/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_RUNTIME_ENTRYPOINTS_ENTRYPOINT_UTILS_INL_H_ #define ART_RUNTIME_ENTRYPOINTS_ENTRYPOINT_UTILS_INL_H_ #include "entrypoint_utils.h" #include "art_method.h" #include "class_linker-inl.h" #include "common_throws.h" #include "dex_file.h" #include "entrypoints/quick/callee_save_frame.h" #include "handle_scope-inl.h" #include "indirect_reference_table.h" #include "invoke_type.h" #include "jni_internal.h" #include "mirror/array.h" #include "mirror/class-inl.h" #include "mirror/object-inl.h" #include "mirror/throwable.h" #include "nth_caller_visitor.h" #include "runtime.h" #include "stack_map.h" #include "thread.h" namespace art { template <bool kResolve = true> inline ArtMethod* GetResolvedMethod(ArtMethod* outer_method, const InlineInfo& inline_info, const InlineInfoEncoding& encoding, uint8_t inlining_depth) SHARED_REQUIRES(Locks::mutator_lock_) { uint32_t method_index = inline_info.GetMethodIndexAtDepth(encoding, inlining_depth); InvokeType invoke_type = static_cast<InvokeType>( inline_info.GetInvokeTypeAtDepth(encoding, inlining_depth)); ArtMethod* caller = outer_method->GetDexCacheResolvedMethod(method_index, sizeof(void*)); if (!caller->IsRuntimeMethod()) { return caller; } if (!kResolve) { return nullptr; } // The method in the dex cache can be the runtime method responsible for invoking // the stub that will then update the dex cache. Therefore, we need to do the // resolution ourselves. // We first find the class loader of our caller. If it is the outer method, we can directly // use its class loader. Otherwise, we also need to resolve our caller. StackHandleScope<2> hs(Thread::Current()); ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); MutableHandle<mirror::ClassLoader> class_loader(hs.NewHandle<mirror::Class>(nullptr)); Handle<mirror::DexCache> dex_cache(hs.NewHandle(outer_method->GetDexCache())); if (inlining_depth == 0) { class_loader.Assign(outer_method->GetClassLoader()); } else { caller = GetResolvedMethod<kResolve>(outer_method, inline_info, encoding, inlining_depth - 1); class_loader.Assign(caller->GetClassLoader()); } return class_linker->ResolveMethod<ClassLinker::kNoICCECheckForCache>( *outer_method->GetDexFile(), method_index, dex_cache, class_loader, nullptr, invoke_type); } inline ArtMethod* GetCalleeSaveMethodCaller(Thread* self, Runtime::CalleeSaveType type) SHARED_REQUIRES(Locks::mutator_lock_) { return GetCalleeSaveMethodCaller( self->GetManagedStack()->GetTopQuickFrame(), type, true /* do_caller_check */); } template <const bool kAccessCheck> ALWAYS_INLINE inline mirror::Class* CheckObjectAlloc(uint32_t type_idx, ArtMethod* method, Thread* self, bool* slow_path) { ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); size_t pointer_size = class_linker->GetImagePointerSize(); mirror::Class* klass = method->GetDexCacheResolvedType<false>(type_idx, pointer_size); if (UNLIKELY(klass == nullptr)) { klass = class_linker->ResolveType(type_idx, method); *slow_path = true; if (klass == nullptr) { DCHECK(self->IsExceptionPending()); return nullptr; // Failure } else { DCHECK(!self->IsExceptionPending()); } } if (kAccessCheck) { if (UNLIKELY(!klass->IsInstantiable())) { self->ThrowNewException("Ljava/lang/InstantiationError;", PrettyDescriptor(klass).c_str()); *slow_path = true; return nullptr; // Failure } mirror::Class* referrer = method->GetDeclaringClass(); if (UNLIKELY(!referrer->CanAccess(klass))) { ThrowIllegalAccessErrorClass(referrer, klass); *slow_path = true; return nullptr; // Failure } } if (UNLIKELY(!klass->IsInitialized())) { StackHandleScope<1> hs(self); Handle<mirror::Class> h_klass(hs.NewHandle(klass)); // EnsureInitialized (the class initializer) might cause a GC. // may cause us to suspend meaning that another thread may try to // change the allocator while we are stuck in the entrypoints of // an old allocator. Also, the class initialization may fail. To // handle these cases we mark the slow path boolean as true so // that the caller knows to check the allocator type to see if it // has changed and to null-check the return value in case the // initialization fails. *slow_path = true; if (!Runtime::Current()->GetClassLinker()->EnsureInitialized(self, h_klass, true, true)) { DCHECK(self->IsExceptionPending()); return nullptr; // Failure } else { DCHECK(!self->IsExceptionPending()); } return h_klass.Get(); } return klass; } ALWAYS_INLINE inline mirror::Class* CheckClassInitializedForObjectAlloc(mirror::Class* klass, Thread* self, bool* slow_path) { if (UNLIKELY(!klass->IsInitialized())) { StackHandleScope<1> hs(self); Handle<mirror::Class> h_class(hs.NewHandle(klass)); // EnsureInitialized (the class initializer) might cause a GC. // may cause us to suspend meaning that another thread may try to // change the allocator while we are stuck in the entrypoints of // an old allocator. Also, the class initialization may fail. To // handle these cases we mark the slow path boolean as true so // that the caller knows to check the allocator type to see if it // has changed and to null-check the return value in case the // initialization fails. *slow_path = true; if (!Runtime::Current()->GetClassLinker()->EnsureInitialized(self, h_class, true, true)) { DCHECK(self->IsExceptionPending()); return nullptr; // Failure } return h_class.Get(); } return klass; } // Given the context of a calling Method, use its DexCache to resolve a type to a Class. If it // cannot be resolved, throw an error. If it can, use it to create an instance. // When verification/compiler hasn't been able to verify access, optionally perform an access // check. template <bool kAccessCheck, bool kInstrumented> ALWAYS_INLINE inline mirror::Object* AllocObjectFromCode(uint32_t type_idx, ArtMethod* method, Thread* self, gc::AllocatorType allocator_type) { bool slow_path = false; mirror::Class* klass = CheckObjectAlloc<kAccessCheck>(type_idx, method, self, &slow_path); if (UNLIKELY(slow_path)) { if (klass == nullptr) { return nullptr; } // CheckObjectAlloc can cause thread suspension which means we may now be instrumented. return klass->Alloc</*kInstrumented*/true>( self, Runtime::Current()->GetHeap()->GetCurrentAllocator()); } DCHECK(klass != nullptr); return klass->Alloc<kInstrumented>(self, allocator_type); } // Given the context of a calling Method and a resolved class, create an instance. template <bool kInstrumented> ALWAYS_INLINE inline mirror::Object* AllocObjectFromCodeResolved(mirror::Class* klass, Thread* self, gc::AllocatorType allocator_type) { DCHECK(klass != nullptr); bool slow_path = false; klass = CheckClassInitializedForObjectAlloc(klass, self, &slow_path); if (UNLIKELY(slow_path)) { if (klass == nullptr) { return nullptr; } gc::Heap* heap = Runtime::Current()->GetHeap(); // Pass in false since the object cannot be finalizable. // CheckClassInitializedForObjectAlloc can cause thread suspension which means we may now be // instrumented. return klass->Alloc</*kInstrumented*/true, false>(self, heap->GetCurrentAllocator()); } // Pass in false since the object cannot be finalizable. return klass->Alloc<kInstrumented, false>(self, allocator_type); } // Given the context of a calling Method and an initialized class, create an instance. template <bool kInstrumented> ALWAYS_INLINE inline mirror::Object* AllocObjectFromCodeInitialized(mirror::Class* klass, Thread* self, gc::AllocatorType allocator_type) { DCHECK(klass != nullptr); // Pass in false since the object cannot be finalizable. return klass->Alloc<kInstrumented, false>(self, allocator_type); } template <bool kAccessCheck> ALWAYS_INLINE inline mirror::Class* CheckArrayAlloc(uint32_t type_idx, int32_t component_count, ArtMethod* method, bool* slow_path) { if (UNLIKELY(component_count < 0)) { ThrowNegativeArraySizeException(component_count); *slow_path = true; return nullptr; // Failure } ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); size_t pointer_size = class_linker->GetImagePointerSize(); mirror::Class* klass = method->GetDexCacheResolvedType<false>(type_idx, pointer_size); if (UNLIKELY(klass == nullptr)) { // Not in dex cache so try to resolve klass = class_linker->ResolveType(type_idx, method); *slow_path = true; if (klass == nullptr) { // Error DCHECK(Thread::Current()->IsExceptionPending()); return nullptr; // Failure } CHECK(klass->IsArrayClass()) << PrettyClass(klass); } if (kAccessCheck) { mirror::Class* referrer = method->GetDeclaringClass(); if (UNLIKELY(!referrer->CanAccess(klass))) { ThrowIllegalAccessErrorClass(referrer, klass); *slow_path = true; return nullptr; // Failure } } return klass; } // Given the context of a calling Method, use its DexCache to resolve a type to an array Class. If // it cannot be resolved, throw an error. If it can, use it to create an array. // When verification/compiler hasn't been able to verify access, optionally perform an access // check. template <bool kAccessCheck, bool kInstrumented> ALWAYS_INLINE inline mirror::Array* AllocArrayFromCode(uint32_t type_idx, int32_t component_count, ArtMethod* method, Thread* self, gc::AllocatorType allocator_type) { bool slow_path = false; mirror::Class* klass = CheckArrayAlloc<kAccessCheck>(type_idx, component_count, method, &slow_path); if (UNLIKELY(slow_path)) { if (klass == nullptr) { return nullptr; } gc::Heap* heap = Runtime::Current()->GetHeap(); // CheckArrayAlloc can cause thread suspension which means we may now be instrumented. return mirror::Array::Alloc</*kInstrumented*/true>(self, klass, component_count, klass->GetComponentSizeShift(), heap->GetCurrentAllocator()); } return mirror::Array::Alloc<kInstrumented>(self, klass, component_count, klass->GetComponentSizeShift(), allocator_type); } template <bool kAccessCheck, bool kInstrumented> ALWAYS_INLINE inline mirror::Array* AllocArrayFromCodeResolved(mirror::Class* klass, int32_t component_count, ArtMethod* method, Thread* self, gc::AllocatorType allocator_type) { DCHECK(klass != nullptr); if (UNLIKELY(component_count < 0)) { ThrowNegativeArraySizeException(component_count); return nullptr; // Failure } if (kAccessCheck) { mirror::Class* referrer = method->GetDeclaringClass(); if (UNLIKELY(!referrer->CanAccess(klass))) { ThrowIllegalAccessErrorClass(referrer, klass); return nullptr; // Failure } } // No need to retry a slow-path allocation as the above code won't cause a GC or thread // suspension. return mirror::Array::Alloc<kInstrumented>(self, klass, component_count, klass->GetComponentSizeShift(), allocator_type); } template<FindFieldType type, bool access_check> inline ArtField* FindFieldFromCode(uint32_t field_idx, ArtMethod* referrer, Thread* self, size_t expected_size) REQUIRES(!Roles::uninterruptible_) { bool is_primitive; bool is_set; bool is_static; switch (type) { case InstanceObjectRead: is_primitive = false; is_set = false; is_static = false; break; case InstanceObjectWrite: is_primitive = false; is_set = true; is_static = false; break; case InstancePrimitiveRead: is_primitive = true; is_set = false; is_static = false; break; case InstancePrimitiveWrite: is_primitive = true; is_set = true; is_static = false; break; case StaticObjectRead: is_primitive = false; is_set = false; is_static = true; break; case StaticObjectWrite: is_primitive = false; is_set = true; is_static = true; break; case StaticPrimitiveRead: is_primitive = true; is_set = false; is_static = true; break; case StaticPrimitiveWrite: // Keep GCC happy by having a default handler, fall-through. default: is_primitive = true; is_set = true; is_static = true; break; } ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); ArtField* resolved_field; if (access_check) { // Slow path: According to JLS 13.4.8, a linkage error may occur if a compile-time // qualifying type of a field and the resolved run-time qualifying type of a field differed // in their static-ness. // // In particular, don't assume the dex instruction already correctly knows if the // real field is static or not. The resolution must not be aware of this. ArtMethod* method = referrer->GetInterfaceMethodIfProxy(sizeof(void*)); StackHandleScope<2> hs(self); Handle<mirror::DexCache> h_dex_cache(hs.NewHandle(method->GetDexCache())); Handle<mirror::ClassLoader> h_class_loader(hs.NewHandle(method->GetClassLoader())); resolved_field = class_linker->ResolveFieldJLS(*method->GetDexFile(), field_idx, h_dex_cache, h_class_loader); } else { // Fast path: Verifier already would've called ResolveFieldJLS and we wouldn't // be executing here if there was a static/non-static mismatch. resolved_field = class_linker->ResolveField(field_idx, referrer, is_static); } if (UNLIKELY(resolved_field == nullptr)) { DCHECK(self->IsExceptionPending()); // Throw exception and unwind. return nullptr; // Failure. } mirror::Class* fields_class = resolved_field->GetDeclaringClass(); if (access_check) { if (UNLIKELY(resolved_field->IsStatic() != is_static)) { ThrowIncompatibleClassChangeErrorField(resolved_field, is_static, referrer); return nullptr; } mirror::Class* referring_class = referrer->GetDeclaringClass(); if (UNLIKELY(!referring_class->CheckResolvedFieldAccess(fields_class, resolved_field, field_idx))) { DCHECK(self->IsExceptionPending()); // Throw exception and unwind. return nullptr; // Failure. } if (UNLIKELY(is_set && resolved_field->IsFinal() && (fields_class != referring_class))) { ThrowIllegalAccessErrorFinalField(referrer, resolved_field); return nullptr; // Failure. } else { if (UNLIKELY(resolved_field->IsPrimitiveType() != is_primitive || resolved_field->FieldSize() != expected_size)) { self->ThrowNewExceptionF("Ljava/lang/NoSuchFieldError;", "Attempted read of %zd-bit %s on field '%s'", expected_size * (32 / sizeof(int32_t)), is_primitive ? "primitive" : "non-primitive", PrettyField(resolved_field, true).c_str()); return nullptr; // Failure. } } } if (!is_static) { // instance fields must be being accessed on an initialized class return resolved_field; } else { // If the class is initialized we're done. if (LIKELY(fields_class->IsInitialized())) { return resolved_field; } else { StackHandleScope<1> hs(self); Handle<mirror::Class> h_class(hs.NewHandle(fields_class)); if (LIKELY(class_linker->EnsureInitialized(self, h_class, true, true))) { // Otherwise let's ensure the class is initialized before resolving the field. return resolved_field; } DCHECK(self->IsExceptionPending()); // Throw exception and unwind return nullptr; // Failure. } } } // Explicit template declarations of FindFieldFromCode for all field access types. #define EXPLICIT_FIND_FIELD_FROM_CODE_TEMPLATE_DECL(_type, _access_check) \ template SHARED_REQUIRES(Locks::mutator_lock_) ALWAYS_INLINE \ ArtField* FindFieldFromCode<_type, _access_check>(uint32_t field_idx, \ ArtMethod* referrer, \ Thread* self, size_t expected_size) \ #define EXPLICIT_FIND_FIELD_FROM_CODE_TYPED_TEMPLATE_DECL(_type) \ EXPLICIT_FIND_FIELD_FROM_CODE_TEMPLATE_DECL(_type, false); \ EXPLICIT_FIND_FIELD_FROM_CODE_TEMPLATE_DECL(_type, true) EXPLICIT_FIND_FIELD_FROM_CODE_TYPED_TEMPLATE_DECL(InstanceObjectRead); EXPLICIT_FIND_FIELD_FROM_CODE_TYPED_TEMPLATE_DECL(InstanceObjectWrite); EXPLICIT_FIND_FIELD_FROM_CODE_TYPED_TEMPLATE_DECL(InstancePrimitiveRead); EXPLICIT_FIND_FIELD_FROM_CODE_TYPED_TEMPLATE_DECL(InstancePrimitiveWrite); EXPLICIT_FIND_FIELD_FROM_CODE_TYPED_TEMPLATE_DECL(StaticObjectRead); EXPLICIT_FIND_FIELD_FROM_CODE_TYPED_TEMPLATE_DECL(StaticObjectWrite); EXPLICIT_FIND_FIELD_FROM_CODE_TYPED_TEMPLATE_DECL(StaticPrimitiveRead); EXPLICIT_FIND_FIELD_FROM_CODE_TYPED_TEMPLATE_DECL(StaticPrimitiveWrite); #undef EXPLICIT_FIND_FIELD_FROM_CODE_TYPED_TEMPLATE_DECL #undef EXPLICIT_FIND_FIELD_FROM_CODE_TEMPLATE_DECL template<InvokeType type, bool access_check> inline ArtMethod* FindMethodFromCode(uint32_t method_idx, mirror::Object** this_object, ArtMethod* referrer, Thread* self) { ClassLinker* const class_linker = Runtime::Current()->GetClassLinker(); ArtMethod* resolved_method = class_linker->GetResolvedMethod(method_idx, referrer); if (resolved_method == nullptr) { StackHandleScope<1> hs(self); mirror::Object* null_this = nullptr; HandleWrapper<mirror::Object> h_this( hs.NewHandleWrapper(type == kStatic ? &null_this : this_object)); constexpr ClassLinker::ResolveMode resolve_mode = access_check ? ClassLinker::kForceICCECheck : ClassLinker::kNoICCECheckForCache; resolved_method = class_linker->ResolveMethod<resolve_mode>(self, method_idx, referrer, type); } if (UNLIKELY(resolved_method == nullptr)) { DCHECK(self->IsExceptionPending()); // Throw exception and unwind. return nullptr; // Failure. } else if (UNLIKELY(*this_object == nullptr && type != kStatic)) { if (UNLIKELY(resolved_method->GetDeclaringClass()->IsStringClass() && resolved_method->IsConstructor())) { // Hack for String init: // // We assume that the input of String.<init> in verified code is always // an unitialized reference. If it is a null constant, it must have been // optimized out by the compiler. Do not throw NullPointerException. } else { // Maintain interpreter-like semantics where NullPointerException is thrown // after potential NoSuchMethodError from class linker. ThrowNullPointerExceptionForMethodAccess(method_idx, type); return nullptr; // Failure. } } else if (access_check) { mirror::Class* methods_class = resolved_method->GetDeclaringClass(); bool can_access_resolved_method = referrer->GetDeclaringClass()->CheckResolvedMethodAccess<type>(methods_class, resolved_method, method_idx); if (UNLIKELY(!can_access_resolved_method)) { DCHECK(self->IsExceptionPending()); // Throw exception and unwind. return nullptr; // Failure. } // Incompatible class change should have been handled in resolve method. if (UNLIKELY(resolved_method->CheckIncompatibleClassChange(type))) { ThrowIncompatibleClassChangeError(type, resolved_method->GetInvokeType(), resolved_method, referrer); return nullptr; // Failure. } } switch (type) { case kStatic: case kDirect: return resolved_method; case kVirtual: { mirror::Class* klass = (*this_object)->GetClass(); uint16_t vtable_index = resolved_method->GetMethodIndex(); if (access_check && (!klass->HasVTable() || vtable_index >= static_cast<uint32_t>(klass->GetVTableLength()))) { // Behavior to agree with that of the verifier. ThrowNoSuchMethodError(type, resolved_method->GetDeclaringClass(), resolved_method->GetName(), resolved_method->GetSignature()); return nullptr; // Failure. } DCHECK(klass->HasVTable()) << PrettyClass(klass); return klass->GetVTableEntry(vtable_index, class_linker->GetImagePointerSize()); } case kSuper: { // TODO This lookup is quite slow. // NB This is actually quite tricky to do any other way. We cannot use GetDeclaringClass since // that will actually not be what we want in some cases where there are miranda methods or // defaults. What we actually need is a GetContainingClass that says which classes virtuals // this method is coming from. mirror::Class* referring_class = referrer->GetDeclaringClass(); uint16_t method_type_idx = referring_class->GetDexFile().GetMethodId(method_idx).class_idx_; mirror::Class* method_reference_class = class_linker->ResolveType(method_type_idx, referrer); if (UNLIKELY(method_reference_class == nullptr)) { // Bad type idx. CHECK(self->IsExceptionPending()); return nullptr; } else if (!method_reference_class->IsInterface()) { // It is not an interface. If the referring class is in the class hierarchy of the // referenced class in the bytecode, we use its super class. Otherwise, we throw // a NoSuchMethodError. mirror::Class* super_class = nullptr; if (method_reference_class->IsAssignableFrom(referring_class)) { super_class = referring_class->GetSuperClass(); } uint16_t vtable_index = resolved_method->GetMethodIndex(); if (access_check) { // Check existence of super class. if (super_class == nullptr || !super_class->HasVTable() || vtable_index >= static_cast<uint32_t>(super_class->GetVTableLength())) { // Behavior to agree with that of the verifier. ThrowNoSuchMethodError(type, resolved_method->GetDeclaringClass(), resolved_method->GetName(), resolved_method->GetSignature()); return nullptr; // Failure. } } DCHECK(super_class != nullptr); DCHECK(super_class->HasVTable()); return super_class->GetVTableEntry(vtable_index, class_linker->GetImagePointerSize()); } else { // It is an interface. if (access_check) { if (!method_reference_class->IsAssignableFrom((*this_object)->GetClass())) { ThrowIncompatibleClassChangeErrorClassForInterfaceSuper(resolved_method, method_reference_class, *this_object, referrer); return nullptr; // Failure. } } // TODO We can do better than this for a (compiled) fastpath. ArtMethod* result = method_reference_class->FindVirtualMethodForInterfaceSuper( resolved_method, class_linker->GetImagePointerSize()); // Throw an NSME if nullptr; if (result == nullptr) { ThrowNoSuchMethodError(type, resolved_method->GetDeclaringClass(), resolved_method->GetName(), resolved_method->GetSignature()); } return result; } } case kInterface: { uint32_t imt_index = resolved_method->GetDexMethodIndex() % mirror::Class::kImtSize; ArtMethod* imt_method = (*this_object)->GetClass()->GetEmbeddedImTableEntry( imt_index, class_linker->GetImagePointerSize()); if (!imt_method->IsRuntimeMethod()) { if (kIsDebugBuild) { mirror::Class* klass = (*this_object)->GetClass(); ArtMethod* method = klass->FindVirtualMethodForInterface( resolved_method, class_linker->GetImagePointerSize()); CHECK_EQ(imt_method, method) << PrettyMethod(resolved_method) << " / " << PrettyMethod(imt_method) << " / " << PrettyMethod(method) << " / " << PrettyClass(klass); } return imt_method; } else { ArtMethod* interface_method = (*this_object)->GetClass()->FindVirtualMethodForInterface( resolved_method, class_linker->GetImagePointerSize()); if (UNLIKELY(interface_method == nullptr)) { ThrowIncompatibleClassChangeErrorClassForInterfaceDispatch(resolved_method, *this_object, referrer); return nullptr; // Failure. } return interface_method; } } default: LOG(FATAL) << "Unknown invoke type " << type; return nullptr; // Failure. } } // Explicit template declarations of FindMethodFromCode for all invoke types. #define EXPLICIT_FIND_METHOD_FROM_CODE_TEMPLATE_DECL(_type, _access_check) \ template SHARED_REQUIRES(Locks::mutator_lock_) ALWAYS_INLINE \ ArtMethod* FindMethodFromCode<_type, _access_check>(uint32_t method_idx, \ mirror::Object** this_object, \ ArtMethod* referrer, \ Thread* self) #define EXPLICIT_FIND_METHOD_FROM_CODE_TYPED_TEMPLATE_DECL(_type) \ EXPLICIT_FIND_METHOD_FROM_CODE_TEMPLATE_DECL(_type, false); \ EXPLICIT_FIND_METHOD_FROM_CODE_TEMPLATE_DECL(_type, true) EXPLICIT_FIND_METHOD_FROM_CODE_TYPED_TEMPLATE_DECL(kStatic); EXPLICIT_FIND_METHOD_FROM_CODE_TYPED_TEMPLATE_DECL(kDirect); EXPLICIT_FIND_METHOD_FROM_CODE_TYPED_TEMPLATE_DECL(kVirtual); EXPLICIT_FIND_METHOD_FROM_CODE_TYPED_TEMPLATE_DECL(kSuper); EXPLICIT_FIND_METHOD_FROM_CODE_TYPED_TEMPLATE_DECL(kInterface); #undef EXPLICIT_FIND_METHOD_FROM_CODE_TYPED_TEMPLATE_DECL #undef EXPLICIT_FIND_METHOD_FROM_CODE_TEMPLATE_DECL // Fast path field resolution that can't initialize classes or throw exceptions. inline ArtField* FindFieldFast(uint32_t field_idx, ArtMethod* referrer, FindFieldType type, size_t expected_size) { ArtField* resolved_field = referrer->GetDeclaringClass()->GetDexCache()->GetResolvedField(field_idx, sizeof(void*)); if (UNLIKELY(resolved_field == nullptr)) { return nullptr; } // Check for incompatible class change. bool is_primitive; bool is_set; bool is_static; switch (type) { case InstanceObjectRead: is_primitive = false; is_set = false; is_static = false; break; case InstanceObjectWrite: is_primitive = false; is_set = true; is_static = false; break; case InstancePrimitiveRead: is_primitive = true; is_set = false; is_static = false; break; case InstancePrimitiveWrite: is_primitive = true; is_set = true; is_static = false; break; case StaticObjectRead: is_primitive = false; is_set = false; is_static = true; break; case StaticObjectWrite: is_primitive = false; is_set = true; is_static = true; break; case StaticPrimitiveRead: is_primitive = true; is_set = false; is_static = true; break; case StaticPrimitiveWrite: is_primitive = true; is_set = true; is_static = true; break; default: LOG(FATAL) << "UNREACHABLE"; UNREACHABLE(); } if (UNLIKELY(resolved_field->IsStatic() != is_static)) { // Incompatible class change. return nullptr; } mirror::Class* fields_class = resolved_field->GetDeclaringClass(); if (is_static) { // Check class is initialized else fail so that we can contend to initialize the class with // other threads that may be racing to do this. if (UNLIKELY(!fields_class->IsInitialized())) { return nullptr; } } mirror::Class* referring_class = referrer->GetDeclaringClass(); if (UNLIKELY(!referring_class->CanAccess(fields_class) || !referring_class->CanAccessMember(fields_class, resolved_field->GetAccessFlags()) || (is_set && resolved_field->IsFinal() && (fields_class != referring_class)))) { // Illegal access. return nullptr; } if (UNLIKELY(resolved_field->IsPrimitiveType() != is_primitive || resolved_field->FieldSize() != expected_size)) { return nullptr; } return resolved_field; } // Fast path method resolution that can't throw exceptions. inline ArtMethod* FindMethodFast(uint32_t method_idx, mirror::Object* this_object, ArtMethod* referrer, bool access_check, InvokeType type) { if (UNLIKELY(this_object == nullptr && type != kStatic)) { return nullptr; } mirror::Class* referring_class = referrer->GetDeclaringClass(); ArtMethod* resolved_method = referring_class->GetDexCache()->GetResolvedMethod(method_idx, sizeof(void*)); if (UNLIKELY(resolved_method == nullptr)) { return nullptr; } if (access_check) { // Check for incompatible class change errors and access. bool icce = resolved_method->CheckIncompatibleClassChange(type); if (UNLIKELY(icce)) { return nullptr; } mirror::Class* methods_class = resolved_method->GetDeclaringClass(); if (UNLIKELY(!referring_class->CanAccess(methods_class) || !referring_class->CanAccessMember(methods_class, resolved_method->GetAccessFlags()))) { // Potential illegal access, may need to refine the method's class. return nullptr; } } if (type == kInterface) { // Most common form of slow path dispatch. return this_object->GetClass()->FindVirtualMethodForInterface(resolved_method, sizeof(void*)); } else if (type == kStatic || type == kDirect) { return resolved_method; } else if (type == kSuper) { // TODO This lookup is rather slow. uint16_t method_type_idx = referring_class->GetDexFile().GetMethodId(method_idx).class_idx_; mirror::Class* method_reference_class = referring_class->GetDexCache()->GetResolvedType(method_type_idx); if (method_reference_class == nullptr) { // Need to do full type resolution... return nullptr; } else if (!method_reference_class->IsInterface()) { // It is not an interface. If the referring class is in the class hierarchy of the // referenced class in the bytecode, we use its super class. Otherwise, we cannot // resolve the method. if (!method_reference_class->IsAssignableFrom(referring_class)) { return nullptr; } mirror::Class* super_class = referring_class->GetSuperClass(); if (resolved_method->GetMethodIndex() >= super_class->GetVTableLength()) { // The super class does not have the method. return nullptr; } return super_class->GetVTableEntry(resolved_method->GetMethodIndex(), sizeof(void*)); } else { return method_reference_class->FindVirtualMethodForInterfaceSuper( resolved_method, sizeof(void*)); } } else { DCHECK(type == kVirtual); return this_object->GetClass()->GetVTableEntry( resolved_method->GetMethodIndex(), sizeof(void*)); } } inline mirror::Class* ResolveVerifyAndClinit(uint32_t type_idx, ArtMethod* referrer, Thread* self, bool can_run_clinit, bool verify_access) { ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); mirror::Class* klass = class_linker->ResolveType(type_idx, referrer); if (UNLIKELY(klass == nullptr)) { CHECK(self->IsExceptionPending()); return nullptr; // Failure - Indicate to caller to deliver exception } // Perform access check if necessary. mirror::Class* referring_class = referrer->GetDeclaringClass(); if (verify_access && UNLIKELY(!referring_class->CanAccess(klass))) { ThrowIllegalAccessErrorClass(referring_class, klass); return nullptr; // Failure - Indicate to caller to deliver exception } // If we're just implementing const-class, we shouldn't call <clinit>. if (!can_run_clinit) { return klass; } // If we are the <clinit> of this class, just return our storage. // // Do not set the DexCache InitializedStaticStorage, since that implies <clinit> has finished // running. if (klass == referring_class && referrer->IsConstructor() && referrer->IsStatic()) { return klass; } StackHandleScope<1> hs(self); Handle<mirror::Class> h_class(hs.NewHandle(klass)); if (!class_linker->EnsureInitialized(self, h_class, true, true)) { CHECK(self->IsExceptionPending()); return nullptr; // Failure - Indicate to caller to deliver exception } return h_class.Get(); } inline mirror::String* ResolveStringFromCode(ArtMethod* referrer, uint32_t string_idx) { ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); return class_linker->ResolveString(string_idx, referrer); } inline void UnlockJniSynchronizedMethod(jobject locked, Thread* self) { // Save any pending exception over monitor exit call. mirror::Throwable* saved_exception = nullptr; if (UNLIKELY(self->IsExceptionPending())) { saved_exception = self->GetException(); self->ClearException(); } // Decode locked object and unlock, before popping local references. self->DecodeJObject(locked)->MonitorExit(self); if (UNLIKELY(self->IsExceptionPending())) { LOG(FATAL) << "Synchronized JNI code returning with an exception:\n" << saved_exception->Dump() << "\nEncountered second exception during implicit MonitorExit:\n" << self->GetException()->Dump(); } // Restore pending exception. if (saved_exception != nullptr) { self->SetException(saved_exception); } } template <typename INT_TYPE, typename FLOAT_TYPE> inline INT_TYPE art_float_to_integral(FLOAT_TYPE f) { const INT_TYPE kMaxInt = static_cast<INT_TYPE>(std::numeric_limits<INT_TYPE>::max()); const INT_TYPE kMinInt = static_cast<INT_TYPE>(std::numeric_limits<INT_TYPE>::min()); const FLOAT_TYPE kMaxIntAsFloat = static_cast<FLOAT_TYPE>(kMaxInt); const FLOAT_TYPE kMinIntAsFloat = static_cast<FLOAT_TYPE>(kMinInt); if (LIKELY(f > kMinIntAsFloat)) { if (LIKELY(f < kMaxIntAsFloat)) { return static_cast<INT_TYPE>(f); } else { return kMaxInt; } } else { return (f != f) ? 0 : kMinInt; // f != f implies NaN } } } // namespace art #endif // ART_RUNTIME_ENTRYPOINTS_ENTRYPOINT_UTILS_INL_H_