/* * Copyright (C) 2008 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "space_bitmap-inl.h" #include "art_field-inl.h" #include "base/stringprintf.h" #include "dex_file-inl.h" #include "mem_map.h" #include "mirror/object-inl.h" #include "mirror/class-inl.h" #include "mirror/object_array.h" namespace art { namespace gc { namespace accounting { template<size_t kAlignment> size_t SpaceBitmap<kAlignment>::ComputeBitmapSize(uint64_t capacity) { const uint64_t kBytesCoveredPerWord = kAlignment * kBitsPerIntPtrT; return (RoundUp(capacity, kBytesCoveredPerWord) / kBytesCoveredPerWord) * sizeof(intptr_t); } template<size_t kAlignment> size_t SpaceBitmap<kAlignment>::ComputeHeapSize(uint64_t bitmap_bytes) { return bitmap_bytes * kBitsPerByte * kAlignment; } template<size_t kAlignment> SpaceBitmap<kAlignment>* SpaceBitmap<kAlignment>::CreateFromMemMap( const std::string& name, MemMap* mem_map, uint8_t* heap_begin, size_t heap_capacity) { CHECK(mem_map != nullptr); uintptr_t* bitmap_begin = reinterpret_cast<uintptr_t*>(mem_map->Begin()); const size_t bitmap_size = ComputeBitmapSize(heap_capacity); return new SpaceBitmap(name, mem_map, bitmap_begin, bitmap_size, heap_begin); } template<size_t kAlignment> SpaceBitmap<kAlignment>::SpaceBitmap(const std::string& name, MemMap* mem_map, uintptr_t* bitmap_begin, size_t bitmap_size, const void* heap_begin) : mem_map_(mem_map), bitmap_begin_(bitmap_begin), bitmap_size_(bitmap_size), heap_begin_(reinterpret_cast<uintptr_t>(heap_begin)), name_(name) { CHECK(bitmap_begin_ != nullptr); CHECK_NE(bitmap_size, 0U); } template<size_t kAlignment> SpaceBitmap<kAlignment>::~SpaceBitmap() {} template<size_t kAlignment> SpaceBitmap<kAlignment>* SpaceBitmap<kAlignment>::Create( const std::string& name, uint8_t* heap_begin, size_t heap_capacity) { // Round up since heap_capacity is not necessarily a multiple of kAlignment * kBitsPerWord. const size_t bitmap_size = ComputeBitmapSize(heap_capacity); std::string error_msg; std::unique_ptr<MemMap> mem_map(MemMap::MapAnonymous(name.c_str(), nullptr, bitmap_size, PROT_READ | PROT_WRITE, false, false, &error_msg)); if (UNLIKELY(mem_map.get() == nullptr)) { LOG(ERROR) << "Failed to allocate bitmap " << name << ": " << error_msg; return nullptr; } return CreateFromMemMap(name, mem_map.release(), heap_begin, heap_capacity); } template<size_t kAlignment> void SpaceBitmap<kAlignment>::SetHeapLimit(uintptr_t new_end) { DCHECK_ALIGNED(new_end, kBitsPerIntPtrT * kAlignment); size_t new_size = OffsetToIndex(new_end - heap_begin_) * sizeof(intptr_t); if (new_size < bitmap_size_) { bitmap_size_ = new_size; } // Not sure if doing this trim is necessary, since nothing past the end of the heap capacity // should be marked. } template<size_t kAlignment> std::string SpaceBitmap<kAlignment>::Dump() const { return StringPrintf("%s: %p-%p", name_.c_str(), reinterpret_cast<void*>(HeapBegin()), reinterpret_cast<void*>(HeapLimit())); } template<size_t kAlignment> void SpaceBitmap<kAlignment>::Clear() { if (bitmap_begin_ != nullptr) { mem_map_->MadviseDontNeedAndZero(); } } template<size_t kAlignment> void SpaceBitmap<kAlignment>::CopyFrom(SpaceBitmap* source_bitmap) { DCHECK_EQ(Size(), source_bitmap->Size()); std::copy(source_bitmap->Begin(), source_bitmap->Begin() + source_bitmap->Size() / sizeof(intptr_t), Begin()); } template<size_t kAlignment> void SpaceBitmap<kAlignment>::Walk(ObjectCallback* callback, void* arg) { CHECK(bitmap_begin_ != nullptr); CHECK(callback != nullptr); uintptr_t end = OffsetToIndex(HeapLimit() - heap_begin_ - 1); uintptr_t* bitmap_begin = bitmap_begin_; for (uintptr_t i = 0; i <= end; ++i) { uintptr_t w = bitmap_begin[i]; if (w != 0) { uintptr_t ptr_base = IndexToOffset(i) + heap_begin_; do { const size_t shift = CTZ(w); mirror::Object* obj = reinterpret_cast<mirror::Object*>(ptr_base + shift * kAlignment); (*callback)(obj, arg); w ^= (static_cast<uintptr_t>(1)) << shift; } while (w != 0); } } } template<size_t kAlignment> void SpaceBitmap<kAlignment>::SweepWalk(const SpaceBitmap<kAlignment>& live_bitmap, const SpaceBitmap<kAlignment>& mark_bitmap, uintptr_t sweep_begin, uintptr_t sweep_end, SpaceBitmap::SweepCallback* callback, void* arg) { CHECK(live_bitmap.bitmap_begin_ != nullptr); CHECK(mark_bitmap.bitmap_begin_ != nullptr); CHECK_EQ(live_bitmap.heap_begin_, mark_bitmap.heap_begin_); CHECK_EQ(live_bitmap.bitmap_size_, mark_bitmap.bitmap_size_); CHECK(callback != nullptr); CHECK_LE(sweep_begin, sweep_end); CHECK_GE(sweep_begin, live_bitmap.heap_begin_); if (sweep_end <= sweep_begin) { return; } // TODO: rewrite the callbacks to accept a std::vector<mirror::Object*> rather than a mirror::Object**? constexpr size_t buffer_size = sizeof(intptr_t) * kBitsPerIntPtrT; #ifdef __LP64__ // Heap-allocate for smaller stack frame. std::unique_ptr<mirror::Object*[]> pointer_buf_ptr(new mirror::Object*[buffer_size]); mirror::Object** pointer_buf = pointer_buf_ptr.get(); #else // Stack-allocate buffer as it's small enough. mirror::Object* pointer_buf[buffer_size]; #endif mirror::Object** pb = &pointer_buf[0]; size_t start = OffsetToIndex(sweep_begin - live_bitmap.heap_begin_); size_t end = OffsetToIndex(sweep_end - live_bitmap.heap_begin_ - 1); CHECK_LT(end, live_bitmap.Size() / sizeof(intptr_t)); uintptr_t* live = live_bitmap.bitmap_begin_; uintptr_t* mark = mark_bitmap.bitmap_begin_; for (size_t i = start; i <= end; i++) { uintptr_t garbage = live[i] & ~mark[i]; if (UNLIKELY(garbage != 0)) { uintptr_t ptr_base = IndexToOffset(i) + live_bitmap.heap_begin_; do { const size_t shift = CTZ(garbage); garbage ^= (static_cast<uintptr_t>(1)) << shift; *pb++ = reinterpret_cast<mirror::Object*>(ptr_base + shift * kAlignment); } while (garbage != 0); // Make sure that there are always enough slots available for an // entire word of one bits. if (pb >= &pointer_buf[buffer_size - kBitsPerIntPtrT]) { (*callback)(pb - &pointer_buf[0], &pointer_buf[0], arg); pb = &pointer_buf[0]; } } } if (pb > &pointer_buf[0]) { (*callback)(pb - &pointer_buf[0], &pointer_buf[0], arg); } } template<size_t kAlignment> void SpaceBitmap<kAlignment>::WalkInstanceFields(SpaceBitmap<kAlignment>* visited, ObjectCallback* callback, mirror::Object* obj, mirror::Class* klass, void* arg) SHARED_REQUIRES(Locks::mutator_lock_) { // Visit fields of parent classes first. mirror::Class* super = klass->GetSuperClass(); if (super != nullptr) { WalkInstanceFields(visited, callback, obj, super, arg); } // Walk instance fields for (ArtField& field : klass->GetIFields()) { if (!field.IsPrimitiveType()) { mirror::Object* value = field.GetObj(obj); if (value != nullptr) { WalkFieldsInOrder(visited, callback, value, arg); } } } } template<size_t kAlignment> void SpaceBitmap<kAlignment>::WalkFieldsInOrder(SpaceBitmap<kAlignment>* visited, ObjectCallback* callback, mirror::Object* obj, void* arg) { if (visited->Test(obj)) { return; } // visit the object itself (*callback)(obj, arg); visited->Set(obj); // Walk instance fields of all objects mirror::Class* klass = obj->GetClass(); WalkInstanceFields(visited, callback, obj, klass, arg); // Walk static fields of a Class if (obj->IsClass()) { for (ArtField& field : klass->GetSFields()) { if (!field.IsPrimitiveType()) { mirror::Object* value = field.GetObj(nullptr); if (value != nullptr) { WalkFieldsInOrder(visited, callback, value, arg); } } } } else if (obj->IsObjectArray()) { // Walk elements of an object array mirror::ObjectArray<mirror::Object>* obj_array = obj->AsObjectArray<mirror::Object>(); int32_t length = obj_array->GetLength(); for (int32_t i = 0; i < length; i++) { mirror::Object* value = obj_array->Get(i); if (value != nullptr) { WalkFieldsInOrder(visited, callback, value, arg); } } } } template<size_t kAlignment> void SpaceBitmap<kAlignment>::InOrderWalk(ObjectCallback* callback, void* arg) { std::unique_ptr<SpaceBitmap<kAlignment>> visited( Create("bitmap for in-order walk", reinterpret_cast<uint8_t*>(heap_begin_), IndexToOffset(bitmap_size_ / sizeof(intptr_t)))); CHECK(bitmap_begin_ != nullptr); CHECK(callback != nullptr); uintptr_t end = Size() / sizeof(intptr_t); for (uintptr_t i = 0; i < end; ++i) { // Need uint for unsigned shift. uintptr_t w = bitmap_begin_[i]; if (UNLIKELY(w != 0)) { uintptr_t ptr_base = IndexToOffset(i) + heap_begin_; while (w != 0) { const size_t shift = CTZ(w); mirror::Object* obj = reinterpret_cast<mirror::Object*>(ptr_base + shift * kAlignment); WalkFieldsInOrder(visited.get(), callback, obj, arg); w ^= (static_cast<uintptr_t>(1)) << shift; } } } } template class SpaceBitmap<kObjectAlignment>; template class SpaceBitmap<kPageSize>; } // namespace accounting } // namespace gc } // namespace art