/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_RUNTIME_GC_ACCOUNTING_ATOMIC_STACK_H_ #define ART_RUNTIME_GC_ACCOUNTING_ATOMIC_STACK_H_ #include <algorithm> #include <memory> #include <string> #include "atomic.h" #include "base/logging.h" #include "base/macros.h" #include "mem_map.h" #include "stack.h" namespace art { namespace gc { namespace accounting { // Internal representation is StackReference<T>, so this only works with mirror::Object or it's // subclasses. template <typename T> class AtomicStack { public: class ObjectComparator { public: // These two comparators are for std::binary_search. bool operator()(const T* a, const StackReference<T>& b) const NO_THREAD_SAFETY_ANALYSIS { return a < b.AsMirrorPtr(); } bool operator()(const StackReference<T>& a, const T* b) const NO_THREAD_SAFETY_ANALYSIS { return a.AsMirrorPtr() < b; } // This comparator is for std::sort. bool operator()(const StackReference<T>& a, const StackReference<T>& b) const NO_THREAD_SAFETY_ANALYSIS { return a.AsMirrorPtr() < b.AsMirrorPtr(); } }; // Capacity is how many elements we can store in the stack. static AtomicStack* Create(const std::string& name, size_t growth_limit, size_t capacity) { std::unique_ptr<AtomicStack> mark_stack(new AtomicStack(name, growth_limit, capacity)); mark_stack->Init(); return mark_stack.release(); } ~AtomicStack() {} void Reset() { DCHECK(mem_map_.get() != nullptr); DCHECK(begin_ != nullptr); front_index_.StoreRelaxed(0); back_index_.StoreRelaxed(0); debug_is_sorted_ = true; mem_map_->MadviseDontNeedAndZero(); } // Beware: Mixing atomic pushes and atomic pops will cause ABA problem. // Returns false if we overflowed the stack. bool AtomicPushBackIgnoreGrowthLimit(T* value) SHARED_REQUIRES(Locks::mutator_lock_) { return AtomicPushBackInternal(value, capacity_); } // Returns false if we overflowed the stack. bool AtomicPushBack(T* value) SHARED_REQUIRES(Locks::mutator_lock_) { return AtomicPushBackInternal(value, growth_limit_); } // Atomically bump the back index by the given number of // slots. Returns false if we overflowed the stack. bool AtomicBumpBack(size_t num_slots, StackReference<T>** start_address, StackReference<T>** end_address) SHARED_REQUIRES(Locks::mutator_lock_) { if (kIsDebugBuild) { debug_is_sorted_ = false; } int32_t index; int32_t new_index; do { index = back_index_.LoadRelaxed(); new_index = index + num_slots; if (UNLIKELY(static_cast<size_t>(new_index) >= growth_limit_)) { // Stack overflow. return false; } } while (!back_index_.CompareExchangeWeakRelaxed(index, new_index)); *start_address = begin_ + index; *end_address = begin_ + new_index; if (kIsDebugBuild) { // Sanity check that the memory is zero. for (int32_t i = index; i < new_index; ++i) { DCHECK_EQ(begin_[i].AsMirrorPtr(), static_cast<T*>(nullptr)) << "i=" << i << " index=" << index << " new_index=" << new_index; } } return true; } void AssertAllZero() SHARED_REQUIRES(Locks::mutator_lock_) { if (kIsDebugBuild) { for (size_t i = 0; i < capacity_; ++i) { DCHECK_EQ(begin_[i].AsMirrorPtr(), static_cast<T*>(nullptr)) << "i=" << i; } } } void PushBack(T* value) SHARED_REQUIRES(Locks::mutator_lock_) { if (kIsDebugBuild) { debug_is_sorted_ = false; } const int32_t index = back_index_.LoadRelaxed(); DCHECK_LT(static_cast<size_t>(index), growth_limit_); back_index_.StoreRelaxed(index + 1); begin_[index].Assign(value); } T* PopBack() SHARED_REQUIRES(Locks::mutator_lock_) { DCHECK_GT(back_index_.LoadRelaxed(), front_index_.LoadRelaxed()); // Decrement the back index non atomically. back_index_.StoreRelaxed(back_index_.LoadRelaxed() - 1); return begin_[back_index_.LoadRelaxed()].AsMirrorPtr(); } // Take an item from the front of the stack. T PopFront() { int32_t index = front_index_.LoadRelaxed(); DCHECK_LT(index, back_index_.LoadRelaxed()); front_index_.StoreRelaxed(index + 1); return begin_[index]; } // Pop a number of elements. void PopBackCount(int32_t n) { DCHECK_GE(Size(), static_cast<size_t>(n)); back_index_.FetchAndSubSequentiallyConsistent(n); } bool IsEmpty() const { return Size() == 0; } bool IsFull() const { return Size() == growth_limit_; } size_t Size() const { DCHECK_LE(front_index_.LoadRelaxed(), back_index_.LoadRelaxed()); return back_index_.LoadRelaxed() - front_index_.LoadRelaxed(); } StackReference<T>* Begin() const { return begin_ + front_index_.LoadRelaxed(); } StackReference<T>* End() const { return begin_ + back_index_.LoadRelaxed(); } size_t Capacity() const { return capacity_; } // Will clear the stack. void Resize(size_t new_capacity) { capacity_ = new_capacity; growth_limit_ = new_capacity; Init(); } void Sort() { int32_t start_back_index = back_index_.LoadRelaxed(); int32_t start_front_index = front_index_.LoadRelaxed(); std::sort(Begin(), End(), ObjectComparator()); CHECK_EQ(start_back_index, back_index_.LoadRelaxed()); CHECK_EQ(start_front_index, front_index_.LoadRelaxed()); if (kIsDebugBuild) { debug_is_sorted_ = true; } } bool ContainsSorted(const T* value) const SHARED_REQUIRES(Locks::mutator_lock_) { DCHECK(debug_is_sorted_); return std::binary_search(Begin(), End(), value, ObjectComparator()); } bool Contains(const T* value) const SHARED_REQUIRES(Locks::mutator_lock_) { for (auto cur = Begin(), end = End(); cur != end; ++cur) { if (cur->AsMirrorPtr() == value) { return true; } } return false; } private: AtomicStack(const std::string& name, size_t growth_limit, size_t capacity) : name_(name), back_index_(0), front_index_(0), begin_(nullptr), growth_limit_(growth_limit), capacity_(capacity), debug_is_sorted_(true) { } // Returns false if we overflowed the stack. bool AtomicPushBackInternal(T* value, size_t limit) ALWAYS_INLINE SHARED_REQUIRES(Locks::mutator_lock_) { if (kIsDebugBuild) { debug_is_sorted_ = false; } int32_t index; do { index = back_index_.LoadRelaxed(); if (UNLIKELY(static_cast<size_t>(index) >= limit)) { // Stack overflow. return false; } } while (!back_index_.CompareExchangeWeakRelaxed(index, index + 1)); begin_[index].Assign(value); return true; } // Size in number of elements. void Init() { std::string error_msg; mem_map_.reset(MemMap::MapAnonymous(name_.c_str(), nullptr, capacity_ * sizeof(begin_[0]), PROT_READ | PROT_WRITE, false, false, &error_msg)); CHECK(mem_map_.get() != nullptr) << "couldn't allocate mark stack.\n" << error_msg; uint8_t* addr = mem_map_->Begin(); CHECK(addr != nullptr); debug_is_sorted_ = true; begin_ = reinterpret_cast<StackReference<T>*>(addr); Reset(); } // Name of the mark stack. std::string name_; // Memory mapping of the atomic stack. std::unique_ptr<MemMap> mem_map_; // Back index (index after the last element pushed). AtomicInteger back_index_; // Front index, used for implementing PopFront. AtomicInteger front_index_; // Base of the atomic stack. StackReference<T>* begin_; // Current maximum which we can push back to, must be <= capacity_. size_t growth_limit_; // Maximum number of elements. size_t capacity_; // Whether or not the stack is sorted, only updated in debug mode to avoid performance overhead. bool debug_is_sorted_; DISALLOW_COPY_AND_ASSIGN(AtomicStack); }; typedef AtomicStack<mirror::Object> ObjectStack; } // namespace accounting } // namespace gc } // namespace art #endif // ART_RUNTIME_GC_ACCOUNTING_ATOMIC_STACK_H_