/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "entrypoints/entrypoint_utils.h" #include "art_field-inl.h" #include "art_method-inl.h" #include "base/mutex.h" #include "class_linker-inl.h" #include "dex_file-inl.h" #include "entrypoints/entrypoint_utils-inl.h" #include "entrypoints/quick/callee_save_frame.h" #include "entrypoints/runtime_asm_entrypoints.h" #include "gc/accounting/card_table-inl.h" #include "mirror/class-inl.h" #include "mirror/method.h" #include "mirror/object-inl.h" #include "mirror/object_array-inl.h" #include "nth_caller_visitor.h" #include "oat_quick_method_header.h" #include "reflection.h" #include "scoped_thread_state_change.h" #include "well_known_classes.h" namespace art { static inline mirror::Class* CheckFilledNewArrayAlloc(uint32_t type_idx, int32_t component_count, ArtMethod* referrer, Thread* self, bool access_check) SHARED_REQUIRES(Locks::mutator_lock_) { if (UNLIKELY(component_count < 0)) { ThrowNegativeArraySizeException(component_count); return nullptr; // Failure } ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); size_t pointer_size = class_linker->GetImagePointerSize(); mirror::Class* klass = referrer->GetDexCacheResolvedType<false>(type_idx, pointer_size); if (UNLIKELY(klass == nullptr)) { // Not in dex cache so try to resolve klass = class_linker->ResolveType(type_idx, referrer); if (klass == nullptr) { // Error DCHECK(self->IsExceptionPending()); return nullptr; // Failure } } if (UNLIKELY(klass->IsPrimitive() && !klass->IsPrimitiveInt())) { if (klass->IsPrimitiveLong() || klass->IsPrimitiveDouble()) { ThrowRuntimeException("Bad filled array request for type %s", PrettyDescriptor(klass).c_str()); } else { self->ThrowNewExceptionF( "Ljava/lang/InternalError;", "Found type %s; filled-new-array not implemented for anything but 'int'", PrettyDescriptor(klass).c_str()); } return nullptr; // Failure } if (access_check) { mirror::Class* referrer_klass = referrer->GetDeclaringClass(); if (UNLIKELY(!referrer_klass->CanAccess(klass))) { ThrowIllegalAccessErrorClass(referrer_klass, klass); return nullptr; // Failure } } DCHECK(klass->IsArrayClass()) << PrettyClass(klass); return klass; } // Helper function to allocate array for FILLED_NEW_ARRAY. mirror::Array* CheckAndAllocArrayFromCode(uint32_t type_idx, int32_t component_count, ArtMethod* referrer, Thread* self, bool access_check, gc::AllocatorType /* allocator_type */) { mirror::Class* klass = CheckFilledNewArrayAlloc(type_idx, component_count, referrer, self, access_check); if (UNLIKELY(klass == nullptr)) { return nullptr; } // Always go slow path for now, filled new array is not common. gc::Heap* heap = Runtime::Current()->GetHeap(); // Use the current allocator type in case CheckFilledNewArrayAlloc caused us to suspend and then // the heap switched the allocator type while we were suspended. return mirror::Array::Alloc<false>(self, klass, component_count, klass->GetComponentSizeShift(), heap->GetCurrentAllocator()); } // Helper function to allocate array for FILLED_NEW_ARRAY. mirror::Array* CheckAndAllocArrayFromCodeInstrumented(uint32_t type_idx, int32_t component_count, ArtMethod* referrer, Thread* self, bool access_check, gc::AllocatorType /* allocator_type */) { mirror::Class* klass = CheckFilledNewArrayAlloc(type_idx, component_count, referrer, self, access_check); if (UNLIKELY(klass == nullptr)) { return nullptr; } gc::Heap* heap = Runtime::Current()->GetHeap(); // Use the current allocator type in case CheckFilledNewArrayAlloc caused us to suspend and then // the heap switched the allocator type while we were suspended. return mirror::Array::Alloc<true>(self, klass, component_count, klass->GetComponentSizeShift(), heap->GetCurrentAllocator()); } void CheckReferenceResult(mirror::Object* o, Thread* self) { if (o == nullptr) { return; } // Make sure that the result is an instance of the type this method was expected to return. mirror::Class* return_type = self->GetCurrentMethod(nullptr)->GetReturnType(true /* resolve */, sizeof(void*)); if (!o->InstanceOf(return_type)) { Runtime::Current()->GetJavaVM()->JniAbortF(nullptr, "attempt to return an instance of %s from %s", PrettyTypeOf(o).c_str(), PrettyMethod(self->GetCurrentMethod(nullptr)).c_str()); } } JValue InvokeProxyInvocationHandler(ScopedObjectAccessAlreadyRunnable& soa, const char* shorty, jobject rcvr_jobj, jobject interface_method_jobj, std::vector<jvalue>& args) { DCHECK(soa.Env()->IsInstanceOf(rcvr_jobj, WellKnownClasses::java_lang_reflect_Proxy)); // Build argument array possibly triggering GC. soa.Self()->AssertThreadSuspensionIsAllowable(); jobjectArray args_jobj = nullptr; const JValue zero; int32_t target_sdk_version = Runtime::Current()->GetTargetSdkVersion(); // Do not create empty arrays unless needed to maintain Dalvik bug compatibility. if (args.size() > 0 || (target_sdk_version > 0 && target_sdk_version <= 21)) { args_jobj = soa.Env()->NewObjectArray(args.size(), WellKnownClasses::java_lang_Object, nullptr); if (args_jobj == nullptr) { CHECK(soa.Self()->IsExceptionPending()); return zero; } for (size_t i = 0; i < args.size(); ++i) { if (shorty[i + 1] == 'L') { jobject val = args.at(i).l; soa.Env()->SetObjectArrayElement(args_jobj, i, val); } else { JValue jv; jv.SetJ(args.at(i).j); mirror::Object* val = BoxPrimitive(Primitive::GetType(shorty[i + 1]), jv); if (val == nullptr) { CHECK(soa.Self()->IsExceptionPending()); return zero; } soa.Decode<mirror::ObjectArray<mirror::Object>* >(args_jobj)->Set<false>(i, val); } } } // Call Proxy.invoke(Proxy proxy, Method method, Object[] args). jvalue invocation_args[3]; invocation_args[0].l = rcvr_jobj; invocation_args[1].l = interface_method_jobj; invocation_args[2].l = args_jobj; jobject result = soa.Env()->CallStaticObjectMethodA(WellKnownClasses::java_lang_reflect_Proxy, WellKnownClasses::java_lang_reflect_Proxy_invoke, invocation_args); // Unbox result and handle error conditions. if (LIKELY(!soa.Self()->IsExceptionPending())) { if (shorty[0] == 'V' || (shorty[0] == 'L' && result == nullptr)) { // Do nothing. return zero; } else { StackHandleScope<1> hs(soa.Self()); auto h_interface_method(hs.NewHandle(soa.Decode<mirror::Method*>(interface_method_jobj))); // This can cause thread suspension. size_t pointer_size = Runtime::Current()->GetClassLinker()->GetImagePointerSize(); mirror::Class* result_type = h_interface_method->GetArtMethod()->GetReturnType(true /* resolve */, pointer_size); mirror::Object* result_ref = soa.Decode<mirror::Object*>(result); JValue result_unboxed; if (!UnboxPrimitiveForResult(result_ref, result_type, &result_unboxed)) { DCHECK(soa.Self()->IsExceptionPending()); return zero; } return result_unboxed; } } else { // In the case of checked exceptions that aren't declared, the exception must be wrapped by // a UndeclaredThrowableException. mirror::Throwable* exception = soa.Self()->GetException(); if (exception->IsCheckedException()) { mirror::Object* rcvr = soa.Decode<mirror::Object*>(rcvr_jobj); mirror::Class* proxy_class = rcvr->GetClass(); mirror::Method* interface_method = soa.Decode<mirror::Method*>(interface_method_jobj); ArtMethod* proxy_method = rcvr->GetClass()->FindVirtualMethodForInterface( interface_method->GetArtMethod(), sizeof(void*)); auto virtual_methods = proxy_class->GetVirtualMethodsSlice(sizeof(void*)); size_t num_virtuals = proxy_class->NumVirtualMethods(); size_t method_size = ArtMethod::Size(sizeof(void*)); // Rely on the fact that the methods are contiguous to determine the index of the method in // the slice. int throws_index = (reinterpret_cast<uintptr_t>(proxy_method) - reinterpret_cast<uintptr_t>(&virtual_methods.At(0))) / method_size; CHECK_LT(throws_index, static_cast<int>(num_virtuals)); mirror::ObjectArray<mirror::Class>* declared_exceptions = proxy_class->GetThrows()->Get(throws_index); mirror::Class* exception_class = exception->GetClass(); bool declares_exception = false; for (int32_t i = 0; i < declared_exceptions->GetLength() && !declares_exception; i++) { mirror::Class* declared_exception = declared_exceptions->Get(i); declares_exception = declared_exception->IsAssignableFrom(exception_class); } if (!declares_exception) { soa.Self()->ThrowNewWrappedException("Ljava/lang/reflect/UndeclaredThrowableException;", nullptr); } } return zero; } } bool FillArrayData(mirror::Object* obj, const Instruction::ArrayDataPayload* payload) { DCHECK_EQ(payload->ident, static_cast<uint16_t>(Instruction::kArrayDataSignature)); if (UNLIKELY(obj == nullptr)) { ThrowNullPointerException("null array in FILL_ARRAY_DATA"); return false; } mirror::Array* array = obj->AsArray(); DCHECK(!array->IsObjectArray()); if (UNLIKELY(static_cast<int32_t>(payload->element_count) > array->GetLength())) { Thread* self = Thread::Current(); self->ThrowNewExceptionF("Ljava/lang/ArrayIndexOutOfBoundsException;", "failed FILL_ARRAY_DATA; length=%d, index=%d", array->GetLength(), payload->element_count); return false; } // Copy data from dex file to memory assuming both are little endian. uint32_t size_in_bytes = payload->element_count * payload->element_width; memcpy(array->GetRawData(payload->element_width, 0), payload->data, size_in_bytes); return true; } ArtMethod* GetCalleeSaveMethodCaller(ArtMethod** sp, Runtime::CalleeSaveType type, bool do_caller_check) SHARED_REQUIRES(Locks::mutator_lock_) { DCHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(type)); const size_t callee_frame_size = GetCalleeSaveFrameSize(kRuntimeISA, type); auto** caller_sp = reinterpret_cast<ArtMethod**>( reinterpret_cast<uintptr_t>(sp) + callee_frame_size); const size_t callee_return_pc_offset = GetCalleeSaveReturnPcOffset(kRuntimeISA, type); uintptr_t caller_pc = *reinterpret_cast<uintptr_t*>( (reinterpret_cast<uint8_t*>(sp) + callee_return_pc_offset)); ArtMethod* outer_method = *caller_sp; ArtMethod* caller = outer_method; if (LIKELY(caller_pc != reinterpret_cast<uintptr_t>(GetQuickInstrumentationExitPc()))) { if (outer_method != nullptr) { const OatQuickMethodHeader* current_code = outer_method->GetOatQuickMethodHeader(caller_pc); DCHECK(current_code != nullptr); DCHECK(current_code->IsOptimized()); uintptr_t native_pc_offset = current_code->NativeQuickPcOffset(caller_pc); CodeInfo code_info = current_code->GetOptimizedCodeInfo(); CodeInfoEncoding encoding = code_info.ExtractEncoding(); StackMap stack_map = code_info.GetStackMapForNativePcOffset(native_pc_offset, encoding); DCHECK(stack_map.IsValid()); if (stack_map.HasInlineInfo(encoding.stack_map_encoding)) { InlineInfo inline_info = code_info.GetInlineInfoOf(stack_map, encoding); caller = GetResolvedMethod(outer_method, inline_info, encoding.inline_info_encoding, inline_info.GetDepth(encoding.inline_info_encoding) - 1); } } if (kIsDebugBuild && do_caller_check) { // Note that do_caller_check is optional, as this method can be called by // stubs, and tests without a proper call stack. NthCallerVisitor visitor(Thread::Current(), 1, true); visitor.WalkStack(); CHECK_EQ(caller, visitor.caller); } } else { // We're instrumenting, just use the StackVisitor which knows how to // handle instrumented frames. NthCallerVisitor visitor(Thread::Current(), 1, true); visitor.WalkStack(); caller = visitor.caller; } return caller; } } // namespace art