/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "record.h"
#include <inttypes.h>
#include <unordered_map>
#include <base/logging.h>
#include <base/stringprintf.h>
#include "environment.h"
#include "utils.h"
static std::string RecordTypeToString(int record_type) {
static std::unordered_map<int, std::string> record_type_names = {
{PERF_RECORD_MMAP, "mmap"},
{PERF_RECORD_LOST, "lost"},
{PERF_RECORD_COMM, "comm"},
{PERF_RECORD_EXIT, "exit"},
{PERF_RECORD_THROTTLE, "throttle"},
{PERF_RECORD_UNTHROTTLE, "unthrottle"},
{PERF_RECORD_FORK, "fork"},
{PERF_RECORD_READ, "read"},
{PERF_RECORD_SAMPLE, "sample"},
{PERF_RECORD_BUILD_ID, "build_id"},
};
auto it = record_type_names.find(record_type);
if (it != record_type_names.end()) {
return it->second;
}
return android::base::StringPrintf("unknown(%d)", record_type);
}
template <class T>
void MoveFromBinaryFormat(T& data, const char*& p) {
data = *reinterpret_cast<const T*>(p);
p += sizeof(T);
}
template <class T>
void MoveToBinaryFormat(const T& data, char*& p) {
*reinterpret_cast<T*>(p) = data;
p += sizeof(T);
}
SampleId::SampleId() {
memset(this, 0, sizeof(SampleId));
}
// Return sample_id size in binary format.
size_t SampleId::CreateContent(const perf_event_attr& attr) {
sample_id_all = attr.sample_id_all;
sample_type = attr.sample_type;
// Other data are not necessary. TODO: Set missing SampleId data.
size_t size = 0;
if (sample_id_all) {
if (sample_type & PERF_SAMPLE_TID) {
size += sizeof(PerfSampleTidType);
}
if (sample_type & PERF_SAMPLE_TIME) {
size += sizeof(PerfSampleTimeType);
}
if (sample_type & PERF_SAMPLE_ID) {
size += sizeof(PerfSampleIdType);
}
if (sample_type & PERF_SAMPLE_STREAM_ID) {
size += sizeof(PerfSampleStreamIdType);
}
if (sample_type & PERF_SAMPLE_CPU) {
size += sizeof(PerfSampleCpuType);
}
}
return size;
}
void SampleId::ReadFromBinaryFormat(const perf_event_attr& attr, const char* p, const char* end) {
sample_id_all = attr.sample_id_all;
sample_type = attr.sample_type;
if (sample_id_all) {
if (sample_type & PERF_SAMPLE_TID) {
MoveFromBinaryFormat(tid_data, p);
}
if (sample_type & PERF_SAMPLE_TIME) {
MoveFromBinaryFormat(time_data, p);
}
if (sample_type & PERF_SAMPLE_ID) {
MoveFromBinaryFormat(id_data, p);
}
if (sample_type & PERF_SAMPLE_STREAM_ID) {
MoveFromBinaryFormat(stream_id_data, p);
}
if (sample_type & PERF_SAMPLE_CPU) {
MoveFromBinaryFormat(cpu_data, p);
}
// TODO: Add parsing of PERF_SAMPLE_IDENTIFIER.
}
CHECK_LE(p, end);
if (p < end) {
LOG(DEBUG) << "Record SampleId part has " << end - p << " bytes left\n";
}
}
void SampleId::WriteToBinaryFormat(char*& p) const {
if (sample_id_all) {
if (sample_type & PERF_SAMPLE_TID) {
MoveToBinaryFormat(tid_data, p);
}
if (sample_type & PERF_SAMPLE_TIME) {
MoveToBinaryFormat(time_data, p);
}
if (sample_type & PERF_SAMPLE_ID) {
MoveToBinaryFormat(id_data, p);
}
if (sample_type & PERF_SAMPLE_STREAM_ID) {
MoveToBinaryFormat(stream_id_data, p);
}
if (sample_type & PERF_SAMPLE_CPU) {
MoveToBinaryFormat(cpu_data, p);
}
}
}
void SampleId::Dump(size_t indent) const {
if (sample_id_all) {
if (sample_type & PERF_SAMPLE_TID) {
PrintIndented(indent, "sample_id: pid %u, tid %u\n", tid_data.pid, tid_data.tid);
}
if (sample_type & PERF_SAMPLE_TIME) {
PrintIndented(indent, "sample_id: time %" PRId64 "\n", time_data.time);
}
if (sample_type & PERF_SAMPLE_ID) {
PrintIndented(indent, "sample_id: stream_id %" PRId64 "\n", id_data.id);
}
if (sample_type & PERF_SAMPLE_STREAM_ID) {
PrintIndented(indent, "sample_id: stream_id %" PRId64 "\n", stream_id_data.stream_id);
}
if (sample_type & PERF_SAMPLE_CPU) {
PrintIndented(indent, "sample_id: cpu %u, res %u\n", cpu_data.cpu, cpu_data.res);
}
}
}
Record::Record() {
memset(&header, 0, sizeof(header));
}
Record::Record(const perf_event_header* pheader) {
header = *pheader;
}
void Record::Dump(size_t indent) const {
PrintIndented(indent, "record %s: type %u, misc %u, size %u\n",
RecordTypeToString(header.type).c_str(), header.type, header.misc, header.size);
DumpData(indent + 1);
sample_id.Dump(indent + 1);
}
MmapRecord::MmapRecord(const perf_event_attr& attr, const perf_event_header* pheader)
: Record(pheader) {
const char* p = reinterpret_cast<const char*>(pheader + 1);
const char* end = reinterpret_cast<const char*>(pheader) + pheader->size;
MoveFromBinaryFormat(data, p);
filename = p;
p += ALIGN(filename.size() + 1, 8);
CHECK_LE(p, end);
sample_id.ReadFromBinaryFormat(attr, p, end);
}
void MmapRecord::DumpData(size_t indent) const {
PrintIndented(indent, "pid %u, tid %u, addr %p, len 0x%" PRIx64 "\n", data.pid, data.tid,
reinterpret_cast<void*>(data.addr), data.len);
PrintIndented(indent, "pgoff 0x%" PRIx64 ", filename %s\n", data.pgoff, filename.c_str());
}
std::vector<char> MmapRecord::BinaryFormat() const {
std::vector<char> buf(header.size);
char* p = buf.data();
MoveToBinaryFormat(header, p);
MoveToBinaryFormat(data, p);
strcpy(p, filename.c_str());
p += ALIGN(filename.size() + 1, 8);
sample_id.WriteToBinaryFormat(p);
return buf;
}
CommRecord::CommRecord(const perf_event_attr& attr, const perf_event_header* pheader)
: Record(pheader) {
const char* p = reinterpret_cast<const char*>(pheader + 1);
const char* end = reinterpret_cast<const char*>(pheader) + pheader->size;
MoveFromBinaryFormat(data, p);
comm = p;
p += ALIGN(strlen(p) + 1, 8);
CHECK_LE(p, end);
sample_id.ReadFromBinaryFormat(attr, p, end);
}
void CommRecord::DumpData(size_t indent) const {
PrintIndented(indent, "pid %u, tid %u, comm %s\n", data.pid, data.tid, comm.c_str());
}
std::vector<char> CommRecord::BinaryFormat() const {
std::vector<char> buf(header.size);
char* p = buf.data();
MoveToBinaryFormat(header, p);
MoveToBinaryFormat(data, p);
strcpy(p, comm.c_str());
p += ALIGN(comm.size() + 1, 8);
sample_id.WriteToBinaryFormat(p);
return buf;
}
ExitRecord::ExitRecord(const perf_event_attr& attr, const perf_event_header* pheader)
: Record(pheader) {
const char* p = reinterpret_cast<const char*>(pheader + 1);
const char* end = reinterpret_cast<const char*>(pheader) + pheader->size;
MoveFromBinaryFormat(data, p);
CHECK_LE(p, end);
sample_id.ReadFromBinaryFormat(attr, p, end);
}
void ExitRecord::DumpData(size_t indent) const {
PrintIndented(indent, "pid %u, ppid %u, tid %u, ptid %u\n", data.pid, data.ppid, data.tid,
data.ptid);
}
SampleRecord::SampleRecord(const perf_event_attr& attr, const perf_event_header* pheader)
: Record(pheader) {
const char* p = reinterpret_cast<const char*>(pheader + 1);
const char* end = reinterpret_cast<const char*>(pheader) + pheader->size;
sample_type = attr.sample_type;
if (sample_type & PERF_SAMPLE_IP) {
MoveFromBinaryFormat(ip_data, p);
}
if (sample_type & PERF_SAMPLE_TID) {
MoveFromBinaryFormat(tid_data, p);
}
if (sample_type & PERF_SAMPLE_TIME) {
MoveFromBinaryFormat(time_data, p);
}
if (sample_type & PERF_SAMPLE_ADDR) {
MoveFromBinaryFormat(addr_data, p);
}
if (sample_type & PERF_SAMPLE_ID) {
MoveFromBinaryFormat(id_data, p);
}
if (sample_type & PERF_SAMPLE_STREAM_ID) {
MoveFromBinaryFormat(stream_id_data, p);
}
if (sample_type & PERF_SAMPLE_CPU) {
MoveFromBinaryFormat(cpu_data, p);
}
if (sample_type & PERF_SAMPLE_PERIOD) {
MoveFromBinaryFormat(period_data, p);
}
// TODO: Add parsing of other PERF_SAMPLE_*.
CHECK_LE(p, end);
if (p < end) {
LOG(DEBUG) << "Record has " << end - p << " bytes left\n";
}
}
void SampleRecord::DumpData(size_t indent) const {
PrintIndented(indent, "sample_type: 0x%" PRIx64 "\n", sample_type);
if (sample_type & PERF_SAMPLE_IP) {
PrintIndented(indent, "ip %p\n", reinterpret_cast<void*>(ip_data.ip));
}
if (sample_type & PERF_SAMPLE_TID) {
PrintIndented(indent, "pid %u, tid %u\n", tid_data.pid, tid_data.tid);
}
if (sample_type & PERF_SAMPLE_TIME) {
PrintIndented(indent, "time %" PRId64 "\n", time_data.time);
}
if (sample_type & PERF_SAMPLE_ADDR) {
PrintIndented(indent, "addr %p\n", reinterpret_cast<void*>(addr_data.addr));
}
if (sample_type & PERF_SAMPLE_ID) {
PrintIndented(indent, "id %" PRId64 "\n", id_data.id);
}
if (sample_type & PERF_SAMPLE_STREAM_ID) {
PrintIndented(indent, "stream_id %" PRId64 "\n", stream_id_data.stream_id);
}
if (sample_type & PERF_SAMPLE_CPU) {
PrintIndented(indent, "cpu %u, res %u\n", cpu_data.cpu, cpu_data.res);
}
if (sample_type & PERF_SAMPLE_PERIOD) {
PrintIndented(indent, "period %" PRId64 "\n", period_data.period);
}
}
BuildIdRecord::BuildIdRecord(const perf_event_header* pheader) : Record(pheader) {
const char* p = reinterpret_cast<const char*>(pheader + 1);
const char* end = reinterpret_cast<const char*>(pheader) + pheader->size;
MoveFromBinaryFormat(pid, p);
std::copy_n(p, build_id.size(), build_id.begin());
p += ALIGN(build_id.size(), 8);
filename = p;
p += ALIGN(filename.size() + 1, 64);
CHECK_EQ(p, end);
}
void BuildIdRecord::DumpData(size_t indent) const {
PrintIndented(indent, "pid %u\n", pid);
PrintIndented(indent, "build_id 0x");
for (auto& c : build_id) {
printf("%02x", c);
}
printf("\n");
PrintIndented(indent, "filename %s\n", filename.c_str());
}
std::vector<char> BuildIdRecord::BinaryFormat() const {
std::vector<char> buf(header.size);
char* p = buf.data();
MoveToBinaryFormat(header, p);
MoveToBinaryFormat(pid, p);
memcpy(p, build_id.data(), build_id.size());
p += ALIGN(build_id.size(), 8);
strcpy(p, filename.c_str());
p += ALIGN(filename.size() + 1, 64);
return buf;
}
std::unique_ptr<const Record> ReadRecordFromBuffer(const perf_event_attr& attr,
const perf_event_header* pheader) {
switch (pheader->type) {
case PERF_RECORD_MMAP:
return std::unique_ptr<const Record>(new MmapRecord(attr, pheader));
case PERF_RECORD_COMM:
return std::unique_ptr<const Record>(new CommRecord(attr, pheader));
case PERF_RECORD_EXIT:
return std::unique_ptr<const Record>(new ExitRecord(attr, pheader));
case PERF_RECORD_SAMPLE:
return std::unique_ptr<const Record>(new SampleRecord(attr, pheader));
default:
return std::unique_ptr<const Record>(new Record(pheader));
}
}
MmapRecord CreateMmapRecord(const perf_event_attr& attr, bool in_kernel, uint32_t pid, uint32_t tid,
uint64_t addr, uint64_t len, uint64_t pgoff,
const std::string& filename) {
MmapRecord record;
record.header.type = PERF_RECORD_MMAP;
record.header.misc = (in_kernel ? PERF_RECORD_MISC_KERNEL : PERF_RECORD_MISC_USER);
record.data.pid = pid;
record.data.tid = tid;
record.data.addr = addr;
record.data.len = len;
record.data.pgoff = pgoff;
record.filename = filename;
size_t sample_id_size = record.sample_id.CreateContent(attr);
record.header.size = sizeof(record.header) + sizeof(record.data) +
ALIGN(record.filename.size() + 1, 8) + sample_id_size;
return record;
}
CommRecord CreateCommRecord(const perf_event_attr& attr, uint32_t pid, uint32_t tid,
const std::string& comm) {
CommRecord record;
record.header.type = PERF_RECORD_COMM;
record.header.misc = 0;
record.data.pid = pid;
record.data.tid = tid;
record.comm = comm;
size_t sample_id_size = record.sample_id.CreateContent(attr);
record.header.size = sizeof(record.header) + sizeof(record.data) +
ALIGN(record.comm.size() + 1, 8) + sample_id_size;
return record;
}
BuildIdRecord CreateBuildIdRecord(bool in_kernel, pid_t pid, const BuildId& build_id,
const std::string& filename) {
BuildIdRecord record;
record.header.type = PERF_RECORD_BUILD_ID;
record.header.misc = (in_kernel ? PERF_RECORD_MISC_KERNEL : PERF_RECORD_MISC_USER);
record.pid = pid;
record.build_id = build_id;
record.filename = filename;
record.header.size = sizeof(record.header) + sizeof(record.pid) +
ALIGN(record.build_id.size(), 8) + ALIGN(filename.size() + 1, 64);
return record;
}