/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "common_runtime_test.h" #include "gc/collector/immune_spaces.h" #include "gc/space/image_space.h" #include "gc/space/space-inl.h" #include "oat_file.h" #include "thread-inl.h" namespace art { namespace mirror { class Object; } // namespace mirror namespace gc { namespace collector { class DummyOatFile : public OatFile { public: DummyOatFile(uint8_t* begin, uint8_t* end) : OatFile("Location", /*is_executable*/ false) { begin_ = begin; end_ = end; } }; class DummyImageSpace : public space::ImageSpace { public: DummyImageSpace(MemMap* map, accounting::ContinuousSpaceBitmap* live_bitmap, std::unique_ptr<DummyOatFile>&& oat_file, std::unique_ptr<MemMap>&& oat_map) : ImageSpace("DummyImageSpace", /*image_location*/"", map, live_bitmap, map->End()), oat_map_(std::move(oat_map)) { oat_file_ = std::move(oat_file); oat_file_non_owned_ = oat_file_.get(); } private: std::unique_ptr<MemMap> oat_map_; }; class ImmuneSpacesTest : public CommonRuntimeTest { static constexpr size_t kMaxBitmaps = 10; public: ImmuneSpacesTest() {} void ReserveBitmaps() { // Create a bunch of dummy bitmaps since these are required to create image spaces. The bitmaps // do not need to cover the image spaces though. for (size_t i = 0; i < kMaxBitmaps; ++i) { std::unique_ptr<accounting::ContinuousSpaceBitmap> bitmap( accounting::ContinuousSpaceBitmap::Create("bitmap", reinterpret_cast<uint8_t*>(kPageSize), kPageSize)); CHECK(bitmap != nullptr); live_bitmaps_.push_back(std::move(bitmap)); } } // Create an image space, the oat file is optional. DummyImageSpace* CreateImageSpace(uint8_t* image_begin, size_t image_size, uint8_t* oat_begin, size_t oat_size) { std::string error_str; std::unique_ptr<MemMap> map(MemMap::MapAnonymous("DummyImageSpace", image_begin, image_size, PROT_READ | PROT_WRITE, /*low_4gb*/true, /*reuse*/false, &error_str)); if (map == nullptr) { LOG(ERROR) << error_str; return nullptr; } CHECK(!live_bitmaps_.empty()); std::unique_ptr<accounting::ContinuousSpaceBitmap> live_bitmap(std::move(live_bitmaps_.back())); live_bitmaps_.pop_back(); std::unique_ptr<MemMap> oat_map(MemMap::MapAnonymous("OatMap", oat_begin, oat_size, PROT_READ | PROT_WRITE, /*low_4gb*/true, /*reuse*/false, &error_str)); if (oat_map == nullptr) { LOG(ERROR) << error_str; return nullptr; } std::unique_ptr<DummyOatFile> oat_file(new DummyOatFile(oat_map->Begin(), oat_map->End())); // Create image header. ImageSection sections[ImageHeader::kSectionCount]; new (map->Begin()) ImageHeader( /*image_begin*/PointerToLowMemUInt32(map->Begin()), /*image_size*/map->Size(), sections, /*image_roots*/PointerToLowMemUInt32(map->Begin()) + 1, /*oat_checksum*/0u, // The oat file data in the header is always right after the image space. /*oat_file_begin*/PointerToLowMemUInt32(oat_begin), /*oat_data_begin*/PointerToLowMemUInt32(oat_begin), /*oat_data_end*/PointerToLowMemUInt32(oat_begin + oat_size), /*oat_file_end*/PointerToLowMemUInt32(oat_begin + oat_size), /*boot_image_begin*/0u, /*boot_image_size*/0u, /*boot_oat_begin*/0u, /*boot_oat_size*/0u, /*pointer_size*/sizeof(void*), /*compile_pic*/false, /*is_pic*/false, ImageHeader::kStorageModeUncompressed, /*storage_size*/0u); return new DummyImageSpace(map.release(), live_bitmap.release(), std::move(oat_file), std::move(oat_map)); } // Does not reserve the memory, the caller needs to be sure no other threads will map at the // returned address. static uint8_t* GetContinuousMemoryRegion(size_t size) { std::string error_str; std::unique_ptr<MemMap> map(MemMap::MapAnonymous("reserve", nullptr, size, PROT_READ | PROT_WRITE, /*low_4gb*/true, /*reuse*/false, &error_str)); if (map == nullptr) { LOG(ERROR) << "Failed to allocate memory region " << error_str; return nullptr; } return map->Begin(); } private: // Bitmap pool for pre-allocated dummy bitmaps. We need to pre-allocate them since we don't want // them to randomly get placed somewhere where we want an image space. std::vector<std::unique_ptr<accounting::ContinuousSpaceBitmap>> live_bitmaps_; }; class DummySpace : public space::ContinuousSpace { public: DummySpace(uint8_t* begin, uint8_t* end) : ContinuousSpace("DummySpace", space::kGcRetentionPolicyNeverCollect, begin, end, /*limit*/end) {} space::SpaceType GetType() const OVERRIDE { return space::kSpaceTypeMallocSpace; } bool CanMoveObjects() const OVERRIDE { return false; } accounting::ContinuousSpaceBitmap* GetLiveBitmap() const OVERRIDE { return nullptr; } accounting::ContinuousSpaceBitmap* GetMarkBitmap() const OVERRIDE { return nullptr; } }; TEST_F(ImmuneSpacesTest, AppendBasic) { ImmuneSpaces spaces; uint8_t* const base = reinterpret_cast<uint8_t*>(0x1000); DummySpace a(base, base + 45 * KB); DummySpace b(a.Limit(), a.Limit() + 813 * KB); { WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_); spaces.AddSpace(&a); spaces.AddSpace(&b); } EXPECT_TRUE(spaces.ContainsSpace(&a)); EXPECT_TRUE(spaces.ContainsSpace(&b)); EXPECT_EQ(reinterpret_cast<uint8_t*>(spaces.GetLargestImmuneRegion().Begin()), a.Begin()); EXPECT_EQ(reinterpret_cast<uint8_t*>(spaces.GetLargestImmuneRegion().End()), b.Limit()); } // Tests [image][oat][space] producing a single large immune region. TEST_F(ImmuneSpacesTest, AppendAfterImage) { ReserveBitmaps(); ImmuneSpaces spaces; constexpr size_t kImageSize = 123 * kPageSize; constexpr size_t kImageOatSize = 321 * kPageSize; constexpr size_t kOtherSpaceSize= 100 * kPageSize; uint8_t* memory = GetContinuousMemoryRegion(kImageSize + kImageOatSize + kOtherSpaceSize); std::unique_ptr<DummyImageSpace> image_space(CreateImageSpace(memory, kImageSize, memory + kImageSize, kImageOatSize)); ASSERT_TRUE(image_space != nullptr); const ImageHeader& image_header = image_space->GetImageHeader(); DummySpace space(image_header.GetOatFileEnd(), image_header.GetOatFileEnd() + kOtherSpaceSize); EXPECT_EQ(image_header.GetImageSize(), kImageSize); EXPECT_EQ(static_cast<size_t>(image_header.GetOatFileEnd() - image_header.GetOatFileBegin()), kImageOatSize); EXPECT_EQ(image_space->GetOatFile()->Size(), kImageOatSize); // Check that we do not include the oat if there is no space after. { WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_); spaces.AddSpace(image_space.get()); } EXPECT_EQ(reinterpret_cast<uint8_t*>(spaces.GetLargestImmuneRegion().Begin()), image_space->Begin()); EXPECT_EQ(reinterpret_cast<uint8_t*>(spaces.GetLargestImmuneRegion().End()), image_space->Limit()); // Add another space and ensure it gets appended. EXPECT_NE(image_space->Limit(), space.Begin()); { WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_); spaces.AddSpace(&space); } EXPECT_TRUE(spaces.ContainsSpace(image_space.get())); EXPECT_TRUE(spaces.ContainsSpace(&space)); // CreateLargestImmuneRegion should have coalesced the two spaces since the oat code after the // image prevents gaps. // Check that we have a continuous region. EXPECT_EQ(reinterpret_cast<uint8_t*>(spaces.GetLargestImmuneRegion().Begin()), image_space->Begin()); EXPECT_EQ(reinterpret_cast<uint8_t*>(spaces.GetLargestImmuneRegion().End()), space.Limit()); } // Test [image1][image2][image1 oat][image2 oat][image3] producing a single large immune region. TEST_F(ImmuneSpacesTest, MultiImage) { ReserveBitmaps(); // Image 2 needs to be smaller or else it may be chosen for immune region. constexpr size_t kImage1Size = kPageSize * 17; constexpr size_t kImage2Size = kPageSize * 13; constexpr size_t kImage3Size = kPageSize * 3; constexpr size_t kImage1OatSize = kPageSize * 5; constexpr size_t kImage2OatSize = kPageSize * 8; constexpr size_t kImage3OatSize = kPageSize; constexpr size_t kImageBytes = kImage1Size + kImage2Size + kImage3Size; constexpr size_t kMemorySize = kImageBytes + kImage1OatSize + kImage2OatSize + kImage3OatSize; uint8_t* memory = GetContinuousMemoryRegion(kMemorySize); uint8_t* space1_begin = memory; memory += kImage1Size; uint8_t* space2_begin = memory; memory += kImage2Size; uint8_t* space1_oat_begin = memory; memory += kImage1OatSize; uint8_t* space2_oat_begin = memory; memory += kImage2OatSize; uint8_t* space3_begin = memory; std::unique_ptr<DummyImageSpace> space1(CreateImageSpace(space1_begin, kImage1Size, space1_oat_begin, kImage1OatSize)); ASSERT_TRUE(space1 != nullptr); std::unique_ptr<DummyImageSpace> space2(CreateImageSpace(space2_begin, kImage2Size, space2_oat_begin, kImage2OatSize)); ASSERT_TRUE(space2 != nullptr); // Finally put a 3rd image space. std::unique_ptr<DummyImageSpace> space3(CreateImageSpace(space3_begin, kImage3Size, space3_begin + kImage3Size, kImage3OatSize)); ASSERT_TRUE(space3 != nullptr); // Check that we do not include the oat if there is no space after. ImmuneSpaces spaces; { WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_); LOG(INFO) << "Adding space1 " << reinterpret_cast<const void*>(space1->Begin()); spaces.AddSpace(space1.get()); LOG(INFO) << "Adding space2 " << reinterpret_cast<const void*>(space2->Begin()); spaces.AddSpace(space2.get()); } // There are no more heap bytes, the immune region should only be the first 2 image spaces and // should exclude the image oat files. EXPECT_EQ(reinterpret_cast<uint8_t*>(spaces.GetLargestImmuneRegion().Begin()), space1->Begin()); EXPECT_EQ(reinterpret_cast<uint8_t*>(spaces.GetLargestImmuneRegion().End()), space2->Limit()); // Add another space after the oat files, now it should contain the entire memory region. { WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_); LOG(INFO) << "Adding space3 " << reinterpret_cast<const void*>(space3->Begin()); spaces.AddSpace(space3.get()); } EXPECT_EQ(reinterpret_cast<uint8_t*>(spaces.GetLargestImmuneRegion().Begin()), space1->Begin()); EXPECT_EQ(reinterpret_cast<uint8_t*>(spaces.GetLargestImmuneRegion().End()), space3->Limit()); // Add a smaller non-adjacent space and ensure it does not become part of the immune region. // Image size is kImageBytes - kPageSize // Oat size is kPageSize. // Guard pages to ensure it is not adjacent to an existing immune region. // Layout: [guard page][image][oat][guard page] constexpr size_t kGuardSize = kPageSize; constexpr size_t kImage4Size = kImageBytes - kPageSize; constexpr size_t kImage4OatSize = kPageSize; uint8_t* memory2 = GetContinuousMemoryRegion(kImage4Size + kImage4OatSize + kGuardSize * 2); std::unique_ptr<DummyImageSpace> space4(CreateImageSpace(memory2 + kGuardSize, kImage4Size, memory2 + kGuardSize + kImage4Size, kImage4OatSize)); ASSERT_TRUE(space4 != nullptr); { WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_); LOG(INFO) << "Adding space4 " << reinterpret_cast<const void*>(space4->Begin()); spaces.AddSpace(space4.get()); } EXPECT_EQ(reinterpret_cast<uint8_t*>(spaces.GetLargestImmuneRegion().Begin()), space1->Begin()); EXPECT_EQ(reinterpret_cast<uint8_t*>(spaces.GetLargestImmuneRegion().End()), space3->Limit()); // Add a larger non-adjacent space and ensure it becomes the new largest immune region. // Image size is kImageBytes + kPageSize // Oat size is kPageSize. // Guard pages to ensure it is not adjacent to an existing immune region. // Layout: [guard page][image][oat][guard page] constexpr size_t kImage5Size = kImageBytes + kPageSize; constexpr size_t kImage5OatSize = kPageSize; uint8_t* memory3 = GetContinuousMemoryRegion(kImage5Size + kImage5OatSize + kGuardSize * 2); std::unique_ptr<DummyImageSpace> space5(CreateImageSpace(memory3 + kGuardSize, kImage5Size, memory3 + kGuardSize + kImage5Size, kImage5OatSize)); ASSERT_TRUE(space5 != nullptr); { WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_); LOG(INFO) << "Adding space5 " << reinterpret_cast<const void*>(space5->Begin()); spaces.AddSpace(space5.get()); } EXPECT_EQ(reinterpret_cast<uint8_t*>(spaces.GetLargestImmuneRegion().Begin()), space5->Begin()); EXPECT_EQ(reinterpret_cast<uint8_t*>(spaces.GetLargestImmuneRegion().End()), space5->Limit()); } } // namespace collector } // namespace gc } // namespace art