMallocSpace(); } else if (continuous_space->IsRosAllocSpace()) { rosalloc_space_ = continuous_space->AsRosAllocSpace(); } } void Heap::RemoveSpace(space::Space* space) { DCHECK(space != nullptr); WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_); if (space->IsContinuousSpace()) { DCHECK(!space->IsDiscontinuousSpace()); space::ContinuousSpace* continuous_space = space->AsContinuousSpace(); // Continuous spaces don't necessarily have bitmaps. accounting::ContinuousSpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap(); accounting::ContinuousSpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap(); if (live_bitmap != nullptr) { DCHECK(mark_bitmap != nullptr); live_bitmap_->RemoveContinuousSpaceBitmap(live_bitmap); mark_bitmap_->RemoveContinuousSpaceBitmap(mark_bitmap); } auto it = std::find(continuous_spaces_.begin(), continuous_spaces_.end(), continuous_space); DCHECK(it != continuous_spaces_.end()); continuous_spaces_.erase(it); } else { DCHECK(space->IsDiscontinuousSpace()); space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace(); live_bitmap_->RemoveLargeObjectBitmap(discontinuous_space->GetLiveBitmap()); mark_bitmap_->RemoveLargeObjectBitmap(discontinuous_space->GetMarkBitmap()); auto it = std::find(discontinuous_spaces_.begin(), discontinuous_spaces_.end(), discontinuous_space); DCHECK(it != discontinuous_spaces_.end()); discontinuous_spaces_.erase(it); } if (space->IsAllocSpace()) { auto it = std::find(alloc_spaces_.begin(), alloc_spaces_.end(), space->AsAllocSpace()); DCHECK(it != alloc_spaces_.end()); alloc_spaces_.erase(it); } } void Heap::DumpGcPerformanceInfo(std::ostream& os) { // Dump cumulative timings. os << "Dumping cumulative Gc timings\n"; uint64_t total_duration = 0; // Dump cumulative loggers for each GC type. uint64_t total_paused_time = 0; for (auto& collector : garbage_collectors_) { total_duration += collector->GetCumulativeTimings().GetTotalNs(); total_paused_time += collector->GetTotalPausedTimeNs(); collector->DumpPerformanceInfo(os); } if (total_duration != 0) { const double total_seconds = static_cast<double>(total_duration / 1000) / 1000000.0; os << "Total time spent in GC: " << PrettyDuration(total_duration) << "\n"; os << "Mean GC size throughput: " << PrettySize(GetBytesFreedEver() / total_seconds) << "/s\n"; os << "Mean GC object throughput: " << (GetObjectsFreedEver() / total_seconds) << " objects/s\n"; } uint64_t total_objects_allocated = GetObjectsAllocatedEver(); os << "Total number of allocations " << total_objects_allocated << "\n"; os << "Total bytes allocated " << PrettySize(GetBytesAllocatedEver()) << "\n"; os << "Total bytes freed " << PrettySize(GetBytesFreedEver()) << "\n"; os << "Free memory " << PrettySize(GetFreeMemory()) << "\n"; os << "Free memory until GC " << PrettySize(GetFreeMemoryUntilGC()) << "\n"; os << "Free memory until OOME " << PrettySize(GetFreeMemoryUntilOOME()) << "\n"; os << "Total memory " << PrettySize(GetTotalMemory()) << "\n"; os << "Max memory " << PrettySize(GetMaxMemory()) << "\n"; if (HasZygoteSpace()) { os << "Zygote space size " << PrettySize(zygote_space_->Size()) << "\n"; } os << "Total mutator paused time: " << PrettyDuration(total_paused_time) << "\n"; os << "Total time waiting for GC to complete: " << PrettyDuration(total_wait_time_) << "\n"; os << "Total GC count: " << GetGcCount() << "\n"; os << "Total GC time: " << PrettyDuration(GetGcTime()) << "\n"; os << "Total blocking GC count: " << GetBlockingGcCount() << "\n"; os << "Total blocking GC time: " << PrettyDuration(GetBlockingGcTime()) << "\n"; { MutexLock mu(Thread::Current(), *gc_complete_lock_); if (gc_count_rate_histogram_.SampleSize() > 0U) { os << "Histogram of GC count per " << NsToMs(kGcCountRateHistogramWindowDuration) << " ms: "; gc_count_rate_histogram_.DumpBins(os); os << "\n"; } if (blocking_gc_count_rate_histogram_.SampleSize() > 0U) { os << "Histogram of blocking GC count per " << NsToMs(kGcCountRateHistogramWindowDuration) << " ms: "; blocking_gc_count_rate_histogram_.DumpBins(os); os << "\n"; } } if (kDumpRosAllocStatsOnSigQuit && rosalloc_space_ != nullptr) { rosalloc_space_->DumpStats(os); } { MutexLock mu(Thread::Current(), native_histogram_lock_); if (native_allocation_histogram_.SampleSize() > 0u) { os << "Histogram of native allocation "; native_allocation_histogram_.DumpBins(os); os << " bucket size " << native_allocation_histogram_.BucketWidth() << "\n"; } if (native_free_histogram_.SampleSize() > 0u) { os << "Histogram of native free "; native_free_histogram_.DumpBins(os); os << " bucket size " << native_free_histogram_.BucketWidth() << "\n"; } } BaseMutex::DumpAll(os); } void Heap::ResetGcPerformanceInfo() { for (auto& collector : garbage_collectors_) { collector->ResetMeasurements(); } total_bytes_freed_ever_ = 0; total_objects_freed_ever_ = 0; total_wait_time_ = 0; blocking_gc_count_ = 0; blocking_gc_time_ = 0; gc_count_last_window_ = 0; blocking_gc_count_last_window_ = 0; last_update_time_gc_count_rate_histograms_ = // Round down by the window duration. (NanoTime() / kGcCountRateHistogramWindowDuration) * kGcCountRateHistogramWindowDuration; { MutexLock mu(Thread::Current(), *gc_complete_lock_); gc_count_rate_histogram_.Reset(); blocking_gc_count_rate_histogram_.Reset(); } } uint64_t Heap::GetGcCount() const { uint64_t gc_count = 0U; for (auto& collector : garbage_collectors_) { gc_count += collector->GetCumulativeTimings().GetIterations(); } return gc_count; } uint64_t Heap::GetGcTime() const { uint64_t gc_time = 0U; for (auto& collector : garbage_collectors_) { gc_time += collector->GetCumulativeTimings().GetTotalNs(); } return gc_time; } uint64_t Heap::GetBlockingGcCount() const { return blocking_gc_count_; } uint64_t Heap::GetBlockingGcTime() const { return blocking_gc_time_; } void Heap::DumpGcCountRateHistogram(std::ostream& os) const { MutexLock mu(Thread::Current(), *gc_complete_lock_); if (gc_count_rate_histogram_.SampleSize() > 0U) { gc_count_rate_histogram_.DumpBins(os); } } void Heap::DumpBlockingGcCountRateHistogram(std::ostream& os) const { MutexLock mu(Thread::Current(), *gc_complete_lock_); if (blocking_gc_count_rate_histogram_.SampleSize() > 0U) { blocking_gc_count_rate_histogram_.DumpBins(os); } } Heap::~Heap() { VLOG(heap) << "Starting ~Heap()"; STLDeleteElements(&garbage_collectors_); // If we don't reset then the mark stack complains in its destructor. allocation_stack_->Reset(); allocation_records_.reset(); live_stack_->Reset(); STLDeleteValues(&mod_union_tables_); STLDeleteValues(&remembered_sets_); STLDeleteElements(&continuous_spaces_); STLDeleteElements(&discontinuous_spaces_); delete gc_complete_lock_; delete thread_flip_lock_; delete pending_task_lock_; delete backtrace_lock_; if (unique_backtrace_count_.LoadRelaxed() != 0 || seen_backtrace_count_.LoadRelaxed() != 0) { LOG(INFO) << "gc stress unique=" << unique_backtrace_count_.LoadRelaxed() << " total=" << seen_backtrace_count_.LoadRelaxed() + unique_backtrace_count_.LoadRelaxed(); } VLOG(heap) << "Finished ~Heap()"; } space::ContinuousSpace* Heap::FindContinuousSpaceFromObject(const mirror::Object* obj, bool fail_ok) const { for (const auto& space : continuous_spaces_) { if (space->Contains(obj)) { return space; } } if (!fail_ok) { LOG(FATAL) << "object " << reinterpret_cast<const void*>(obj) << " not inside any spaces!"; } return nullptr; } space::DiscontinuousSpace* Heap::FindDiscontinuousSpaceFromObject(const mirror::Object* obj, bool fail_ok) const { for (const auto& space : discontinuous_spaces_) { if (space->Contains(obj)) { return space; } } if (!fail_ok) { LOG(FATAL) << "object " << reinterpret_cast<const void*>(obj) << " not inside any spaces!"; } return nullptr; } space::Space* Heap::FindSpaceFromObject(const mirror::Object* obj, bool fail_ok) const { space::Space* result = FindContinuousSpaceFromObject(obj, true); if (result != nullptr) { return result; } return FindDiscontinuousSpaceFromObject(obj, fail_ok); } void Heap::ThrowOutOfMemoryError(Thread* self, size_t byte_count, AllocatorType allocator_type) { // If we're in a stack overflow, do not create a new exception. It would require running the // constructor, which will of course still be in a stack overflow. if (self->IsHandlingStackOverflow()) { self->SetException(Runtime::Current()->GetPreAllocatedOutOfMemoryError()); return; } std::ostringstream oss; size_t total_bytes_free = GetFreeMemory(); oss << "Failed to allocate a " << byte_count << " byte allocation with " << total_bytes_free << " free bytes and " << PrettySize(GetFreeMemoryUntilOOME()) << " until OOM"; // If the allocation failed due to fragmentation, print out the largest continuous allocation. if (total_bytes_free >= byte_count) { space::AllocSpace* space = nullptr; if (allocator_type == kAllocatorTypeNonMoving) { space = non_moving_space_; } else if (allocator_type == kAllocatorTypeRosAlloc || allocator_type == kAllocatorTypeDlMalloc) { space = main_space_; } else if (allocator_type == kAllocatorTypeBumpPointer || allocator_type == kAllocatorTypeTLAB) { space = bump_pointer_space_; } else if (allocator_type == kAllocatorTypeRegion || allocator_type == kAllocatorTypeRegionTLAB) { space = region_space_; } if (space != nullptr) { space->LogFragmentationAllocFailure(oss, byte_count); } } self->ThrowOutOfMemoryError(oss.str().c_str()); } void Heap::DoPendingCollectorTransition() { CollectorType desired_collector_type = desired_collector_type_; // Launch homogeneous space compaction if it is desired. if (desired_collector_type == kCollectorTypeHomogeneousSpaceCompact) { if (!CareAboutPauseTimes()) { PerformHomogeneousSpaceCompact(); } else { VLOG(gc) << "Homogeneous compaction ignored due to jank perceptible process state"; } } else { TransitionCollector(desired_collector_type); } } void Heap::Trim(Thread* self) { Runtime* const runtime = Runtime::Current(); if (!CareAboutPauseTimes()) { // Deflate the monitors, this can cause a pause but shouldn't matter since we don't care // about pauses. ScopedTrace trace("Deflating monitors"); ScopedSuspendAll ssa(__FUNCTION__); uint64_t start_time = NanoTime(); size_t count = runtime->GetMonitorList()->DeflateMonitors(); VLOG(heap) << "Deflating " << count << " monitors took " << PrettyDuration(NanoTime() - start_time); } TrimIndirectReferenceTables(self); TrimSpaces(self); // Trim arenas that may have been used by JIT or verifier. runtime->GetArenaPool()->TrimMaps(); } class TrimIndirectReferenceTableClosure : public Closure { public: explicit TrimIndirectReferenceTableClosure(Barrier* barrier) : barrier_(barrier) { } virtual void Run(Thread* thread) OVERRIDE NO_THREAD_SAFETY_ANALYSIS { thread->GetJniEnv()->locals.Trim(); // If thread is a running mutator, then act on behalf of the trim thread. // See the code in ThreadList::RunCheckpoint. barrier_->Pass(Thread::Current()); } private: Barrier* const barrier_; }; void Heap::TrimIndirectReferenceTables(Thread* self) { ScopedObjectAccess soa(self); ScopedTrace trace(__PRETTY_FUNCTION__); JavaVMExt* vm = soa.Vm(); // Trim globals indirect reference table. vm->TrimGlobals(); // Trim locals indirect reference tables. Barrier barrier(0); TrimIndirectReferenceTableClosure closure(&barrier); ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun); size_t barrier_count = Runtime::Current()->GetThreadList()->RunCheckpoint(&closure); if (barrier_count != 0) { barrier.Increment(self, barrier_count); } } void Heap::StartGC(Thread* self, GcCause cause, CollectorType collector_type) { MutexLock mu(self, *gc_complete_lock_); // Ensure there is only one GC at a time. WaitForGcToCompleteLocked(cause, self); collector_type_running_ = collector_type; } void Heap::TrimSpaces(Thread* self) { { // Need to do this before acquiring the locks since we don't want to get suspended while // holding any locks. ScopedThreadStateChange tsc(self, kWaitingForGcToComplete); // Pretend we are doing a GC to prevent background compaction from deleting the space we are // trimming. StartGC(self, kGcCauseTrim, kCollectorTypeHeapTrim); } ScopedTrace trace(__PRETTY_FUNCTION__); const uint64_t start_ns = NanoTime(); // Trim the managed spaces. uint64_t total_alloc_space_allocated = 0; uint64_t total_alloc_space_size = 0; uint64_t managed_reclaimed = 0; { ScopedObjectAccess soa(self); for (const auto& space : continuous_spaces_) { if (space->IsMallocSpace()) { gc::space::MallocSpace* malloc_space = space->AsMallocSpace(); if (malloc_space->IsRosAllocSpace() || !CareAboutPauseTimes()) { // Don't trim dlmalloc spaces if we care about pauses since this can hold the space lock // for a long period of time. managed_reclaimed += malloc_space->Trim(); } total_alloc_space_size += malloc_space->Size(); } } } total_alloc_space_allocated = GetBytesAllocated(); if (large_object_space_ != nullptr) { total_alloc_space_allocated -= large_object_space_->GetBytesAllocated(); } if (bump_pointer_space_ != nullptr) { total_alloc_space_allocated -= bump_pointer_space_->Size(); } if (region_space_ != nullptr) { total_alloc_space_allocated -= region_space_->GetBytesAllocated(); } const float managed_utilization = static_cast<float>(total_alloc_space_allocated) / static_cast<float>(total_alloc_space_size); uint64_t gc_heap_end_ns = NanoTime(); // We never move things in the native heap, so we can finish the GC at this point. FinishGC(self, collector::kGcTypeNone); VLOG(heap) << "Heap trim of managed (duration=" << PrettyDuration(gc_heap_end_ns - start_ns) << ", advised=" << PrettySize(managed_reclaimed) << ") heap. Managed heap utilization of " << static_cast<int>(100 * managed_utilization) << "%."; } bool Heap::IsValidObjectAddress(const mirror::Object* obj) const { // Note: we deliberately don't take the lock here, and mustn't test anything that would require // taking the lock. if (obj == nullptr) { return true; } return IsAligned<kObjectAlignment>(obj) && FindSpaceFromObject(obj, true) != nullptr; } bool Heap::IsNonDiscontinuousSpaceHeapAddress(const mirror::Object* obj) const { return FindContinuousSpaceFromObject(obj, true) != nullptr; } bool Heap::IsValidContinuousSpaceObjectAddress(const mirror::Object* obj) const { if (obj == nullptr || !IsAligned<kObjectAlignment>(obj)) { return false; } for (const auto& space : continuous_spaces_) { if (space->HasAddress(obj)) { return true; } } return false; } bool Heap::IsLiveObjectLocked(mirror::Object* obj, bool search_allocation_stack, bool search_live_stack, bool sorted) { if (UNLIKELY(!IsAligned<kObjectAlignment>(obj))) { return false; } if (bump_pointer_space_ != nullptr && bump_pointer_space_->HasAddress(obj)) { mirror::Class* klass = obj->GetClass<kVerifyNone>(); if (obj == klass) { // This case happens for java.lang.Class. return true; } return VerifyClassClass(klass) && IsLiveObjectLocked(klass); } else if (temp_space_ != nullptr && temp_space_->HasAddress(obj)) { // If we are in the allocated region of the temp space, then we are probably live (e.g. during // a GC). When a GC isn't running End() - Begin() is 0 which means no objects are contained. return temp_space_->Contains(obj); } if (region_space_ != nullptr && region_space_->HasAddress(obj)) { return true; } space::ContinuousSpace* c_space = FindContinuousSpaceFromObject(obj, true); space::DiscontinuousSpace* d_space = nullptr; if (c_space != nullptr) { if (c_space->GetLiveBitmap()->Test(obj)) { return true; } } else { d_space = FindDiscontinuousSpaceFromObject(obj, true); if (d_space != nullptr) { if (d_space->GetLiveBitmap()->Test(obj)) { return true; } } } // This is covering the allocation/live stack swapping that is done without mutators suspended. for (size_t i = 0; i < (sorted ? 1 : 5); ++i) { if (i > 0) { NanoSleep(MsToNs(10)); } if (search_allocation_stack) { if (sorted) { if (allocation_stack_->ContainsSorted(obj)) { return true; } } else if (allocation_stack_->Contains(obj)) { return true; } } if (search_live_stack) { if (sorted) { if (live_stack_->ContainsSorted(obj)) { return true; } } else if (live_stack_->Contains(obj)) { return true; } } } // We need to check the bitmaps again since there is a race where we mark something as live and // then clear the stack containing it. if (c_space != nullptr) { if (c_space->GetLiveBitmap()->Test(obj)) { return true; } } else { d_space = FindDiscontinuousSpaceFromObject(obj, true); if (d_space != nullptr && d_space->GetLiveBitmap()->Test(obj)) { return true; } } return false; } std::string Heap::DumpSpaces() const { std::ostringstream oss; DumpSpaces(oss); return oss.str(); } void Heap::DumpSpaces(std::ostream& stream) const { for (const auto& space : continuous_spaces_) { accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap(); accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap(); stream << space << " " << *space << "\n"; if (live_bitmap != nullptr) { stream << live_bitmap << " " << *live_bitmap << "\n"; } if (mark_bitmap != nullptr) { stream << mark_bitmap << " " << *mark_bitmap << "\n"; } } for (const auto& space : discontinuous_spaces_) { stream << space << " " << *space << "\n"; } } void Heap::VerifyObjectBody(mirror::Object* obj) { if (verify_object_mode_ == kVerifyObjectModeDisabled) { return; } // Ignore early dawn of the universe verifications. if (UNLIKELY(static_cast<size_t>(num_bytes_allocated_.LoadRelaxed()) < 10 * KB)) { return; } CHECK_ALIGNED(obj, kObjectAlignment) << "Object isn't aligned"; mirror::Class* c = obj->GetFieldObject<mirror::Class, kVerifyNone>(mirror::Object::ClassOffset()); CHECK(c != nullptr) << "Null class in object " << obj; CHECK_ALIGNED(c, kObjectAlignment) << "Class " << c << " not aligned in object " << obj; CHECK(VerifyClassClass(c)); if (verify_object_mode_ > kVerifyObjectModeFast) { // Note: the bitmap tests below are racy since we don't hold the heap bitmap lock. CHECK(IsLiveObjectLocked(obj)) << "Object is dead " << obj << "\n" << DumpSpaces(); } } void Heap::VerificationCallback(mirror::Object* obj, void* arg) { reinterpret_cast<Heap*>(arg)->VerifyObjectBody(obj); } void Heap::VerifyHeap() { ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_); GetLiveBitmap()->Walk(Heap::VerificationCallback, this); } void Heap::RecordFree(uint64_t freed_objects, int64_t freed_bytes) { // Use signed comparison since freed bytes can be negative when background compaction foreground // transitions occurs. This is caused by the moving objects from a bump pointer space to a // free list backed space typically increasing memory footprint due to padding and binning. DCHECK_LE(freed_bytes, static_cast<int64_t>(num_bytes_allocated_.LoadRelaxed())); // Note: This relies on 2s complement for handling negative freed_bytes. num_bytes_allocated_.FetchAndSubSequentiallyConsistent(static_cast<ssize_t>(freed_bytes)); if (Runtime::Current()->HasStatsEnabled()) { RuntimeStats* thread_stats = Thread::Current()->GetStats(); thread_stats->freed_objects += freed_objects; thread_stats->freed_bytes += freed_bytes; // TODO: Do this concurrently. RuntimeStats* global_stats = Runtime::Current()->GetStats(); global_stats->freed_objects += freed_objects; global_stats->freed_bytes += freed_bytes; } } void Heap::RecordFreeRevoke() { // Subtract num_bytes_freed_revoke_ from num_bytes_allocated_ to cancel out the // the ahead-of-time, bulk counting of bytes allocated in rosalloc thread-local buffers. // If there's a concurrent revoke, ok to not necessarily reset num_bytes_freed_revoke_ // all the way to zero exactly as the remainder will be subtracted at the next GC. size_t bytes_freed = num_bytes_freed_revoke_.LoadSequentiallyConsistent(); CHECK_GE(num_bytes_freed_revoke_.FetchAndSubSequentiallyConsistent(bytes_freed), bytes_freed) << "num_bytes_freed_revoke_ underflow"; CHECK_GE(num_bytes_allocated_.FetchAndSubSequentiallyConsistent(bytes_freed), bytes_freed) << "num_bytes_allocated_ underflow"; GetCurrentGcIteration()->SetFreedRevoke(bytes_freed); } space::RosAllocSpace* Heap::GetRosAllocSpace(gc::allocator::RosAlloc* rosalloc) const { if (rosalloc_space_ != nullptr && rosalloc_space_->GetRosAlloc() == rosalloc) { return rosalloc_space_; } for (const auto& space : continuous_spaces_) { if (space->AsContinuousSpace()->IsRosAllocSpace()) { if (space->AsContinuousSpace()->AsRosAllocSpace()->GetRosAlloc() == rosalloc) { return space->AsContinuousSpace()->AsRosAllocSpace(); } } } return nullptr; } static inline bool EntrypointsInstrumented() SHARED_REQUIRES(Locks::mutator_lock_) { instrumentation::Instrumentation* const instrumentation = Runtime::Current()->GetInstrumentation(); return instrumentation != nullptr && instrumentation->AllocEntrypointsInstrumented(); } mirror::Object* Heap::AllocateInternalWithGc(Thread* self, AllocatorType allocator, bool instrumented, size_t alloc_size, size_t* bytes_allocated, size_t* usable_size, size_t* bytes_tl_bulk_allocated, mirror::Class** klass) { bool was_default_allocator = allocator == GetCurrentAllocator(); // Make sure there is no pending exception since we may need to throw an OOME. self->AssertNoPendingException(); DCHECK(klass != nullptr); StackHandleScope<1> hs(self); HandleWrapper<mirror::Class> h(hs.NewHandleWrapper(klass)); klass = nullptr; // Invalidate for safety. // The allocation failed. If the GC is running, block until it completes, and then retry the // allocation. collector::GcType last_gc = WaitForGcToComplete(kGcCauseForAlloc, self); // If we were the default allocator but the allocator changed while we were suspended, // abort the allocation. if ((was_default_allocator && allocator != GetCurrentAllocator()) || (!instrumented && EntrypointsInstrumented())) { return nullptr; } if (last_gc != collector::kGcTypeNone) { // A GC was in progress and we blocked, retry allocation now that memory has been freed. mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated, usable_size, bytes_tl_bulk_allocated); if (ptr != nullptr) { return ptr; } } collector::GcType tried_type = next_gc_type_; const bool gc_ran = CollectGarbageInternal(tried_type, kGcCauseForAlloc, false) != collector::kGcTypeNone; if ((was_default_allocator && allocator != GetCurrentAllocator()) || (!instrumented && EntrypointsInstrumented())) { return nullptr; } if (gc_ran) { mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated, usable_size, bytes_tl_bulk_allocated); if (ptr != nullptr) { return ptr; } } // Loop through our different Gc types and try to Gc until we get enough free memory. for (collector::GcType gc_type : gc_plan_) { if (gc_type == tried_type) { continue; } // Attempt to run the collector, if we succeed, re-try the allocation. const bool plan_gc_ran = CollectGarbageInternal(gc_type, kGcCauseForAlloc, false) != collector::kGcTypeNone; if ((was_default_allocator && allocator != GetCurrentAllocator()) || (!instrumented && EntrypointsInstrumented())) { return nullptr; } if (plan_gc_ran) { // Did we free sufficient memory for the allocation to succeed? mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated, usable_size, bytes_tl_bulk_allocated); if (ptr != nullptr) { return ptr; } } } // Allocations have failed after GCs; this is an exceptional state. // Try harder, growing the heap if necessary. mirror::Object* ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated, usable_size, bytes_tl_bulk_allocated); if (ptr != nullptr) { return ptr; } // Most allocations should have succeeded by now, so the heap is really full, really fragmented, // or the requested size is really big. Do another GC, collecting SoftReferences this time. The // VM spec requires that all SoftReferences have been collected and cleared before throwing // OOME. VLOG(gc) << "Forcing collection of SoftReferences for " << PrettySize(alloc_size) << " allocation"; // TODO: Run finalization, but this may cause more allocations to occur. // We don't need a WaitForGcToComplete here either. DCHECK(!gc_plan_.empty()); CollectGarbageInternal(gc_plan_.back(), kGcCauseForAlloc, true); if ((was_default_allocator && allocator != GetCurrentAllocator()) || (!instrumented && EntrypointsInstrumented())) { return nullptr; } ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated, usable_size, bytes_tl_bulk_allocated); if (ptr == nullptr) { const uint64_t current_time = NanoTime(); switch (allocator) { case kAllocatorTypeRosAlloc: // Fall-through. case kAllocatorTypeDlMalloc: { if (use_homogeneous_space_compaction_for_oom_ && current_time - last_time_homogeneous_space_compaction_by_oom_ > min_interval_homogeneous_space_compaction_by_oom_) { last_time_homogeneous_space_compaction_by_oom_ = current_time; HomogeneousSpaceCompactResult result = PerformHomogeneousSpaceCompact(); // Thread suspension could have occurred. if ((was_default_allocator && allocator != GetCurrentAllocator()) || (!instrumented && EntrypointsInstrumented())) { return nullptr; } switch (result) { case HomogeneousSpaceCompactResult::kSuccess: // If the allocation succeeded, we delayed an oom. ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated, usable_size, bytes_tl_bulk_allocated); if (ptr != nullptr) { count_delayed_oom_++; } break; case HomogeneousSpaceCompactResult::kErrorReject: // Reject due to disabled moving GC. break; case HomogeneousSpaceCompactResult::kErrorVMShuttingDown: // Throw OOM by default. break; default: { UNIMPLEMENTED(FATAL) << "homogeneous space compaction result: " << static_cast<size_t>(result); UNREACHABLE(); } } // Always print that we ran homogeneous space compation since this can cause jank. VLOG(heap) << "Ran heap homogeneous space compaction, " << " requested defragmentation " << count_requested_homogeneous_space_compaction_.LoadSequentiallyConsistent() << " performed defragmentation " << count_performed_homogeneous_space_compaction_.LoadSequentiallyConsistent() << " ignored homogeneous space compaction " << count_ignored_homogeneous_space_compaction_.LoadSequentiallyConsistent() << " delayed count = " << count_delayed_oom_.LoadSequentiallyConsistent(); } break; } case kAllocatorTypeNonMoving: { // Try to transition the heap if the allocation failure was due to the space being full. if (!IsOutOfMemoryOnAllocation<false>(allocator, alloc_size)) { // If we aren't out of memory then the OOM was probably from the non moving space being // full. Attempt to disable compaction and turn the main space into a non moving space. DisableMovingGc(); // Thread suspension could have occurred. if ((was_default_allocator && allocator != GetCurrentAllocator()) || (!instrumented && EntrypointsInstrumented())) { return nullptr; } // If we are still a moving GC then something must have caused the transition to fail. if (IsMovingGc(collector_type_)) { MutexLock mu(self, *gc_complete_lock_); // If we couldn't disable moving GC, just throw OOME and return null. LOG(WARNING) << "Couldn't disable moving GC with disable GC count " << disable_moving_gc_count_; } else { LOG(WARNING) << "Disabled moving GC due to the non moving space being full"; ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated, usable_size, bytes_tl_bulk_allocated); } } break; } default: { // Do nothing for others allocators. } } } // If the allocation hasn't succeeded by this point, throw an OOM error. if (ptr == nullptr) { ThrowOutOfMemoryError(self, alloc_size, allocator); } return ptr; } void Heap::SetTargetHeapUtilization(float target) { DCHECK_GT(target, 0.0f); // asserted in Java code DCHECK_LT(target, 1.0f); target_utilization_ = target; } size_t Heap::GetObjectsAllocated() const { Thread* const self = Thread::Current(); ScopedThreadStateChange tsc(self, kWaitingForGetObjectsAllocated); // Need SuspendAll here to prevent lock violation if RosAlloc does it during InspectAll. ScopedSuspendAll ssa(__FUNCTION__); ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_); size_t total = 0; for (space::AllocSpace* space : alloc_spaces_) { total += space->GetObjectsAllocated(); } return total; } uint64_t Heap::GetObjectsAllocatedEver() const { uint64_t total = GetObjectsFreedEver(); // If we are detached, we can't use GetObjectsAllocated since we can't change thread states. if (Thread::Current() != nullptr) { total += GetObjectsAllocated(); } return total; } uint64_t Heap::GetBytesAllocatedEver() const { return GetBytesFreedEver() + GetBytesAllocated(); } class InstanceCounter { public: InstanceCounter(const std::vector<mirror::Class*>& classes, bool use_is_assignable_from, uint64_t* counts) SHARED_REQUIRES(Locks::mutator_lock_) : classes_(classes), use_is_assignable_from_(use_is_assignable_from), counts_(counts) {} static void Callback(mirror::Object* obj, void* arg) SHARED_REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) { InstanceCounter* instance_counter = reinterpret_cast<InstanceCounter*>(arg); mirror::Class* instance_class = obj->GetClass(); CHECK(instance_class != nullptr); for (size_t i = 0; i < instance_counter->classes_.size(); ++i) { mirror::Class* klass = instance_counter->classes_[i]; if (instance_counter->use_is_assignable_from_) { if (klass != nullptr && klass->IsAssignableFrom(instance_class)) { ++instance_counter->counts_[i]; } } else if (instance_class == klass) { ++instance_counter->counts_[i]; } } } private: const std::vector<mirror::Class*>& classes_; bool use_is_assignable_from_; uint64_t* const counts_; DISALLOW_COPY_AND_ASSIGN(InstanceCounter); }; void Heap::CountInstances(const std::vector<mirror::Class*>& classes, bool use_is_assignable_from, uint64_t* counts) { InstanceCounter counter(classes, use_is_assignable_from, counts); VisitObjects(InstanceCounter::Callback, &counter); } class InstanceCollector { public: InstanceCollector(mirror::Class* c, int32_t max_count, std::vector<mirror::Object*>& instances) SHARED_REQUIRES(Locks::mutator_lock_) : class_(c), max_count_(max_count), instances_(instances) { } static void Callback(mirror::Object* obj, void* arg) SHARED_REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) { DCHECK(arg != nullptr); InstanceCollector* instance_collector = reinterpret_cast<InstanceCollector*>(arg); if (obj->GetClass() == instance_collector->class_) { if (instance_collector->max_count_ == 0 || instance_collector->instances_.size() < instance_collector->max_count_) { instance_collector->instances_.push_back(obj); } } } private: const mirror::Class* const class_; const uint32_t max_count_; std::vector<mirror::Object*>& instances_; DISALLOW_COPY_AND_ASSIGN(InstanceCollector); }; void Heap::GetInstances(mirror::Class* c, int32_t max_count, std::vector<mirror::Object*>& instances) { InstanceCollector collector(c, max_count, instances); VisitObjects(&InstanceCollector::Callback, &collector); } class ReferringObjectsFinder { public: ReferringObjectsFinder(mirror::Object* object, int32_t max_count, std::vector<mirror::Object*>& referring_objects) SHARED_REQUIRES(Locks::mutator_lock_) : object_(object), max_count_(max_count), referring_objects_(referring_objects) { } static void Callback(mirror::Object* obj, void* arg) SHARED_REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) { reinterpret_cast<ReferringObjectsFinder*>(arg)->operator()(obj); } // For bitmap Visit. // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for // annotalysis on visitors. void operator()(mirror::Object* o) const NO_THREAD_SAFETY_ANALYSIS { o->VisitReferences(*this, VoidFunctor()); } // For Object::VisitReferences. void operator()(mirror::Object* obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const SHARED_REQUIRES(Locks::mutator_lock_) { mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset); if (ref == object_ && (max_count_ == 0 || referring_objects_.size() < max_count_)) { referring_objects_.push_back(obj); } } void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {} void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {} private: const mirror::Object* const object_; const uint32_t max_count_; std::vector<mirror::Object*>& referring_objects_; DISALLOW_COPY_AND_ASSIGN(ReferringObjectsFinder); }; void Heap::GetReferringObjects(mirror::Object* o, int32_t max_count, std::vector<mirror::Object*>& referring_objects) { ReferringObjectsFinder finder(o, max_count, referring_objects); VisitObjects(&ReferringObjectsFinder::Callback, &finder); } void Heap::CollectGarbage(bool clear_soft_references) { // Even if we waited for a GC we still need to do another GC since weaks allocated during the // last GC will not have necessarily been cleared. CollectGarbageInternal(gc_plan_.back(), kGcCauseExplicit, clear_soft_references); } bool Heap::SupportHomogeneousSpaceCompactAndCollectorTransitions() const { return main_space_backup_.get() != nullptr && main_space_ != nullptr && foreground_collector_type_ == kCollectorTypeCMS; } HomogeneousSpaceCompactResult Heap::PerformHomogeneousSpaceCompact() { Thread* self = Thread::Current(); // Inc requested homogeneous space compaction. count_requested_homogeneous_space_compaction_++; // Store performed homogeneous space compaction at a new request arrival. ScopedThreadStateChange tsc(self, kWaitingPerformingGc); Locks::mutator_lock_->AssertNotHeld(self); { ScopedThreadStateChange tsc2(self, kWaitingForGcToComplete); MutexLock mu(self, *gc_complete_lock_); // Ensure there is only one GC at a time. WaitForGcToCompleteLocked(kGcCauseHomogeneousSpaceCompact, self); // Homogeneous space compaction is a copying transition, can't run it if the moving GC disable count // is non zero. // If the collector type changed to something which doesn't benefit from homogeneous space compaction, // exit. if (disable_moving_gc_count_ != 0 || IsMovingGc(collector_type_) || !main_space_->CanMoveObjects()) { return kErrorReject; } if (!SupportHomogeneousSpaceCompactAndCollectorTransitions()) { return kErrorUnsupported; } collector_type_running_ = kCollectorTypeHomogeneousSpaceCompact; } if (Runtime::Current()->IsShuttingDown(self)) { // Don't allow heap transitions to happen if the runtime is shutting down since these can // cause objects to get finalized. FinishGC(self, collector::kGcTypeNone); return HomogeneousSpaceCompactResult::kErrorVMShuttingDown; } collector::GarbageCollector* collector; { ScopedSuspendAll ssa(__FUNCTION__); uint64_t start_time = NanoTime(); // Launch compaction. space::MallocSpace* to_space = main_space_backup_.release(); space::MallocSpace* from_space = main_space_; to_space->GetMemMap()->Protect(PROT_READ | PROT_WRITE); const uint64_t space_size_before_compaction = from_space->Size(); AddSpace(to_space); // Make sure that we will have enough room to copy. CHECK_GE(to_space->GetFootprintLimit(), from_space->GetFootprintLimit()); collector = Compact(to_space, from_space, kGcCauseHomogeneousSpaceCompact); const uint64_t space_size_after_compaction = to_space->Size(); main_space_ = to_space; main_space_backup_.reset(from_space); RemoveSpace(from_space); SetSpaceAsDefault(main_space_); // Set as default to reset the proper dlmalloc space. // Update performed homogeneous space compaction count. count_performed_homogeneous_space_compaction_++; // Print statics log and resume all threads. uint64_t duration = NanoTime() - start_time; VLOG(heap) << "Heap homogeneous space compaction took " << PrettyDuration(duration) << " size: " << PrettySize(space_size_before_compaction) << " -> " << PrettySize(space_size_after_compaction) << " compact-ratio: " << std::fixed << static_cast<double>(space_size_after_compaction) / static_cast<double>(space_size_before_compaction); } // Finish GC. reference_processor_->EnqueueClearedReferences(self); GrowForUtilization(semi_space_collector_); LogGC(kGcCauseHomogeneousSpaceCompact, collector); FinishGC(self, collector::kGcTypeFull); { ScopedObjectAccess soa(self); soa.Vm()->UnloadNativeLibraries(); } return HomogeneousSpaceCompactResult::kSuccess; } void Heap::TransitionCollector(CollectorType collector_type) { if (collector_type == collector_type_) { return; } VLOG(heap) << "TransitionCollector: " << static_cast<int>(collector_type_) << " -> " << static_cast<int>(collector_type); uint64_t start_time = NanoTime(); uint32_t before_allocated = num_bytes_allocated_.LoadSequentiallyConsistent(); Runtime* const runtime = Runtime::Current(); Thread* const self = Thread::Current(); ScopedThreadStateChange tsc(self, kWaitingPerformingGc); Locks::mutator_lock_->AssertNotHeld(self); // Busy wait until we can GC (StartGC can fail if we have a non-zero // compacting_gc_disable_count_, this should rarely occurs). for (;;) { { ScopedThreadStateChange tsc2(self, kWaitingForGcToComplete); MutexLock mu(self, *gc_complete_lock_); // Ensure there is only one GC at a time. WaitForGcToCompleteLocked(kGcCauseCollectorTransition, self); // Currently we only need a heap transition if we switch from a moving collector to a // non-moving one, or visa versa. const bool copying_transition = IsMovingGc(collector_type_) != IsMovingGc(collector_type); // If someone else beat us to it and changed the collector before we could, exit. // This is safe to do before the suspend all since we set the collector_type_running_ before // we exit the loop. If another thread attempts to do the heap transition before we exit, // then it would get blocked on WaitForGcToCompleteLocked. if (collector_type == collector_type_) { return; } // GC can be disabled if someone has a used GetPrimitiveArrayCritical but not yet released. if (!copying_transition || disable_moving_gc_count_ == 0) { // TODO: Not hard code in semi-space collector? collector_type_running_ = copying_transition ? kCollectorTypeSS : collector_type; break; } } usleep(1000); } if (runtime->IsShuttingDown(self)) { // Don't allow heap transitions to happen if the runtime is shutting down since these can // cause objects to get finalized. FinishGC(self, collector::kGcTypeNone); return; } collector::GarbageCollector* collector = nullptr; { ScopedSuspendAll ssa(__FUNCTION__); switch (collector_type) { case kCollectorTypeSS: { if (!IsMovingGc(collector_type_)) { // Create the bump pointer space from the backup space. CHECK(main_space_backup_ != nullptr); std::unique_ptr<MemMap> mem_map(main_space_backup_->ReleaseMemMap()); // We are transitioning from non moving GC -> moving GC, since we copied from the bump // pointer space last transition it will be protected. CHECK(mem_map != nullptr); mem_map->Protect(PROT_READ | PROT_WRITE); bump_pointer_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space", mem_map.release()); AddSpace(bump_pointer_space_); collector = Compact(bump_pointer_space_, main_space_, kGcCauseCollectorTransition); // Use the now empty main space mem map for the bump pointer temp space. mem_map.reset(main_space_->ReleaseMemMap()); // Unset the pointers just in case. if (dlmalloc_space_ == main_space_) { dlmalloc_space_ = nullptr; } else if (rosalloc_space_ == main_space_) { rosalloc_space_ = nullptr; } // Remove the main space so that we don't try to trim it, this doens't work for debug // builds since RosAlloc attempts to read the magic number from a protected page. RemoveSpace(main_space_); RemoveRememberedSet(main_space_); delete main_space_; // Delete the space since it has been removed. main_space_ = nullptr; RemoveRememberedSet(main_space_backup_.get()); main_space_backup_.reset(nullptr); // Deletes the space. temp_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 2", mem_map.release()); AddSpace(temp_space_); } break; } case kCollectorTypeMS: // Fall through. case kCollectorTypeCMS: { if (IsMovingGc(collector_type_)) { CHECK(temp_space_ != nullptr); std::unique_ptr<MemMap> mem_map(temp_space_->ReleaseMemMap()); RemoveSpace(temp_space_); temp_space_ = nullptr; mem_map->Protect(PROT_READ | PROT_WRITE); CreateMainMallocSpace(mem_map.get(), kDefaultInitialSize, std::min(mem_map->Size(), growth_limit_), mem_map->Size()); mem_map.release(); // Compact to the main space from the bump pointer space, don't need to swap semispaces. AddSpace(main_space_); collector = Compact(main_space_, bump_pointer_space_, kGcCauseCollectorTransition); mem_map.reset(bump_pointer_space_->ReleaseMemMap()); RemoveSpace(bump_pointer_space_); bump_pointer_space_ = nullptr; const char* name = kUseRosAlloc ? kRosAllocSpaceName[1] : kDlMallocSpaceName[1]; // Temporarily unprotect the backup mem map so rosalloc can write the debug magic number. if (kIsDebugBuild && kUseRosAlloc) { mem_map->Protect(PROT_READ | PROT_WRITE); } main_space_backup_.reset(CreateMallocSpaceFromMemMap( mem_map.get(), kDefaultInitialSize, std::min(mem_map->Size(), growth_limit_), mem_map->Size(), name, true)); if (kIsDebugBuild && kUseRosAlloc) { mem_map->Protect(PROT_NONE); } mem_map.release(); } break; } default: { LOG(FATAL) << "Attempted to transition to invalid collector type " << static_cast<size_t>(collector_type); break; } } ChangeCollector(collector_type); } // Can't call into java code with all threads suspended. reference_processor_->EnqueueClearedReferences(self); uint64_t duration = NanoTime() - start_time; GrowForUtilization(semi_space_collector_); DCHECK(collector != nullptr); LogGC(kGcCauseCollectorTransition, collector); FinishGC(self, collector::kGcTypeFull); { ScopedObjectAccess soa(self); soa.Vm()->UnloadNativeLibraries(); } int32_t after_allocated = num_bytes_allocated_.LoadSequentiallyConsistent(); int32_t delta_allocated = before_allocated - after_allocated; std::string saved_str; if (delta_allocated >= 0) { saved_str = " saved at least " + PrettySize(delta_allocated); } else { saved_str = " expanded " + PrettySize(-delta_allocated); } VLOG(heap) << "Collector transition to " << collector_type << " took " << PrettyDuration(duration) << saved_str; } void Heap::ChangeCollector(CollectorType collector_type) { // TODO: Only do this with all mutators suspended to avoid races. if (collector_type != collector_type_) { if (collector_type == kCollectorTypeMC) { // Don't allow mark compact unless support is compiled in. CHECK(kMarkCompactSupport); } collector_type_ = collector_type; gc_plan_.clear(); switch (collector_type_) { case kCollectorTypeCC: { gc_plan_.push_back(collector::kGcTypeFull); if (use_tlab_) { ChangeAllocator(kAllocatorTypeRegionTLAB); } else { ChangeAllocator(kAllocatorTypeRegion); } break; } case kCollectorTypeMC: // Fall-through. case kCollectorTypeSS: // Fall-through. case kCollectorTypeGSS: { gc_plan_.push_back(collector::kGcTypeFull); if (use_tlab_) { ChangeAllocator(kAllocatorTypeTLAB); } else { ChangeAllocator(kAllocatorTypeBumpPointer); } break; } case kCollectorTypeMS: { gc_plan_.push_back(collector::kGcTypeSticky); gc_plan_.push_back(collector::kGcTypePartial); gc_plan_.push_back(collector::kGcTypeFull); ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc); break; } case kCollectorTypeCMS: { gc_plan_.push_back(collector::kGcTypeSticky); gc_plan_.push_back(collector::kGcTypePartial); gc_plan_.push_back(collector::kGcTypeFull); ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc); break; } default: { UNIMPLEMENTED(FATAL); UNREACHABLE(); } } if (IsGcConcurrent()) { concurrent_start_bytes_ = std::max(max_allowed_footprint_, kMinConcurrentRemainingBytes) - kMinConcurrentRemainingBytes; } else { concurrent_start_bytes_ = std::numeric_limits<size_t>::max(); } } } // Special compacting collector which uses sub-optimal bin packing to reduce zygote space size. class ZygoteCompactingCollector FINAL : public collector::SemiSpace { public: ZygoteCompactingCollector(gc::Heap* heap, bool is_running_on_memory_tool) : SemiSpace(heap, false, "zygote collector"), bin_live_bitmap_(nullptr), bin_mark_bitmap_(nullptr), is_running_on_memory_tool_(is_running_on_memory_tool) {} void BuildBins(space::ContinuousSpace* space) { bin_live_bitmap_ = space->GetLiveBitmap(); bin_mark_bitmap_ = space->GetMarkBitmap(); BinContext context; context.prev_ = reinterpret_cast<uintptr_t>(space->Begin()); context.collector_ = this; WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_); // Note: This requires traversing the space in increasing order of object addresses. bin_live_bitmap_->Walk(Callback, reinterpret_cast<void*>(&context)); // Add the last bin which spans after the last object to the end of the space. AddBin(reinterpret_cast<uintptr_t>(space->End()) - context.prev_, context.prev_); } private: struct BinContext { uintptr_t prev_; // The end of the previous object. ZygoteCompactingCollector* collector_; }; // Maps from bin sizes to locations. std::multimap<size_t, uintptr_t> bins_; // Live bitmap of the space which contains the bins. accounting::ContinuousSpaceBitmap* bin_live_bitmap_; // Mark bitmap of the space which contains the bins. accounting::ContinuousSpaceBitmap* bin_mark_bitmap_; const bool is_running_on_memory_tool_; static void Callback(mirror::Object* obj, void* arg) SHARED_REQUIRES(Locks::mutator_lock_) { DCHECK(arg != nullptr); BinContext* context = reinterpret_cast<BinContext*>(arg); ZygoteCompactingCollector* collector = context->collector_; uintptr_t object_addr = reinterpret_cast<uintptr_t>(obj); size_t bin_size = object_addr - context->prev_; // Add the bin consisting of the end of the previous object to the start of the current object. collector->AddBin(bin_size, context->prev_); context->prev_ = object_addr + RoundUp(obj->SizeOf(), kObjectAlignment); } void AddBin(size_t size, uintptr_t position) { if (is_running_on_memory_tool_) { MEMORY_TOOL_MAKE_DEFINED(reinterpret_cast<void*>(position), size); } if (size != 0) { bins_.insert(std::make_pair(size, position)); } } virtual bool ShouldSweepSpace(space::ContinuousSpace* space ATTRIBUTE_UNUSED) const { // Don't sweep any spaces since we probably blasted the internal accounting of the free list // allocator. return false; } virtual mirror::Object* MarkNonForwardedObject(mirror::Object* obj) REQUIRES(Locks::heap_bitmap_lock_, Locks::mutator_lock_) { size_t obj_size = obj->SizeOf(); size_t alloc_size = RoundUp(obj_size, kObjectAlignment); mirror::Object* forward_address; // Find the smallest bin which we can move obj in. auto it = bins_.lower_bound(alloc_size); if (it == bins_.end()) { // No available space in the bins, place it in the target space instead (grows the zygote // space). size_t bytes_allocated, dummy; forward_address = to_space_->Alloc(self_, alloc_size, &bytes_allocated, nullptr, &dummy); if (to_space_live_bitmap_ != nullptr) { to_space_live_bitmap_->Set(forward_address); } else { GetHeap()->GetNonMovingSpace()->GetLiveBitmap()->Set(forward_address); GetHeap()->GetNonMovingSpace()->GetMarkBitmap()->Set(forward_address); } } else { size_t size = it->first; uintptr_t pos = it->second; bins_.erase(it); // Erase the old bin which we replace with the new smaller bin. forward_address = reinterpret_cast<mirror::Object*>(pos); // Set the live and mark bits so that sweeping system weaks works properly. bin_live_bitmap_->Set(forward_address); bin_mark_bitmap_->Set(forward_address); DCHECK_GE(size, alloc_size); // Add a new bin with the remaining space. AddBin(size - alloc_size, pos + alloc_size); } // Copy the object over to its new location. Don't use alloc_size to avoid valgrind error. memcpy(reinterpret_cast<void*>(forward_address), obj, obj_size); if (kUseBakerOrBrooksReadBarrier) { obj->AssertReadBarrierPointer(); if (kUseBrooksReadBarrier) { DCHECK_EQ(forward_address->GetReadBarrierPointer(), obj); forward_address->SetReadBarrierPointer(forward_address); } forward_address->AssertReadBarrierPointer(); } return forward_address; } }; void Heap::UnBindBitmaps() { TimingLogger::ScopedTiming t("UnBindBitmaps", GetCurrentGcIteration()->GetTimings()); for (const auto& space : GetContinuousSpaces()) { if (space->IsContinuousMemMapAllocSpace()) { space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace(); if (alloc_space->HasBoundBitmaps()) { alloc_space->UnBindBitmaps(); } } } } void Heap::PreZygoteFork() { if (!HasZygoteSpace()) { // We still want to GC in case there is some unreachable non moving objects that could cause a // suboptimal bin packing when we compact the zygote space. CollectGarbageInternal(collector::kGcTypeFull, kGcCauseBackground, false); // Trim the pages at the end of the non moving space. Trim while not holding zygote lock since // the trim process may require locking the mutator lock. non_moving_space_->Trim(); } Thread* self = Thread::Current(); MutexLock mu(self, zygote_creation_lock_); // Try to see if we have any Zygote spaces. if (HasZygoteSpace()) { return; } Runtime::Current()->GetInternTable()->AddNewTable(); Runtime::Current()->GetClassLinker()->MoveClassTableToPreZygote(); VLOG(heap) << "Starting PreZygoteFork"; // The end of the non-moving space may be protected, unprotect it so that we can copy the zygote // there. non_moving_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE); const bool same_space = non_moving_space_ == main_space_; if (kCompactZygote) { // Temporarily disable rosalloc verification because the zygote // compaction will mess up the rosalloc internal metadata. ScopedDisableRosAllocVerification disable_rosalloc_verif(this); ZygoteCompactingCollector zygote_collector(this, is_running_on_memory_tool_); zygote_collector.BuildBins(non_moving_space_); // Create a new bump pointer space which we will compact into. space::BumpPointerSpace target_space("zygote bump space", non_moving_space_->End(), non_moving_space_->Limit()); // Compact the bump pointer space to a new zygote bump pointer space. bool reset_main_space = false; if (IsMovingGc(collector_type_)) { if (collector_type_ == kCollectorTypeCC) { zygote_collector.SetFromSpace(region_space_); } else { zygote_collector.SetFromSpace(bump_pointer_space_); } } else { CHECK(main_space_ != nullptr); CHECK_NE(main_space_, non_moving_space_) << "Does not make sense to compact within the same space"; // Copy from the main space. zygote_collector.SetFromSpace(main_space_); reset_main_space = true; } zygote_collector.SetToSpace(&target_space); zygote_collector.SetSwapSemiSpaces(false); zygote_collector.Run(kGcCauseCollectorTransition, false); if (reset_main_space) { main_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE); madvise(main_space_->Begin(), main_space_->Capacity(), MADV_DONTNEED); MemMap* mem_map = main_space_->ReleaseMemMap(); RemoveSpace(main_space_); space::Space* old_main_space = main_space_; CreateMainMallocSpace(mem_map, kDefaultInitialSize, std::min(mem_map->Size(), growth_limit_), mem_map->Size()); delete old_main_space; AddSpace(main_space_); } else { if (collector_type_ == kCollectorTypeCC) { region_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE); } else { bump_pointer_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE); } } if (temp_space_ != nullptr) { CHECK(temp_space_->IsEmpty()); } total_objects_freed_ever_ += GetCurrentGcIteration()->GetFreedObjects(); total_bytes_freed_ever_ += GetCurrentGcIteration()->GetFreedBytes(); // Update the end and write out image. non_moving_space_->SetEnd(target_space.End()); non_moving_space_->SetLimit(target_space.Limit()); VLOG(heap) << "Create zygote space with size=" << non_moving_space_->Size() << " bytes"; } // Change the collector to the post zygote one. ChangeCollector(foreground_collector_type_); // Save the old space so that we can remove it after we complete creating the zygote space. space::MallocSpace* old_alloc_space = non_moving_space_; // Turn the current alloc space into a zygote space and obtain the new alloc space composed of // the remaining available space. // Remove the old space before creating the zygote space since creating the zygote space sets // the old alloc space's bitmaps to null. RemoveSpace(old_alloc_space); if (collector::SemiSpace::kUseRememberedSet) { // Sanity bound check. FindRememberedSetFromSpace(old_alloc_space)->AssertAllDirtyCardsAreWithinSpace(); // Remove the remembered set for the now zygote space (the old // non-moving space). Note now that we have compacted objects into // the zygote space, the data in the remembered set is no longer // needed. The zygote space will instead have a mod-union table // from this point on. RemoveRememberedSet(old_alloc_space); } // Remaining space becomes the new non moving space. zygote_space_ = old_alloc_space->CreateZygoteSpace(kNonMovingSpaceName, low_memory_mode_, &non_moving_space_); CHECK(!non_moving_space_->CanMoveObjects()); if (same_space) { main_space_ = non_moving_space_; SetSpaceAsDefault(main_space_); } delete old_alloc_space; CHECK(HasZygoteSpace()) << "Failed creating zygote space"; AddSpace(zygote_space_); non_moving_space_->SetFootprintLimit(non_moving_space_->Capacity()); AddSpace(non_moving_space_); // Create the zygote space mod union table. accounting::ModUnionTable* mod_union_table = new accounting::ModUnionTableCardCache("zygote space mod-union table", this, zygote_space_); CHECK(mod_union_table != nullptr) << "Failed to create zygote space mod-union table"; // Set all the cards in the mod-union table since we don't know which objects contain references // to large objects. mod_union_table->SetCards(); AddModUnionTable(mod_union_table); large_object_space_->SetAllLargeObjectsAsZygoteObjects(self); if (collector::SemiSpace::kUseRememberedSet) { // Add a new remembered set for the post-zygote non-moving space. accounting::RememberedSet* post_zygote_non_moving_space_rem_set = new accounting::RememberedSet("Post-zygote non-moving space remembered set", this, non_moving_space_); CHECK(post_zygote_non_moving_space_rem_set != nullptr) << "Failed to create post-zygote non-moving space remembered set"; AddRememberedSet(post_zygote_non_moving_space_rem_set); } } void Heap::FlushAllocStack() { MarkAllocStackAsLive(allocation_stack_.get()); allocation_stack_->Reset(); } void Heap::MarkAllocStack(accounting::ContinuousSpaceBitmap* bitmap1, accounting::ContinuousSpaceBitmap* bitmap2, accounting::LargeObjectBitmap* large_objects, accounting::ObjectStack* stack) { DCHECK(bitmap1 != nullptr); DCHECK(bitmap2 != nullptr); const auto* limit = stack->End(); for (auto* it = stack->Begin(); it != limit; ++it) { const mirror::Object* obj = it->AsMirrorPtr(); if (!kUseThreadLocalAllocationStack || obj != nullptr) { if (bitmap1->HasAddress(obj)) { bitmap1->Set(obj); } else if (bitmap2->HasAddress(obj)) { bitmap2->Set(obj); } else { DCHECK(large_objects != nullptr); large_objects->Set(obj); } } } } void Heap::SwapSemiSpaces() { CHECK(bump_pointer_space_ != nullptr); CHECK(temp_space_ != nullptr); std::swap(bump_pointer_space_, temp_space_); } collector::GarbageCollector* Heap::Compact(space::ContinuousMemMapAllocSpace* target_space, space::ContinuousMemMapAllocSpace* source_space, GcCause gc_cause) { CHECK(kMovingCollector); if (target_space != source_space) { // Don't swap spaces since this isn't a typical semi space collection. semi_space_collector_->SetSwapSemiSpaces(false); semi_space_collector_->SetFromSpace(source_space); semi_space_collector_->SetToSpace(target_space); semi_space_collector_->Run(gc_cause, false); return semi_space_collector_; } else { CHECK(target_space->IsBumpPointerSpace()) << "In-place compaction is only supported for bump pointer spaces"; mark_compact_collector_->SetSpace(target_space->AsBumpPointerSpace()); mark_compact_collector_->Run(kGcCauseCollectorTransition, false); return mark_compact_collector_; } } collector::GcType Heap::CollectGarbageInternal(collector::GcType gc_type, GcCause gc_cause, bool clear_soft_references) { Thread* self = Thread::Current(); Runtime* runtime = Runtime::Current(); // If the heap can't run the GC, silently fail and return that no GC was run. switch (gc_type) { case collector::kGcTypePartial: { if (!HasZygoteSpace()) { return collector::kGcTypeNone; } break; } default: { // Other GC types don't have any special cases which makes them not runnable. The main case // here is full GC. } } ScopedThreadStateChange tsc(self, kWaitingPerformingGc); Locks::mutator_lock_->AssertNotHeld(self); if (self->IsHandlingStackOverflow()) { // If we are throwing a stack overflow error we probably don't have enough remaining stack // space to run the GC. return collector::kGcTypeNone; } bool compacting_gc; { gc_complete_lock_->AssertNotHeld(self); ScopedThreadStateChange tsc2(self, kWaitingForGcToComplete); MutexLock mu(self, *gc_complete_lock_); // Ensure there is only one GC at a time. WaitForGcToCompleteLocked(gc_cause, self); compacting_gc = IsMovingGc(collector_type_); // GC can be disabled if someone has a used GetPrimitiveArrayCritical. if (compacting_gc && disable_moving_gc_count_ != 0) { LOG(WARNING) << "Skipping GC due to disable moving GC count " << disable_moving_gc_count_; return collector::kGcTypeNone; } if (gc_disabled_for_shutdown_) { return collector::kGcTypeNone; } collector_type_running_ = collector_type_; } if (gc_cause == kGcCauseForAlloc && runtime->HasStatsEnabled()) { ++runtime->GetStats()->gc_for_alloc_count; ++self->GetStats()->gc_for_alloc_count; } const uint64_t bytes_allocated_before_gc = GetBytesAllocated(); // Approximate heap size. ATRACE_INT("Heap size (KB)", bytes_allocated_before_gc / KB); DCHECK_LT(gc_type, collector::kGcTypeMax); DCHECK_NE(gc_type, collector::kGcTypeNone); collector::GarbageCollector* collector = nullptr; // TODO: Clean this up. if (compacting_gc) { DCHECK(current_allocator_ == kAllocatorTypeBumpPointer || current_allocator_ == kAllocatorTypeTLAB || current_allocator_ == kAllocatorTypeRegion || current_allocator_ == kAllocatorTypeRegionTLAB); switch (collector_type_) { case kCollectorTypeSS: // Fall-through. case kCollectorTypeGSS: semi_space_collector_->SetFromSpace(bump_pointer_space_); semi_space_collector_->SetToSpace(temp_space_); semi_space_collector_->SetSwapSemiSpaces(true); collector = semi_space_collector_; break; case kCollectorTypeCC: concurrent_copying_collector_->SetRegionSpace(region_space_); collector = concurrent_copying_collector_; break; case kCollectorTypeMC: mark_compact_collector_->SetSpace(bump_pointer_space_); collector = mark_compact_collector_; break; default: LOG(FATAL) << "Invalid collector type " << static_cast<size_t>(collector_type_); } if (collector != mark_compact_collector_ && collector != concurrent_copying_collector_) { temp_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE); if (kIsDebugBuild) { // Try to read each page of the memory map in case mprotect didn't work properly b/19894268. temp_space_->GetMemMap()->TryReadable(); } CHECK(temp_space_->IsEmpty()); } gc_type = collector::kGcTypeFull; // TODO: Not hard code this in. } else if (current_allocator_ == kAllocatorTypeRosAlloc || current_allocator_ == kAllocatorTypeDlMalloc) { collector = FindCollectorByGcType(gc_type); } else { LOG(FATAL) << "Invalid current allocator " << current_allocator_; } if (IsGcConcurrent()) { // Disable concurrent GC check so that we don't have spammy JNI requests. // This gets recalculated in GrowForUtilization. It is important that it is disabled / // calculated in the same thread so that there aren't any races that can cause it to become // permanantly disabled. b/17942071 concurrent_start_bytes_ = std::numeric_limits<size_t>::max(); } // It's time to clear all inline caches, in case some classes can be unloaded. if ((gc_type == collector::kGcTypeFull) && (runtime->GetJit() != nullptr)) { runtime->GetJit()->GetCodeCache()->ClearGcRootsInInlineCaches(self); } CHECK(collector != nullptr) << "Could not find garbage collector with collector_type=" << static_cast<size_t>(collector_type_) << " and gc_type=" << gc_type; collector->Run(gc_cause, clear_soft_references || runtime->IsZygote()); total_objects_freed_ever_ += GetCurrentGcIteration()->GetFreedObjects(); total_bytes_freed_ever_ += GetCurrentGcIteration()->GetFreedBytes(); RequestTrim(self); // Enqueue cleared references. reference_processor_->EnqueueClearedReferences(self); // Grow the heap so that we know when to perform the next GC. GrowForUtilization(collector, bytes_allocated_before_gc); LogGC(gc_cause, collector); FinishGC(self, gc_type); // Inform DDMS that a GC completed. Dbg::GcDidFinish(); // Unload native libraries for class unloading. We do this after calling FinishGC to prevent // deadlocks in case the JNI_OnUnload function does allocations. { ScopedObjectAccess soa(self); soa.Vm()->UnloadNativeLibraries(); } return gc_type; } void Heap::LogGC(GcCause gc_cause, collector::GarbageCollector* collector) { const size_t duration = GetCurrentGcIteration()->GetDurationNs(); const std::vector<uint64_t>& pause_times = GetCurrentGcIteration()->GetPauseTimes(); // Print the GC if it is an explicit GC (e.g. Runtime.gc()) or a slow GC // (mutator time blocked >= long_pause_log_threshold_). bool log_gc = gc_cause == kGcCauseExplicit; if (!log_gc && CareAboutPauseTimes()) { // GC for alloc pauses the allocating thread, so consider it as a pause. log_gc = duration > long_gc_log_threshold_ || (gc_cause == kGcCauseForAlloc && duration > long_pause_log_threshold_); for (uint64_t pause : pause_times) { log_gc = log_gc || pause >= long_pause_log_threshold_; } } if (log_gc) { const size_t percent_free = GetPercentFree(); const size_t current_heap_size = GetBytesAllocated(); const size_t total_memory = GetTotalMemory(); std::ostringstream pause_string; for (size_t i = 0; i < pause_times.size(); ++i) { pause_string << PrettyDuration((pause_times[i] / 1000) * 1000) << ((i != pause_times.size() - 1) ? "," : ""); } LOG(INFO) << gc_cause << " " << collector->GetName() << " GC freed " << current_gc_iteration_.GetFreedObjects() << "(" << PrettySize(current_gc_iteration_.GetFreedBytes()) << ") AllocSpace objects, " << current_gc_iteration_.GetFreedLargeObjects() << "(" << PrettySize(current_gc_iteration_.GetFreedLargeObjectBytes()) << ") LOS objects, " << percent_free << "% free, " << PrettySize(current_heap_size) << "/" << PrettySize(total_memory) << ", " << "paused " << pause_string.str() << " total " << PrettyDuration((duration / 1000) * 1000); VLOG(heap) << Dumpable<TimingLogger>(*current_gc_iteration_.GetTimings()); } } void Heap::FinishGC(Thread* self, collector::GcType gc_type) { MutexLock mu(self, *gc_complete_lock_); collector_type_running_ = kCollectorTypeNone; if (gc_type != collector::kGcTypeNone) { last_gc_type_ = gc_type; // Update stats. ++gc_count_last_window_; if (running_collection_is_blocking_) { // If the currently running collection was a blocking one, // increment the counters and reset the flag. ++blocking_gc_count_; blocking_gc_time_ += GetCurrentGcIteration()->GetDurationNs(); ++blocking_gc_count_last_window_; } // Update the gc count rate histograms if due. UpdateGcCountRateHistograms(); } // Reset. running_collection_is_blocking_ = false; // Wake anyone who may have been waiting for the GC to complete. gc_complete_cond_->Broadcast(self); } void Heap::UpdateGcCountRateHistograms() { // Invariant: if the time since the last update includes more than // one windows, all the GC runs (if > 0) must have happened in first // window because otherwise the update must have already taken place // at an earlier GC run. So, we report the non-first windows with // zero counts to the histograms. DCHECK_EQ(last_update_time_gc_count_rate_histograms_ % kGcCountRateHistogramWindowDuration, 0U); uint64_t now = NanoTime(); DCHECK_GE(now, last_update_time_gc_count_rate_histograms_); uint64_t time_since_last_update = now - last_update_time_gc_count_rate_histograms_; uint64_t num_of_windows = time_since_last_update / kGcCountRateHistogramWindowDuration; if (time_since_last_update >= kGcCountRateHistogramWindowDuration) { // Record the first window. gc_count_rate_histogram_.AddValue(gc_count_last_window_ - 1); // Exclude the current run. blocking_gc_count_rate_histogram_.AddValue(running_collection_is_blocking_ ? blocking_gc_count_last_window_ - 1 : blocking_gc_count_last_window_); // Record the other windows (with zero counts). for (uint64_t i = 0; i < num_of_windows - 1; ++i) { gc_count_rate_histogram_.AddValue(0); blocking_gc_count_rate_histogram_.AddValue(0); } // Update the last update time and reset the counters. last_update_time_gc_count_rate_histograms_ = (now / kGcCountRateHistogramWindowDuration) * kGcCountRateHistogramWindowDuration; gc_count_last_window_ = 1; // Include the current run. blocking_gc_count_last_window_ = running_collection_is_blocking_ ? 1 : 0; } DCHECK_EQ(last_update_time_gc_count_rate_histograms_ % kGcCountRateHistogramWindowDuration, 0U); } class RootMatchesObjectVisitor : public SingleRootVisitor { public: explicit RootMatchesObjectVisitor(const mirror::Object* obj) : obj_(obj) { } void VisitRoot(mirror::Object* root, const RootInfo& info) OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) { if (root == obj_) { LOG(INFO) << "Object " << obj_ << " is a root " << info.ToString(); } } private: const mirror::Object* const obj_; }; class ScanVisitor { public: void operator()(const mirror::Object* obj) const { LOG(ERROR) << "Would have rescanned object " << obj; } }; // Verify a reference from an object. class VerifyReferenceVisitor : public SingleRootVisitor { public: VerifyReferenceVisitor(Heap* heap, Atomic<size_t>* fail_count, bool verify_referent) SHARED_REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) : heap_(heap), fail_count_(fail_count), verify_referent_(verify_referent) {} size_t GetFailureCount() const { return fail_count_->LoadSequentiallyConsistent(); } void operator()(mirror::Class* klass ATTRIBUTE_UNUSED, mirror::Reference* ref) const SHARED_REQUIRES(Locks::mutator_lock_) { if (verify_referent_) { VerifyReference(ref, ref->GetReferent(), mirror::Reference::ReferentOffset()); } } void operator()(mirror::Object* obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const SHARED_REQUIRES(Locks::mutator_lock_) { VerifyReference(obj, obj->GetFieldObject<mirror::Object>(offset), offset); } bool IsLive(mirror::Object* obj) const NO_THREAD_SAFETY_ANALYSIS { return heap_->IsLiveObjectLocked(obj, true, false, true); } void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const SHARED_REQUIRES(Locks::mutator_lock_) { if (!root->IsNull()) { VisitRoot(root); } } void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const SHARED_REQUIRES(Locks::mutator_lock_) { const_cast<VerifyReferenceVisitor*>(this)->VisitRoot( root->AsMirrorPtr(), RootInfo(kRootVMInternal)); } virtual void VisitRoot(mirror::Object* root, const RootInfo& root_info) OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) { if (root == nullptr) { LOG(ERROR) << "Root is null with info " << root_info.GetType(); } else if (!VerifyReference(nullptr, root, MemberOffset(0))) { LOG(ERROR) << "Root " << root << " is dead with type " << PrettyTypeOf(root) << " thread_id= " << root_info.GetThreadId() << " root_type= " << root_info.GetType(); } } private: // TODO: Fix the no thread safety analysis. // Returns false on failure. bool VerifyReference(mirror::Object* obj, mirror::Object* ref, MemberOffset offset) const NO_THREAD_SAFETY_ANALYSIS { if (ref == nullptr || IsLive(ref)) { // Verify that the reference is live. return true; } if (fail_count_->FetchAndAddSequentiallyConsistent(1) == 0) { // Print message on only on first failure to prevent spam. LOG(ERROR) << "!!!!!!!!!!!!!!Heap corruption detected!!!!!!!!!!!!!!!!!!!"; } if (obj != nullptr) { // Only do this part for non roots. accounting::CardTable* card_table = heap_->GetCardTable(); accounting::ObjectStack* alloc_stack = heap_->allocation_stack_.get(); accounting::ObjectStack* live_stack = heap_->live_stack_.get(); uint8_t* card_addr = card_table->CardFromAddr(obj); LOG(ERROR) << "Object " << obj << " references dead object " << ref << " at offset " << offset << "\n card value = " << static_cast<int>(*card_addr); if (heap_->IsValidObjectAddress(obj->GetClass())) { LOG(ERROR) << "Obj type " << PrettyTypeOf(obj); } else { LOG(ERROR) << "Object " << obj << " class(" << obj->GetClass() << ") not a heap address"; } // Attempt to find the class inside of the recently freed objects. space::ContinuousSpace* ref_space = heap_->FindContinuousSpaceFromObject(ref, true); if (ref_space != nullptr && ref_space->IsMallocSpace()) { space::MallocSpace* space = ref_space->AsMallocSpace(); mirror::Class* ref_class = space->FindRecentFreedObject(ref); if (ref_class != nullptr) { LOG(ERROR) << "Reference " << ref << " found as a recently freed object with class " << PrettyClass(ref_class); } else { LOG(ERROR) << "Reference " << ref << " not found as a recently freed object"; } } if (ref->GetClass() != nullptr && heap_->IsValidObjectAddress(ref->GetClass()) && ref->GetClass()->IsClass()) { LOG(ERROR) << "Ref type " << PrettyTypeOf(ref); } else { LOG(ERROR) << "Ref " << ref << " class(" << ref->GetClass() << ") is not a valid heap address"; } card_table->CheckAddrIsInCardTable(reinterpret_cast<const uint8_t*>(obj)); void* cover_begin = card_table->AddrFromCard(card_addr); void* cover_end = reinterpret_cast<void*>(reinterpret_cast<size_t>(cover_begin) + accounting::CardTable::kCardSize); LOG(ERROR) << "Card " << reinterpret_cast<void*>(card_addr) << " covers " << cover_begin << "-" << cover_end; accounting::ContinuousSpaceBitmap* bitmap = heap_->GetLiveBitmap()->GetContinuousSpaceBitmap(obj); if (bitmap == nullptr) { LOG(ERROR) << "Object " << obj << " has no bitmap"; if (!VerifyClassClass(obj->GetClass())) { LOG(ERROR) << "Object " << obj << " failed class verification!"; } } else { // Print out how the object is live. if (bitmap->Test(obj)) { LOG(ERROR) << "Object " << obj << " found in live bitmap"; } if (alloc_stack->Contains(const_cast<mirror::Object*>(obj))) { LOG(ERROR) << "Object " << obj << " found in allocation stack"; } if (live_stack->Contains(const_cast<mirror::Object*>(obj))) { LOG(ERROR) << "Object " << obj << " found in live stack"; } if (alloc_stack->Contains(const_cast<mirror::Object*>(ref))) { LOG(ERROR) << "Ref " << ref << " found in allocation stack"; } if (live_stack->Contains(const_cast<mirror::Object*>(ref))) { LOG(ERROR) << "Ref " << ref << " found in live stack"; } // Attempt to see if the card table missed the reference. ScanVisitor scan_visitor; uint8_t* byte_cover_begin = reinterpret_cast<uint8_t*>(card_table->AddrFromCard(card_addr)); card_table->Scan<false>(bitmap, byte_cover_begin, byte_cover_begin + accounting::CardTable::kCardSize, scan_visitor); } // Search to see if any of the roots reference our object. RootMatchesObjectVisitor visitor1(obj); Runtime::Current()->VisitRoots(&visitor1); // Search to see if any of the roots reference our reference. RootMatchesObjectVisitor visitor2(ref); Runtime::Current()->VisitRoots(&visitor2); } return false; } Heap* const heap_; Atomic<size_t>* const fail_count_; const bool verify_referent_; }; // Verify all references within an object, for use with HeapBitmap::Visit. class VerifyObjectVisitor { public: VerifyObjectVisitor(Heap* heap, Atomic<size_t>* fail_count, bool verify_referent) : heap_(heap), fail_count_(fail_count), verify_referent_(verify_referent) {} void operator()(mirror::Object* obj) SHARED_REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) { // Note: we are verifying the references in obj but not obj itself, this is because obj must // be live or else how did we find it in the live bitmap? VerifyReferenceVisitor visitor(heap_, fail_count_, verify_referent_); // The class doesn't count as a reference but we should verify it anyways. obj->VisitReferences(visitor, visitor); } static void VisitCallback(mirror::Object* obj, void* arg) SHARED_REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) { VerifyObjectVisitor* visitor = reinterpret_cast<VerifyObjectVisitor*>(arg); visitor->operator()(obj); } void VerifyRoots() SHARED_REQUIRES(Locks::mutator_lock_) REQUIRES(!Locks::heap_bitmap_lock_) { ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_); VerifyReferenceVisitor visitor(heap_, fail_count_, verify_referent_); Runtime::Current()->VisitRoots(&visitor); } size_t GetFailureCount() const { return fail_count_->LoadSequentiallyConsistent(); } private: Heap* const heap_; Atomic<size_t>* const fail_count_; const bool verify_referent_; }; void Heap::PushOnAllocationStackWithInternalGC(Thread* self, mirror::Object** obj) { // Slow path, the allocation stack push back must have already failed. DCHECK(!allocation_stack_->AtomicPushBack(*obj)); do { // TODO: Add handle VerifyObject. StackHandleScope<1> hs(self); HandleWrapper<mirror::Object> wrapper(hs.NewHandleWrapper(obj)); // Push our object into the reserve region of the allocaiton stack. This is only required due // to heap verification requiring that roots are live (either in the live bitmap or in the // allocation stack). CHECK(allocation_stack_->AtomicPushBackIgnoreGrowthLimit(*obj)); CollectGarbageInternal(collector::kGcTypeSticky, kGcCauseForAlloc, false); } while (!allocation_stack_->AtomicPushBack(*obj)); } void Heap::PushOnThreadLocalAllocationStackWithInternalGC(Thread* self, mirror::Object** obj) { // Slow path, the allocation stack push back must have already failed. DCHECK(!self->PushOnThreadLocalAllocationStack(*obj)); StackReference<mirror::Object>* start_address; StackReference<mirror::Object>* end_address; while (!allocation_stack_->AtomicBumpBack(kThreadLocalAllocationStackSize, &start_address, &end_address)) { // TODO: Add handle VerifyObject. StackHandleScope<1> hs(self); HandleWrapper<mirror::Object> wrapper(hs.NewHandleWrapper(obj)); // Push our object into the reserve region of the allocaiton stack. This is only required due // to heap verification requiring that roots are live (either in the live bitmap or in the // allocation stack). CHECK(allocation_stack_->AtomicPushBackIgnoreGrowthLimit(*obj)); // Push into the reserve allocation stack. CollectGarbageInternal(collector::kGcTypeSticky, kGcCauseForAlloc, false); } self->SetThreadLocalAllocationStack(start_address, end_address); // Retry on the new thread-local allocation stack. CHECK(self->PushOnThreadLocalAllocationStack(*obj)); // Must succeed. } // Must do this with mutators suspended since we are directly accessing the allocation stacks. size_t Heap::VerifyHeapReferences(bool verify_referents) { Thread* self = Thread::Current(); Locks::mutator_lock_->AssertExclusiveHeld(self); // Lets sort our allocation stacks so that we can efficiently binary search them. allocation_stack_->Sort(); live_stack_->Sort(); // Since we sorted the allocation stack content, need to revoke all // thread-local allocation stacks. RevokeAllThreadLocalAllocationStacks(self); Atomic<size_t> fail_count_(0); VerifyObjectVisitor visitor(this, &fail_count_, verify_referents); // Verify objects in the allocation stack since these will be objects which were: // 1. Allocated prior to the GC (pre GC verification). // 2. Allocated during the GC (pre sweep GC verification). // We don't want to verify the objects in the live stack since they themselves may be // pointing to dead objects if they are not reachable. VisitObjectsPaused(VerifyObjectVisitor::VisitCallback, &visitor); // Verify the roots: visitor.VerifyRoots(); if (visitor.GetFailureCount() > 0) { // Dump mod-union tables. for (const auto& table_pair : mod_union_tables_) { accounting::ModUnionTable* mod_union_table = table_pair.second; mod_union_table->Dump(LOG(ERROR) << mod_union_table->GetName() << ": "); } // Dump remembered sets. for (const auto& table_pair : remembered_sets_) { accounting::RememberedSet* remembered_set = table_pair.second; remembered_set->Dump(LOG(ERROR) << remembered_set->GetName() << ": "); } DumpSpaces(LOG(ERROR)); } return visitor.GetFailureCount(); } class VerifyReferenceCardVisitor { public: VerifyReferenceCardVisitor(Heap* heap, bool* failed) SHARED_REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) : heap_(heap), failed_(failed) { } // There is no card marks for native roots on a class. void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {} void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {} // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for // annotalysis on visitors. void operator()(mirror::Object* obj, MemberOffset offset, bool is_static) const NO_THREAD_SAFETY_ANALYSIS { mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset); // Filter out class references since changing an object's class does not mark the card as dirty. // Also handles large objects, since the only reference they hold is a class reference. if (ref != nullptr && !ref->IsClass()) { accounting::CardTable* card_table = heap_->GetCardTable(); // If the object is not dirty and it is referencing something in the live stack other than // class, then it must be on a dirty card. if (!card_table->AddrIsInCardTable(obj)) { LOG(ERROR) << "Object " << obj << " is not in the address range of the card table"; *failed_ = true; } else if (!card_table->IsDirty(obj)) { // TODO: Check mod-union tables. // Card should be either kCardDirty if it got re-dirtied after we aged it, or // kCardDirty - 1 if it didnt get touched since we aged it. accounting::ObjectStack* live_stack = heap_->live_stack_.get(); if (live_stack->ContainsSorted(ref)) { if (live_stack->ContainsSorted(obj)) { LOG(ERROR) << "Object " << obj << " found in live stack"; } if (heap_->GetLiveBitmap()->Test(obj)) { LOG(ERROR) << "Object " << obj << " found in live bitmap"; } LOG(ERROR) << "Object " << obj << " " << PrettyTypeOf(obj) << " references " << ref << " " << PrettyTypeOf(ref) << " in live stack"; // Print which field of the object is dead. if (!obj->IsObjectArray()) { mirror::Class* klass = is_static ? obj->AsClass() : obj->GetClass(); CHECK(klass != nullptr); for (ArtField& field : (is_static ? klass->GetSFields() : klass->GetIFields())) { if (field.GetOffset().Int32Value() == offset.Int32Value()) { LOG(ERROR) << (is_static ? "Static " : "") << "field in the live stack is " << PrettyField(&field); break; } } } else { mirror::ObjectArray<mirror::Object>* object_array = obj->AsObjectArray<mirror::Object>(); for (int32_t i = 0; i < object_array->GetLength(); ++i) { if (object_array->Get(i) == ref) { LOG(ERROR) << (is_static ? "Static " : "") << "obj[" << i << "] = ref"; } } } *failed_ = true; } } } } private: Heap* const heap_; bool* const failed_; }; class VerifyLiveStackReferences { public: explicit VerifyLiveStackReferences(Heap* heap) : heap_(heap), failed_(false) {} void operator()(mirror::Object* obj) const SHARED_REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) { VerifyReferenceCardVisitor visitor(heap_, const_cast<bool*>(&failed_)); obj->VisitReferences(visitor, VoidFunctor()); } bool Failed() const { return failed_; } private: Heap* const heap_; bool failed_; }; bool Heap::VerifyMissingCardMarks() { Thread* self = Thread::Current(); Locks::mutator_lock_->AssertExclusiveHeld(self); // We need to sort the live stack since we binary search it. live_stack_->Sort(); // Since we sorted the allocation stack content, need to revoke all // thread-local allocation stacks. RevokeAllThreadLocalAllocationStacks(self); VerifyLiveStackReferences visitor(this); GetLiveBitmap()->Visit(visitor); // We can verify objects in the live stack since none of these should reference dead objects. for (auto* it = live_stack_->Begin(); it != live_stack_->End(); ++it) { if (!kUseThreadLocalAllocationStack || it->AsMirrorPtr() != nullptr) { visitor(it->AsMirrorPtr()); } } return !visitor.Failed(); } void Heap::SwapStacks() { if (kUseThreadLocalAllocationStack) { live_stack_->AssertAllZero(); } allocation_stack_.swap(live_stack_); } void Heap::RevokeAllThreadLocalAllocationStacks(Thread* self) { // This must be called only during the pause. DCHECK(Locks::mutator_lock_->IsExclusiveHeld(self)); MutexLock mu(self, *Locks::runtime_shutdown_lock_); MutexLock mu2(self, *Locks::thread_list_lock_); std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList(); for (Thread* t : thread_list) { t->RevokeThreadLocalAllocationStack(); } } void Heap::AssertThreadLocalBuffersAreRevoked(Thread* thread) { if (kIsDebugBuild) { if (rosalloc_space_ != nullptr) { rosalloc_space_->AssertThreadLocalBuffersAreRevoked(thread); } if (bump_pointer_space_ != nullptr) { bump_pointer_space_->AssertThreadLocalBuffersAreRevoked(thread); } } } void Heap::AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked() { if (kIsDebugBuild) { if (bump_pointer_space_ != nullptr) { bump_pointer_space_->AssertAllThreadLocalBuffersAreRevoked(); } } } accounting::ModUnionTable* Heap::FindModUnionTableFromSpace(space::Space* space) { auto it = mod_union_tables_.find(space); if (it == mod_union_tables_.end()) { return nullptr; } return it->second; } accounting::RememberedSet* Heap::FindRememberedSetFromSpace(space::Space* space) { auto it = remembered_sets_.find(space); if (it == remembered_sets_.end()) { return nullptr; } return it->second; } void Heap::ProcessCards(TimingLogger* timings, bool use_rem_sets, bool process_alloc_space_cards, bool clear_alloc_space_cards) { TimingLogger::ScopedTiming t(__FUNCTION__, timings); // Clear cards and keep track of cards cleared in the mod-union table. for (const auto& space : continuous_spaces_) { accounting::ModUnionTable* table = FindModUnionTableFromSpace(space); accounting::RememberedSet* rem_set = FindRememberedSetFromSpace(space); if (table != nullptr) { const char* name = space->IsZygoteSpace() ? "ZygoteModUnionClearCards" : "ImageModUnionClearCards"; TimingLogger::ScopedTiming t2(name, timings); table->ClearCards(); } else if (use_rem_sets && rem_set != nullptr) { DCHECK(collector::SemiSpace::kUseRememberedSet && collector_type_ == kCollectorTypeGSS) << static_cast<int>(collector_type_); TimingLogger::ScopedTiming t2("AllocSpaceRemSetClearCards", timings); rem_set->ClearCards(); } else if (process_alloc_space_cards) { TimingLogger::ScopedTiming t2("AllocSpaceClearCards", timings); if (clear_alloc_space_cards) { uint8_t* end = space->End(); if (space->IsImageSpace()) { // Image space end is the end of the mirror objects, it is not necessarily page or card // aligned. Align up so that the check in ClearCardRange does not fail. end = AlignUp(end, accounting::CardTable::kCardSize); } card_table_->ClearCardRange(space->Begin(), end); } else { // No mod union table for the AllocSpace. Age the cards so that the GC knows that these // cards were dirty before the GC started. // TODO: Need to use atomic for the case where aged(cleaning thread) -> dirty(other thread) // -> clean(cleaning thread). // The races are we either end up with: Aged card, unaged card. Since we have the // checkpoint roots and then we scan / update mod union tables after. We will always // scan either card. If we end up with the non aged card, we scan it it in the pause. card_table_->ModifyCardsAtomic(space->Begin(), space->End(), AgeCardVisitor(), VoidFunctor()); } } } } struct IdentityMarkHeapReferenceVisitor : public MarkObjectVisitor { virtual mirror::Object* MarkObject(mirror::Object* obj) OVERRIDE { return obj; } virtual void MarkHeapReference(mirror::HeapReference<mirror::Object>*) OVERRIDE { } }; void Heap::PreGcVerificationPaused(collector::GarbageCollector* gc) { Thread* const self = Thread::Current(); TimingLogger* const timings = current_gc_iteration_.GetTimings(); TimingLogger::ScopedTiming t(__FUNCTION__, timings); if (verify_pre_gc_heap_) { TimingLogger::ScopedTiming t2("(Paused)PreGcVerifyHeapReferences", timings); size_t failures = VerifyHeapReferences(); if (failures > 0) { LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed with " << failures << " failures"; } } // Check that all objects which reference things in the live stack are on dirty cards. if (verify_missing_card_marks_) { TimingLogger::ScopedTiming t2("(Paused)PreGcVerifyMissingCardMarks", timings); ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_); SwapStacks(); // Sort the live stack so that we can quickly binary search it later. CHECK(VerifyMissingCardMarks()) << "Pre " << gc->GetName() << " missing card mark verification failed\n" << DumpSpaces(); SwapStacks(); } if (verify_mod_union_table_) { TimingLogger::ScopedTiming t2("(Paused)PreGcVerifyModUnionTables", timings); ReaderMutexLock reader_lock(self, *Locks::heap_bitmap_lock_); for (const auto& table_pair : mod_union_tables_) { accounting::ModUnionTable* mod_union_table = table_pair.second; IdentityMarkHeapReferenceVisitor visitor; mod_union_table->UpdateAndMarkReferences(&visitor); mod_union_table->Verify(); } } } void Heap::PreGcVerification(collector::GarbageCollector* gc) { if (verify_pre_gc_heap_ || verify_missing_card_marks_ || verify_mod_union_table_) { collector::GarbageCollector::ScopedPause pause(gc); PreGcVerificationPaused(gc); } } void Heap::PrePauseRosAllocVerification(collector::GarbageCollector* gc ATTRIBUTE_UNUSED) { // TODO: Add a new runtime option for this? if (verify_pre_gc_rosalloc_) { RosAllocVerification(current_gc_iteration_.GetTimings(), "PreGcRosAllocVerification"); } } void Heap::PreSweepingGcVerification(collector::GarbageCollector* gc) { Thread* const self = Thread::Current(); TimingLogger* const timings = current_gc_iteration_.GetTimings(); TimingLogger::ScopedTiming t(__FUNCTION__, timings); // Called before sweeping occurs since we want to make sure we are not going so reclaim any // reachable objects. if (verify_pre_sweeping_heap_) { TimingLogger::ScopedTiming t2("(Paused)PostSweepingVerifyHeapReferences", timings); CHECK_NE(self->GetState(), kRunnable); { WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); // Swapping bound bitmaps does nothing. gc->SwapBitmaps(); } // Pass in false since concurrent reference processing can mean that the reference referents // may point to dead objects at the point which PreSweepingGcVerification is called. size_t failures = VerifyHeapReferences(false); if (failures > 0) { LOG(FATAL) << "Pre sweeping " << gc->GetName() << " GC verification failed with " << failures << " failures"; } { WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); gc->SwapBitmaps(); } } if (verify_pre_sweeping_rosalloc_) { RosAllocVerification(timings, "PreSweepingRosAllocVerification"); } } void Heap::PostGcVerificationPaused(collector::GarbageCollector* gc) { // Only pause if we have to do some verification. Thread* const self = Thread::Current(); TimingLogger* const timings = GetCurrentGcIteration()->GetTimings(); TimingLogger::ScopedTiming t(__FUNCTION__, timings); if (verify_system_weaks_) { ReaderMutexLock mu2(self, *Locks::heap_bitmap_lock_); collector::MarkSweep* mark_sweep = down_cast<collector::MarkSweep*>(gc); mark_sweep->VerifySystemWeaks(); } if (verify_post_gc_rosalloc_) { RosAllocVerification(timings, "(Paused)PostGcRosAllocVerification"); } if (verify_post_gc_heap_) { TimingLogger::ScopedTiming t2("(Paused)PostGcVerifyHeapReferences", timings); size_t failures = VerifyHeapReferences(); if (failures > 0) { LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed with " << failures << " failures"; } } } void Heap::PostGcVerification(collector::GarbageCollector* gc) { if (verify_system_weaks_ || verify_post_gc_rosalloc_ || verify_post_gc_heap_) { collector::GarbageCollector::ScopedPause pause(gc); PostGcVerificationPaused(gc); } } void Heap::RosAllocVerification(TimingLogger* timings, const char* name) { TimingLogger::ScopedTiming t(name, timings); for (const auto& space : continuous_spaces_) { if (space->IsRosAllocSpace()) { VLOG(heap) << name << " : " << space->GetName(); space->AsRosAllocSpace()->Verify(); } } } collector::GcType Heap::WaitForGcToComplete(GcCause cause, Thread* self) { ScopedThreadStateChange tsc(self, kWaitingForGcToComplete); MutexLock mu(self, *gc_complete_lock_); return WaitForGcToCompleteLocked(cause, self); } collector::GcType Heap::WaitForGcToCompleteLocked(GcCause cause, Thread* self) { collector::GcType last_gc_type = collector::kGcTypeNone; uint64_t wait_start = NanoTime(); while (collector_type_running_ != kCollectorTypeNone) { if (self != task_processor_->GetRunningThread()) { // The current thread is about to wait for a currently running // collection to finish. If the waiting thread is not the heap // task daemon thread, the currently running collection is // considered as a blocking GC. running_collection_is_blocking_ = true; VLOG(gc) << "Waiting for a blocking GC " << cause; } ScopedTrace trace("GC: Wait For Completion"); // We must wait, change thread state then sleep on gc_complete_cond_; gc_complete_cond_->Wait(self); last_gc_type = last_gc_type_; } uint64_t wait_time = NanoTime() - wait_start; total_wait_time_ += wait_time; if (wait_time > long_pause_log_threshold_) { LOG(INFO) << "WaitForGcToComplete blocked for " << PrettyDuration(wait_time) << " for cause " << cause; } if (self != task_processor_->GetRunningThread()) { // The current thread is about to run a collection. If the thread // is not the heap task daemon thread, it's considered as a // blocking GC (i.e., blocking itself). running_collection_is_blocking_ = true; VLOG(gc) << "Starting a blocking GC " << cause; } return last_gc_type; } void Heap::DumpForSigQuit(std::ostream& os) { os << "Heap: " << GetPercentFree() << "% free, " << PrettySize(GetBytesAllocated()) << "/" << PrettySize(GetTotalMemory()) << "; " << GetObjectsAllocated() << " objects\n"; DumpGcPerformanceInfo(os); } size_t Heap::GetPercentFree() { return static_cast<size_t>(100.0f * static_cast<float>(GetFreeMemory()) / max_allowed_footprint_); } void Heap::SetIdealFootprint(size_t max_allowed_footprint) { if (max_allowed_footprint > GetMaxMemory()) { VLOG(gc) << "Clamp target GC heap from " << PrettySize(max_allowed_footprint) << " to " << PrettySize(GetMaxMemory()); max_allowed_footprint = GetMaxMemory(); } max_allowed_footprint_ = max_allowed_footprint; } bool Heap::IsMovableObject(const mirror::Object* obj) const { if (kMovingCollector) { space::Space* space = FindContinuousSpaceFromObject(obj, true); if (space != nullptr) { // TODO: Check large object? return space->CanMoveObjects(); } } return false; } void Heap::UpdateMaxNativeFootprint() { size_t native_size = native_bytes_allocated_.LoadRelaxed(); // TODO: Tune the native heap utilization to be a value other than the java heap utilization. size_t target_size = native_size / GetTargetHeapUtilization(); if (target_size > native_size + max_free_) { target_size = native_size + max_free_; } else if (target_size < native_size + min_free_) { target_size = native_size + min_free_; } native_footprint_gc_watermark_ = std::min(growth_limit_, target_size); } collector::GarbageCollector* Heap::FindCollectorByGcType(collector::GcType gc_type) { for (const auto& collector : garbage_collectors_) { if (collector->GetCollectorType() == collector_type_ && collector->GetGcType() == gc_type) { return collector; } } return nullptr; } double Heap::HeapGrowthMultiplier() const { // If we don't care about pause times we are background, so return 1.0. if (!CareAboutPauseTimes() || IsLowMemoryMode()) { return 1.0; } return foreground_heap_growth_multiplier_; } void Heap::GrowForUtilization(collector::GarbageCollector* collector_ran, uint64_t bytes_allocated_before_gc) { // We know what our utilization is at this moment. // This doesn't actually resize any memory. It just lets the heap grow more when necessary. const uint64_t bytes_allocated = GetBytesAllocated(); uint64_t target_size; collector::GcType gc_type = collector_ran->GetGcType(); const double multiplier = HeapGrowthMultiplier(); // Use the multiplier to grow more for // foreground. const uint64_t adjusted_min_free = static_cast<uint64_t>(min_free_ * multiplier); const uint64_t adjusted_max_free = static_cast<uint64_t>(max_free_ * multiplier); if (gc_type != collector::kGcTypeSticky) { // Grow the heap for non sticky GC. ssize_t delta = bytes_allocated / GetTargetHeapUtilization() - bytes_allocated; CHECK_GE(delta, 0); target_size = bytes_allocated + delta * multiplier; target_size = std::min(target_size, bytes_allocated + adjusted_max_free); target_size = std::max(target_size, bytes_allocated + adjusted_min_free); native_need_to_run_finalization_ = true; next_gc_type_ = collector::kGcTypeSticky; } else { collector::GcType non_sticky_gc_type = HasZygoteSpace() ? collector::kGcTypePartial : collector::kGcTypeFull; // Find what the next non sticky collector will be. collector::GarbageCollector* non_sticky_collector = FindCollectorByGcType(non_sticky_gc_type); // If the throughput of the current sticky GC >= throughput of the non sticky collector, then // do another sticky collection next. // We also check that the bytes allocated aren't over the footprint limit in order to prevent a // pathological case where dead objects which aren't reclaimed by sticky could get accumulated // if the sticky GC throughput always remained >= the full/partial throughput. if (current_gc_iteration_.GetEstimatedThroughput() * kStickyGcThroughputAdjustment >= non_sticky_collector->GetEstimatedMeanThroughput() && non_sticky_collector->NumberOfIterations() > 0 && bytes_allocated <= max_allowed_footprint_) { next_gc_type_ = collector::kGcTypeSticky; } else { next_gc_type_ = non_sticky_gc_type; } // If we have freed enough memory, shrink the heap back down. if (bytes_allocated + adjusted_max_free < max_allowed_footprint_) { target_size = bytes_allocated + adjusted_max_free; } else { target_size = std::max(bytes_allocated, static_cast<uint64_t>(max_allowed_footprint_)); } } if (!ignore_max_footprint_) { SetIdealFootprint(target_size); if (IsGcConcurrent()) { const uint64_t freed_bytes = current_gc_iteration_.GetFreedBytes() + current_gc_iteration_.GetFreedLargeObjectBytes() + current_gc_iteration_.GetFreedRevokeBytes(); // Bytes allocated will shrink by freed_bytes after the GC runs, so if we want to figure out // how many bytes were allocated during the GC we need to add freed_bytes back on. CHECK_GE(bytes_allocated + freed_bytes, bytes_allocated_before_gc); const uint64_t bytes_allocated_during_gc = bytes_allocated + freed_bytes - bytes_allocated_before_gc; // Calculate when to perform the next ConcurrentGC. // Calculate the estimated GC duration. const double gc_duration_seconds = NsToMs(current_gc_iteration_.GetDurationNs()) / 1000.0; // Estimate how many remaining bytes we will have when we need to start the next GC. size_t remaining_bytes = bytes_allocated_during_gc * gc_duration_seconds; remaining_bytes = std::min(remaining_bytes, kMaxConcurrentRemainingBytes); remaining_bytes = std::max(remaining_bytes, kMinConcurrentRemainingBytes); if (UNLIKELY(remaining_bytes > max_allowed_footprint_)) { // A never going to happen situation that from the estimated allocation rate we will exceed // the applications entire footprint with the given estimated allocation rate. Schedule // another GC nearly straight away. remaining_bytes = kMinConcurrentRemainingBytes; } DCHECK_LE(remaining_bytes, max_allowed_footprint_); DCHECK_LE(max_allowed_footprint_, GetMaxMemory()); // Start a concurrent GC when we get close to the estimated remaining bytes. When the // allocation rate is very high, remaining_bytes could tell us that we should start a GC // right away. concurrent_start_bytes_ = std::max(max_allowed_footprint_ - remaining_bytes, static_cast<size_t>(bytes_allocated)); } } } void Heap::ClampGrowthLimit() { // Use heap bitmap lock to guard against races with BindLiveToMarkBitmap. ScopedObjectAccess soa(Thread::Current()); WriterMutexLock mu(soa.Self(), *Locks::heap_bitmap_lock_); capacity_ = growth_limit_; for (const auto& space : continuous_spaces_) { if (space->IsMallocSpace()) { gc::space::MallocSpace* malloc_space = space->AsMallocSpace(); malloc_space->ClampGrowthLimit(); } } // This space isn't added for performance reasons. if (main_space_backup_.get() != nullptr) { main_space_backup_->ClampGrowthLimit(); } } void Heap::ClearGrowthLimit() { growth_limit_ = capacity_; ScopedObjectAccess soa(Thread::Current()); for (const auto& space : continuous_spaces_) { if (space->IsMallocSpace()) { gc::space::MallocSpace* malloc_space = space->AsMallocSpace(); malloc_space->ClearGrowthLimit(); malloc_space->SetFootprintLimit(malloc_space->Capacity()); } } // This space isn't added for performance reasons. if (main_space_backup_.get() != nullptr) { main_space_backup_->ClearGrowthLimit(); main_space_backup_->SetFootprintLimit(main_space_backup_->Capacity()); } } void Heap::AddFinalizerReference(Thread* self, mirror::Object** object) { ScopedObjectAccess soa(self); ScopedLocalRef<jobject> arg(self->GetJniEnv(), soa.AddLocalReference<jobject>(*object)); jvalue args[1]; args[0].l = arg.get(); InvokeWithJValues(soa, nullptr, WellKnownClasses::java_lang_ref_FinalizerReference_add, args); // Restore object in case it gets moved. *object = soa.Decode<mirror::Object*>(arg.get()); } void Heap::RequestConcurrentGCAndSaveObject(Thread* self, bool force_full, mirror::Object** obj) { StackHandleScope<1> hs(self); HandleWrapper<mirror::Object> wrapper(hs.NewHandleWrapper(obj)); RequestConcurrentGC(self, force_full); } class Heap::ConcurrentGCTask : public HeapTask { public: ConcurrentGCTask(uint64_t target_time, bool force_full) : HeapTask(target_time), force_full_(force_full) { } virtual void Run(Thread* self) OVERRIDE { gc::Heap* heap = Runtime::Current()->GetHeap(); heap->ConcurrentGC(self, force_full_); heap->ClearConcurrentGCRequest(); } private: const bool force_full_; // If true, force full (or partial) collection. }; static bool CanAddHeapTask(Thread* self) REQUIRES(!Locks::runtime_shutdown_lock_) { Runtime* runtime = Runtime::Current(); return runtime != nullptr && runtime->IsFinishedStarting() && !runtime->IsShuttingDown(self) && !self->IsHandlingStackOverflow(); } void Heap::ClearConcurrentGCRequest() { concurrent_gc_pending_.StoreRelaxed(false); } void Heap::RequestConcurrentGC(Thread* self, bool force_full) { if (CanAddHeapTask(self) && concurrent_gc_pending_.CompareExchangeStrongSequentiallyConsistent(false, true)) { task_processor_->AddTask(self, new ConcurrentGCTask(NanoTime(), // Start straight away. force_full)); } } void Heap::ConcurrentGC(Thread* self, bool force_full) { if (!Runtime::Current()->IsShuttingDown(self)) { // Wait for any GCs currently running to finish. if (WaitForGcToComplete(kGcCauseBackground, self) == collector::kGcTypeNone) { // If the we can't run the GC type we wanted to run, find the next appropriate one and try that // instead. E.g. can't do partial, so do full instead. collector::GcType next_gc_type = next_gc_type_; // If forcing full and next gc type is sticky, override with a non-sticky type. if (force_full && next_gc_type == collector::kGcTypeSticky) { next_gc_type = HasZygoteSpace() ? collector::kGcTypePartial : collector::kGcTypeFull; } if (CollectGarbageInternal(next_gc_type, kGcCauseBackground, false) == collector::kGcTypeNone) { for (collector::GcType gc_type : gc_plan_) { // Attempt to run the collector, if we succeed, we are done. if (gc_type > next_gc_type && CollectGarbageInternal(gc_type, kGcCauseBackground, false) != collector::kGcTypeNone) { break; } } } } } } class Heap::CollectorTransitionTask : public HeapTask { public: explicit CollectorTransitionTask(uint64_t target_time) : HeapTask(target_time) {} virtual void Run(Thread* self) OVERRIDE { gc::Heap* heap = Runtime::Current()->GetHeap(); heap->DoPendingCollectorTransition(); heap->ClearPendingCollectorTransition(self); } }; void Heap::ClearPendingCollectorTransition(Thread* self) { MutexLock mu(self, *pending_task_lock_); pending_collector_transition_ = nullptr; } void Heap::RequestCollectorTransition(CollectorType desired_collector_type, uint64_t delta_time) { Thread* self = Thread::Current(); desired_collector_type_ = desired_collector_type; if (desired_collector_type_ == collector_type_ || !CanAddHeapTask(self)) { return; } CollectorTransitionTask* added_task = nullptr; const uint64_t target_time = NanoTime() + delta_time; { MutexLock mu(self, *pending_task_lock_); // If we have an existing collector transition, update the targe time to be the new target. if (pending_collector_transition_ != nullptr) { task_processor_->UpdateTargetRunTime(self, pending_collector_transition_, target_time); return; } added_task = new CollectorTransitionTask(target_time); pending_collector_transition_ = added_task; } task_processor_->AddTask(self, added_task); } class Heap::HeapTrimTask : public HeapTask { public: explicit HeapTrimTask(uint64_t delta_time) : HeapTask(NanoTime() + delta_time) { } virtual void Run(Thread* self) OVERRIDE { gc::Heap* heap = Runtime::Current()->GetHeap(); heap->Trim(self); heap->ClearPendingTrim(self); } }; void Heap::ClearPendingTrim(Thread* self) { MutexLock mu(self, *pending_task_lock_); pending_heap_trim_ = nullptr; } void Heap::RequestTrim(Thread* self) { if (!CanAddHeapTask(self)) { return; } // GC completed and now we must decide whether to request a heap trim (advising pages back to the // kernel) or not. Issuing a request will also cause trimming of the libc heap. As a trim scans // a space it will hold its lock and can become a cause of jank. // Note, the large object space self trims and the Zygote space was trimmed and unchanging since // forking. // We don't have a good measure of how worthwhile a trim might be. We can't use the live bitmap // because that only marks object heads, so a large array looks like lots of empty space. We // don't just call dlmalloc all the time, because the cost of an _attempted_ trim is proportional // to utilization (which is probably inversely proportional to how much benefit we can expect). // We could try mincore(2) but that's only a measure of how many pages we haven't given away, // not how much use we're making of those pages. HeapTrimTask* added_task = nullptr; { MutexLock mu(self, *pending_task_lock_); if (pending_heap_trim_ != nullptr) { // Already have a heap trim request in task processor, ignore this request. return; } added_task = new HeapTrimTask(kHeapTrimWait); pending_heap_trim_ = added_task; } task_processor_->AddTask(self, added_task); } void Heap::RevokeThreadLocalBuffers(Thread* thread) { if (rosalloc_space_ != nullptr) { size_t freed_bytes_revoke = rosalloc_space_->RevokeThreadLocalBuffers(thread); if (freed_bytes_revoke > 0U) { num_bytes_freed_revoke_.FetchAndAddSequentiallyConsistent(freed_bytes_revoke); CHECK_GE(num_bytes_allocated_.LoadRelaxed(), num_bytes_freed_revoke_.LoadRelaxed()); } } if (bump_pointer_space_ != nullptr) { CHECK_EQ(bump_pointer_space_->RevokeThreadLocalBuffers(thread), 0U); } if (region_space_ != nullptr) { CHECK_EQ(region_space_->RevokeThreadLocalBuffers(thread), 0U); } } void Heap::RevokeRosAllocThreadLocalBuffers(Thread* thread) { if (rosalloc_space_ != nullptr) { size_t freed_bytes_revoke = rosalloc_space_->RevokeThreadLocalBuffers(thread); if (freed_bytes_revoke > 0U) { num_bytes_freed_revoke_.FetchAndAddSequentiallyConsistent(freed_bytes_revoke); CHECK_GE(num_bytes_allocated_.LoadRelaxed(), num_bytes_freed_revoke_.LoadRelaxed()); } } } void Heap::RevokeAllThreadLocalBuffers() { if (rosalloc_space_ != nullptr) { size_t freed_bytes_revoke = rosalloc_space_->RevokeAllThreadLocalBuffers(); if (freed_bytes_revoke > 0U) { num_bytes_freed_revoke_.FetchAndAddSequentiallyConsistent(freed_bytes_revoke); CHECK_GE(num_bytes_allocated_.LoadRelaxed(), num_bytes_freed_revoke_.LoadRelaxed()); } } if (bump_pointer_space_ != nullptr) { CHECK_EQ(bump_pointer_space_->RevokeAllThreadLocalBuffers(), 0U); } if (region_space_ != nullptr) { CHECK_EQ(region_space_->RevokeAllThreadLocalBuffers(), 0U); } } bool Heap::IsGCRequestPending() const { return concurrent_gc_pending_.LoadRelaxed(); } void Heap::RunFinalization(JNIEnv* env, uint64_t timeout) { env->CallStaticVoidMethod(WellKnownClasses::dalvik_system_VMRuntime, WellKnownClasses::dalvik_system_VMRuntime_runFinalization, static_cast<jlong>(timeout)); } void Heap::RegisterNativeAllocation(JNIEnv* env, size_t bytes) { Thread* self = ThreadForEnv(env); { MutexLock mu(self, native_histogram_lock_); native_allocation_histogram_.AddValue(bytes); } if (native_need_to_run_finalization_) { RunFinalization(env, kNativeAllocationFinalizeTimeout); UpdateMaxNativeFootprint(); native_need_to_run_finalization_ = false; } // Total number of native bytes allocated. size_t new_native_bytes_allocated = native_bytes_allocated_.FetchAndAddSequentiallyConsistent(bytes); new_native_bytes_allocated += bytes; if (new_native_bytes_allocated > native_footprint_gc_watermark_) { collector::GcType gc_type = HasZygoteSpace() ? collector::kGcTypePartial : collector::kGcTypeFull; // The second watermark is higher than the gc watermark. If you hit this it means you are // allocating native objects faster than the GC can keep up with. if (new_native_bytes_allocated > growth_limit_) { if (WaitForGcToComplete(kGcCauseForNativeAlloc, self) != collector::kGcTypeNone) { // Just finished a GC, attempt to run finalizers. RunFinalization(env, kNativeAllocationFinalizeTimeout); CHECK(!env->ExceptionCheck()); // Native bytes allocated may be updated by finalization, refresh it. new_native_bytes_allocated = native_bytes_allocated_.LoadRelaxed(); } // If we still are over the watermark, attempt a GC for alloc and run finalizers. if (new_native_bytes_allocated > growth_limit_) { CollectGarbageInternal(gc_type, kGcCauseForNativeAlloc, false); RunFinalization(env, kNativeAllocationFinalizeTimeout); native_need_to_run_finalization_ = false; CHECK(!env->ExceptionCheck()); } // We have just run finalizers, update the native watermark since it is very likely that // finalizers released native managed allocations. UpdateMaxNativeFootprint(); } else if (!IsGCRequestPending()) { if (IsGcConcurrent()) { RequestConcurrentGC(self, true); // Request non-sticky type. } else { CollectGarbageInternal(gc_type, kGcCauseForNativeAlloc, false); } } } } void Heap::RegisterNativeFree(JNIEnv* env, size_t bytes) { size_t expected_size; { MutexLock mu(Thread::Current(), native_histogram_lock_); native_free_histogram_.AddValue(bytes); } do { expected_size = native_bytes_allocated_.LoadRelaxed(); if (UNLIKELY(bytes > expected_size)) { ScopedObjectAccess soa(env); env->ThrowNew(WellKnownClasses::java_lang_RuntimeException, StringPrintf("Attempted to free %zd native bytes with only %zd native bytes " "registered as allocated", bytes, expected_size).c_str()); break; } } while (!native_bytes_allocated_.CompareExchangeWeakRelaxed(expected_size, expected_size - bytes)); } size_t Heap::GetTotalMemory() const { return std::max(max_allowed_footprint_, GetBytesAllocated()); } void Heap::AddModUnionTable(accounting::ModUnionTable* mod_union_table) { DCHECK(mod_union_table != nullptr); mod_union_tables_.Put(mod_union_table->GetSpace(), mod_union_table); } void Heap::CheckPreconditionsForAllocObject(mirror::Class* c, size_t byte_count) { CHECK(c == nullptr || (c->IsClassClass() && byte_count >= sizeof(mirror::Class)) || (c->IsVariableSize() || c->GetObjectSize() == byte_count)) << c->GetClassFlags(); CHECK_GE(byte_count, sizeof(mirror::Object)); } void Heap::AddRememberedSet(accounting::RememberedSet* remembered_set) { CHECK(remembered_set != nullptr); space::Space* space = remembered_set->GetSpace(); CHECK(space != nullptr); CHECK(remembered_sets_.find(space) == remembered_sets_.end()) << space; remembered_sets_.Put(space, remembered_set); CHECK(remembered_sets_.find(space) != remembered_sets_.end()) << space; } void Heap::RemoveRememberedSet(space::Space* space) { CHECK(space != nullptr); auto it = remembered_sets_.find(space); CHECK(it != remembered_sets_.end()); delete it->second; remembered_sets_.erase(it); CHECK(remembered_sets_.find(space) == remembered_sets_.end()); } void Heap::ClearMarkedObjects() { // Clear all of the spaces' mark bitmaps. for (const auto& space : GetContinuousSpaces()) { accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap(); if (space->GetLiveBitmap() != mark_bitmap) { mark_bitmap->Clear(); } } // Clear the marked objects in the discontinous space object sets. for (const auto& space : GetDiscontinuousSpaces()) { space->GetMarkBitmap()->Clear(); } } void Heap::SetAllocationRecords(AllocRecordObjectMap* records) { allocation_records_.reset(records); } void Heap::VisitAllocationRecords(RootVisitor* visitor) const { if (IsAllocTrackingEnabled()) { MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_); if (IsAllocTrackingEnabled()) { GetAllocationRecords()->VisitRoots(visitor); } } } void Heap::SweepAllocationRecords(IsMarkedVisitor* visitor) const { if (IsAllocTrackingEnabled()) { MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_); if (IsAllocTrackingEnabled()) { GetAllocationRecords()->SweepAllocationRecords(visitor); } } } void Heap::AllowNewAllocationRecords() const { CHECK(!kUseReadBarrier); MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_); AllocRecordObjectMap* allocation_records = GetAllocationRecords(); if (allocation_records != nullptr) { allocation_records->AllowNewAllocationRecords(); } } void Heap::DisallowNewAllocationRecords() const { CHECK(!kUseReadBarrier); MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_); AllocRecordObjectMap* allocation_records = GetAllocationRecords(); if (allocation_records != nullptr) { allocation_records->DisallowNewAllocationRecords(); } } void Heap::BroadcastForNewAllocationRecords() const { CHECK(kUseReadBarrier); // Always broadcast without checking IsAllocTrackingEnabled() because IsAllocTrackingEnabled() may // be set to false while some threads are waiting for system weak access in // AllocRecordObjectMap::RecordAllocation() and we may fail to wake them up. b/27467554. MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_); AllocRecordObjectMap* allocation_records = GetAllocationRecords(); if (allocation_records != nullptr) { allocation_records->BroadcastForNewAllocationRecords(); } } // Based on debug malloc logic from libc/bionic/debug_stacktrace.cpp. class StackCrawlState { public: StackCrawlState(uintptr_t* frames, size_t max_depth, size_t skip_count) : frames_(frames), frame_count_(0), max_depth_(max_depth), skip_count_(skip_count) { } size_t GetFrameCount() const { return frame_count_; } static _Unwind_Reason_Code Callback(_Unwind_Context* context, void* arg) { auto* const state = reinterpret_cast<StackCrawlState*>(arg); const uintptr_t ip = _Unwind_GetIP(context); // The first stack frame is get_backtrace itself. Skip it. if (ip != 0 && state->skip_count_ > 0) { --state->skip_count_; return _URC_NO_REASON; } // ip may be off for ARM but it shouldn't matter since we only use it for hashing. state->frames_[state->frame_count_] = ip; state->frame_count_++; return state->frame_count_ >= state->max_depth_ ? _URC_END_OF_STACK : _URC_NO_REASON; } private: uintptr_t* const frames_; size_t frame_count_; const size_t max_depth_; size_t skip_count_; }; static size_t get_backtrace(uintptr_t* frames, size_t max_depth) { StackCrawlState state(frames, max_depth, 0u); _Unwind_Backtrace(&StackCrawlState::Callback, &state); return state.GetFrameCount(); } void Heap::CheckGcStressMode(Thread* self, mirror::Object** obj) { auto* const runtime = Runtime::Current(); if (gc_stress_mode_ && runtime->GetClassLinker()->IsInitialized() && !runtime->IsActiveTransaction() && mirror::Class::HasJavaLangClass()) { // Check if we should GC. bool new_backtrace = false; { static constexpr size_t kMaxFrames = 16u; uintptr_t backtrace[kMaxFrames]; const size_t frames = get_backtrace(backtrace, kMaxFrames); uint64_t hash = 0; for (size_t i = 0; i < frames; ++i) { hash = hash * 2654435761 + backtrace[i]; hash += (hash >> 13) ^ (hash << 6); } MutexLock mu(self, *backtrace_lock_); new_backtrace = seen_backtraces_.find(hash) == seen_backtraces_.end(); if (new_backtrace) { seen_backtraces_.insert(hash); } } if (new_backtrace) { StackHandleScope<1> hs(self); auto h = hs.NewHandleWrapper(obj); CollectGarbage(false); unique_backtrace_count_.FetchAndAddSequentiallyConsistent(1); } else { seen_backtrace_count_.FetchAndAddSequentiallyConsistent(1); } } } void Heap::DisableGCForShutdown() { Thread* const self = Thread::Current(); CHECK(Runtime::Current()->IsShuttingDown(self)); MutexLock mu(self, *gc_complete_lock_); gc_disabled_for_shutdown_ = true; } bool Heap::ObjectIsInBootImageSpace(mirror::Object* obj) const { for (gc::space::ImageSpace* space : boot_image_spaces_) { if (space->HasAddress(obj)) { return true; } } return false; } bool Heap::IsInBootImageOatFile(const void* p) const { for (gc::space::ImageSpace* space : boot_image_spaces_) { if (space->GetOatFile()->Contains(p)) { return true; } } return false; } void Heap::GetBootImagesSize(uint32_t* boot_image_begin, uint32_t* boot_image_end, uint32_t* boot_oat_begin, uint32_t* boot_oat_end) { DCHECK(boot_image_begin != nullptr); DCHECK(boot_image_end != nullptr); DCHECK(boot_oat_begin != nullptr); DCHECK(boot_oat_end != nullptr); *boot_image_begin = 0u; *boot_image_end = 0u; *boot_oat_begin = 0u; *boot_oat_end = 0u; for (gc::space::ImageSpace* space_ : GetBootImageSpaces()) { const uint32_t image_begin = PointerToLowMemUInt32(space_->Begin()); const uint32_t image_size = space_->GetImageHeader().GetImageSize(); if (*boot_image_begin == 0 || image_begin < *boot_image_begin) { *boot_image_begin = image_begin; } *boot_image_end = std::max(*boot_image_end, image_begin + image_size); const OatFile* boot_oat_file = space_->GetOatFile(); const uint32_t oat_begin = PointerToLowMemUInt32(boot_oat_file->Begin()); const uint32_t oat_size = boot_oat_file->Size(); if (*boot_oat_begin == 0 || oat_begin < *boot_oat_begin) { *boot_oat_begin = oat_begin; } *boot_oat_end = std::max(*boot_oat_end, oat_begin + oat_size); } } } // namespace gc } // namespace art