/* libs/pixelflinger/codeflinger/MIPSAssembler.h
**
** Copyright 2012, The Android Open Source Project
**
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
**
** http://www.apache.org/licenses/LICENSE-2.0
**
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*/
#ifndef ANDROID_MIPSASSEMBLER_H
#define ANDROID_MIPSASSEMBLER_H
#include <stdint.h>
#include <sys/types.h>
#include "tinyutils/smartpointer.h"
#include "utils/KeyedVector.h"
#include "utils/Vector.h"
#include "ARMAssemblerInterface.h"
#include "CodeCache.h"
namespace android {
class MIPSAssembler; // forward reference
// this class mimics ARMAssembler interface
// intent is to translate each ARM instruction to 1 or more MIPS instr
// implementation calls MIPSAssembler class to generate mips code
class ArmToMipsAssembler : public ARMAssemblerInterface
{
public:
ArmToMipsAssembler(const sp<Assembly>& assembly,
char *abuf = 0, int linesz = 0, int instr_count = 0);
virtual ~ArmToMipsAssembler();
uint32_t* base() const;
uint32_t* pc() const;
void disassemble(const char* name);
virtual void reset();
virtual int generate(const char* name);
virtual int getCodegenArch();
virtual void prolog();
virtual void epilog(uint32_t touched);
virtual void comment(const char* string);
// -----------------------------------------------------------------------
// shifters and addressing modes
// -----------------------------------------------------------------------
// shifters...
virtual bool isValidImmediate(uint32_t immed);
virtual int buildImmediate(uint32_t i, uint32_t& rot, uint32_t& imm);
virtual uint32_t imm(uint32_t immediate);
virtual uint32_t reg_imm(int Rm, int type, uint32_t shift);
virtual uint32_t reg_rrx(int Rm);
virtual uint32_t reg_reg(int Rm, int type, int Rs);
// addressing modes...
// LDR(B)/STR(B)/PLD
// (immediate and Rm can be negative, which indicates U=0)
virtual uint32_t immed12_pre(int32_t immed12, int W=0);
virtual uint32_t immed12_post(int32_t immed12);
virtual uint32_t reg_scale_pre(int Rm, int type=0, uint32_t shift=0, int W=0);
virtual uint32_t reg_scale_post(int Rm, int type=0, uint32_t shift=0);
// LDRH/LDRSB/LDRSH/STRH
// (immediate and Rm can be negative, which indicates U=0)
virtual uint32_t immed8_pre(int32_t immed8, int W=0);
virtual uint32_t immed8_post(int32_t immed8);
virtual uint32_t reg_pre(int Rm, int W=0);
virtual uint32_t reg_post(int Rm);
virtual void dataProcessing(int opcode, int cc, int s,
int Rd, int Rn,
uint32_t Op2);
virtual void MLA(int cc, int s,
int Rd, int Rm, int Rs, int Rn);
virtual void MUL(int cc, int s,
int Rd, int Rm, int Rs);
virtual void UMULL(int cc, int s,
int RdLo, int RdHi, int Rm, int Rs);
virtual void UMUAL(int cc, int s,
int RdLo, int RdHi, int Rm, int Rs);
virtual void SMULL(int cc, int s,
int RdLo, int RdHi, int Rm, int Rs);
virtual void SMUAL(int cc, int s,
int RdLo, int RdHi, int Rm, int Rs);
virtual void B(int cc, uint32_t* pc);
virtual void BL(int cc, uint32_t* pc);
virtual void BX(int cc, int Rn);
virtual void label(const char* theLabel);
virtual void B(int cc, const char* label);
virtual void BL(int cc, const char* label);
virtual uint32_t* pcForLabel(const char* label);
virtual void LDR (int cc, int Rd,
int Rn, uint32_t offset = 0);
virtual void LDRB(int cc, int Rd,
int Rn, uint32_t offset = 0);
virtual void STR (int cc, int Rd,
int Rn, uint32_t offset = 0);
virtual void STRB(int cc, int Rd,
int Rn, uint32_t offset = 0);
virtual void LDRH (int cc, int Rd,
int Rn, uint32_t offset = 0);
virtual void LDRSB(int cc, int Rd,
int Rn, uint32_t offset = 0);
virtual void LDRSH(int cc, int Rd,
int Rn, uint32_t offset = 0);
virtual void STRH (int cc, int Rd,
int Rn, uint32_t offset = 0);
virtual void LDM(int cc, int dir,
int Rn, int W, uint32_t reg_list);
virtual void STM(int cc, int dir,
int Rn, int W, uint32_t reg_list);
virtual void SWP(int cc, int Rn, int Rd, int Rm);
virtual void SWPB(int cc, int Rn, int Rd, int Rm);
virtual void SWI(int cc, uint32_t comment);
virtual void PLD(int Rn, uint32_t offset);
virtual void CLZ(int cc, int Rd, int Rm);
virtual void QADD(int cc, int Rd, int Rm, int Rn);
virtual void QDADD(int cc, int Rd, int Rm, int Rn);
virtual void QSUB(int cc, int Rd, int Rm, int Rn);
virtual void QDSUB(int cc, int Rd, int Rm, int Rn);
virtual void SMUL(int cc, int xy,
int Rd, int Rm, int Rs);
virtual void SMULW(int cc, int y,
int Rd, int Rm, int Rs);
virtual void SMLA(int cc, int xy,
int Rd, int Rm, int Rs, int Rn);
virtual void SMLAL(int cc, int xy,
int RdHi, int RdLo, int Rs, int Rm);
virtual void SMLAW(int cc, int y,
int Rd, int Rm, int Rs, int Rn);
// byte/half word extract...
virtual void UXTB16(int cc, int Rd, int Rm, int rotate);
// bit manipulation...
virtual void UBFX(int cc, int Rd, int Rn, int lsb, int width);
// this is some crap to share is MIPSAssembler class for debug
char * mArmDisassemblyBuffer;
int mArmLineLength;
int mArmInstrCount;
int mInum; // current arm instuction number (0..n)
uint32_t** mArmPC; // array: PC for 1st mips instr of
// each translated ARM instr
private:
ArmToMipsAssembler(const ArmToMipsAssembler& rhs);
ArmToMipsAssembler& operator = (const ArmToMipsAssembler& rhs);
void init_conditional_labels(void);
void protectConditionalOperands(int Rd);
// reg__tmp set to MIPS AT, reg 1
int dataProcAdrModes(int op, int& source, bool sign = false, int reg_tmp = 1);
sp<Assembly> mAssembly;
MIPSAssembler* mMips;
enum misc_constants_t {
ARM_MAX_INSTUCTIONS = 512 // based on ASSEMBLY_SCRATCH_SIZE
};
enum {
SRC_REG = 0,
SRC_IMM,
SRC_ERROR = -1
};
enum addr_modes {
// start above the range of legal mips reg #'s (0-31)
AMODE_REG = 0x20,
AMODE_IMM, AMODE_REG_IMM, // for data processing
AMODE_IMM_12_PRE, AMODE_IMM_12_POST, // for load/store
AMODE_REG_SCALE_PRE, AMODE_IMM_8_PRE,
AMODE_IMM_8_POST, AMODE_REG_PRE,
AMODE_UNSUPPORTED
};
struct addr_mode_t { // address modes for current ARM instruction
int reg;
int stype;
uint32_t value;
bool writeback; // writeback the adr reg after modification
} amode;
enum cond_types {
CMP_COND = 1,
SBIT_COND
};
struct cond_mode_t { // conditional-execution info for current ARM instruction
cond_types type;
int r1;
int r2;
int labelnum;
char label[100][10];
} cond;
};
// ----------------------------------------------------------------------------
// ----------------------------------------------------------------------------
// ----------------------------------------------------------------------------
// This is the basic MIPS assembler, which just creates the opcodes in memory.
// All the more complicated work is done in ArmToMipsAssember above.
class MIPSAssembler
{
public:
MIPSAssembler(const sp<Assembly>& assembly, ArmToMipsAssembler *parent);
virtual ~MIPSAssembler();
uint32_t* base() const;
uint32_t* pc() const;
void reset();
void disassemble(const char* name);
void prolog();
void epilog(uint32_t touched);
int generate(const char* name);
void comment(const char* string);
void label(const char* string);
// valid only after generate() has been called
uint32_t* pcForLabel(const char* label);
// ------------------------------------------------------------------------
// MIPSAssemblerInterface...
// ------------------------------------------------------------------------
#if 0
#pragma mark -
#pragma mark Arithmetic...
#endif
void ADDU(int Rd, int Rs, int Rt);
void ADDIU(int Rt, int Rs, int16_t imm);
void SUBU(int Rd, int Rs, int Rt);
void SUBIU(int Rt, int Rs, int16_t imm);
void NEGU(int Rd, int Rs);
void MUL(int Rd, int Rs, int Rt);
void MULT(int Rs, int Rt); // dest is hi,lo
void MULTU(int Rs, int Rt); // dest is hi,lo
void MADD(int Rs, int Rt); // hi,lo = hi,lo + Rs * Rt
void MADDU(int Rs, int Rt); // hi,lo = hi,lo + Rs * Rt
void MSUB(int Rs, int Rt); // hi,lo = hi,lo - Rs * Rt
void MSUBU(int Rs, int Rt); // hi,lo = hi,lo - Rs * Rt
void SEB(int Rd, int Rt); // sign-extend byte (mips32r2)
void SEH(int Rd, int Rt); // sign-extend half-word (mips32r2)
#if 0
#pragma mark -
#pragma mark Comparisons...
#endif
void SLT(int Rd, int Rs, int Rt);
void SLTI(int Rt, int Rs, int16_t imm);
void SLTU(int Rd, int Rs, int Rt);
void SLTIU(int Rt, int Rs, int16_t imm);
#if 0
#pragma mark -
#pragma mark Logical...
#endif
void AND(int Rd, int Rs, int Rt);
void ANDI(int Rd, int Rs, uint16_t imm);
void OR(int Rd, int Rs, int Rt);
void ORI(int Rt, int Rs, uint16_t imm);
void NOR(int Rd, int Rs, int Rt);
void NOT(int Rd, int Rs);
void XOR(int Rd, int Rs, int Rt);
void XORI(int Rt, int Rs, uint16_t imm);
void SLL(int Rd, int Rt, int shft);
void SLLV(int Rd, int Rt, int Rs);
void SRL(int Rd, int Rt, int shft);
void SRLV(int Rd, int Rt, int Rs);
void SRA(int Rd, int Rt, int shft);
void SRAV(int Rd, int Rt, int Rs);
void ROTR(int Rd, int Rt, int shft); // mips32r2
void ROTRV(int Rd, int Rt, int Rs); // mips32r2
void RORsyn(int Rd, int Rs, int Rt); // synthetic: d = s rotated by t
void RORIsyn(int Rd, int Rt, int rot); // synthetic: d = s rotated by immed
void CLO(int Rd, int Rs);
void CLZ(int Rd, int Rs);
void WSBH(int Rd, int Rt);
#if 0
#pragma mark -
#pragma mark Load/store...
#endif
void LW(int Rt, int Rbase, int16_t offset);
void SW(int Rt, int Rbase, int16_t offset);
void LB(int Rt, int Rbase, int16_t offset);
void LBU(int Rt, int Rbase, int16_t offset);
void SB(int Rt, int Rbase, int16_t offset);
void LH(int Rt, int Rbase, int16_t offset);
void LHU(int Rt, int Rbase, int16_t offset);
void SH(int Rt, int Rbase, int16_t offset);
void LUI(int Rt, int16_t offset);
#if 0
#pragma mark -
#pragma mark Register moves...
#endif
void MOVE(int Rd, int Rs);
void MOVN(int Rd, int Rs, int Rt);
void MOVZ(int Rd, int Rs, int Rt);
void MFHI(int Rd);
void MFLO(int Rd);
void MTHI(int Rs);
void MTLO(int Rs);
#if 0
#pragma mark -
#pragma mark Branch...
#endif
void B(const char* label);
void BEQ(int Rs, int Rt, const char* label);
void BNE(int Rs, int Rt, const char* label);
void BGEZ(int Rs, const char* label);
void BGTZ(int Rs, const char* label);
void BLEZ(int Rs, const char* label);
void BLTZ(int Rs, const char* label);
void JR(int Rs);
#if 0
#pragma mark -
#pragma mark Synthesized Branch...
#endif
// synthetic variants of above (using slt & friends)
void BEQZ(int Rs, const char* label);
void BNEZ(int Rs, const char* label);
void BGE(int Rs, int Rt, const char* label);
void BGEU(int Rs, int Rt, const char* label);
void BGT(int Rs, int Rt, const char* label);
void BGTU(int Rs, int Rt, const char* label);
void BLE(int Rs, int Rt, const char* label);
void BLEU(int Rs, int Rt, const char* label);
void BLT(int Rs, int Rt, const char* label);
void BLTU(int Rs, int Rt, const char* label);
#if 0
#pragma mark -
#pragma mark Misc...
#endif
void NOP(void);
void NOP2(void);
void UNIMPL(void);
private:
void string_detab(char *s);
void string_pad(char *s, int padded_len);
ArmToMipsAssembler *mParent;
sp<Assembly> mAssembly;
uint32_t* mBase;
uint32_t* mPC;
uint32_t* mPrologPC;
int64_t mDuration;
#if defined(WITH_LIB_HARDWARE)
bool mQemuTracing;
#endif
struct branch_target_t {
inline branch_target_t() : label(0), pc(0) { }
inline branch_target_t(const char* l, uint32_t* p)
: label(l), pc(p) { }
const char* label;
uint32_t* pc;
};
Vector<branch_target_t> mBranchTargets;
KeyedVector< const char*, uint32_t* > mLabels;
KeyedVector< uint32_t*, const char* > mLabelsInverseMapping;
KeyedVector< uint32_t*, const char* > mComments;
// opcode field of all instructions
enum opcode_field {
spec_op, regimm_op, j_op, jal_op, // 00
beq_op, bne_op, blez_op, bgtz_op,
addi_op, addiu_op, slti_op, sltiu_op, // 08
andi_op, ori_op, xori_op, lui_op,
cop0_op, cop1_op, cop2_op, cop1x_op, // 10
beql_op, bnel_op, blezl_op, bgtzl_op,
daddi_op, daddiu_op, ldl_op, ldr_op, // 18
spec2_op, jalx_op, mdmx_op, spec3_op,
lb_op, lh_op, lwl_op, lw_op, // 20
lbu_op, lhu_op, lwr_op, lwu_op,
sb_op, sh_op, swl_op, sw_op, // 28
sdl_op, sdr_op, swr_op, cache_op,
ll_op, lwc1_op, lwc2_op, pref_op, // 30
lld_op, ldc1_op, ldc2_op, ld_op,
sc_op, swc1_op, swc2_op, rsrv_3b_op, // 38
scd_op, sdc1_op, sdc2_op, sd_op
};
// func field for special opcode
enum func_spec_op {
sll_fn, movc_fn, srl_fn, sra_fn, // 00
sllv_fn, pmon_fn, srlv_fn, srav_fn,
jr_fn, jalr_fn, movz_fn, movn_fn, // 08
syscall_fn, break_fn, spim_fn, sync_fn,
mfhi_fn, mthi_fn, mflo_fn, mtlo_fn, // 10
dsllv_fn, rsrv_spec_2, dsrlv_fn, dsrav_fn,
mult_fn, multu_fn, div_fn, divu_fn, // 18
dmult_fn, dmultu_fn, ddiv_fn, ddivu_fn,
add_fn, addu_fn, sub_fn, subu_fn, // 20
and_fn, or_fn, xor_fn, nor_fn,
rsrv_spec_3, rsrv_spec_4, slt_fn, sltu_fn, // 28
dadd_fn, daddu_fn, dsub_fn, dsubu_fn,
tge_fn, tgeu_fn, tlt_fn, tltu_fn, // 30
teq_fn, rsrv_spec_5, tne_fn, rsrv_spec_6,
dsll_fn, rsrv_spec_7, dsrl_fn, dsra_fn, // 38
dsll32_fn, rsrv_spec_8, dsrl32_fn, dsra32_fn
};
// func field for spec2 opcode
enum func_spec2_op {
madd_fn, maddu_fn, mul_fn, rsrv_spec2_3,
msub_fn, msubu_fn,
clz_fn = 0x20, clo_fn,
dclz_fn = 0x24, dclo_fn,
sdbbp_fn = 0x3f
};
// func field for spec3 opcode
enum func_spec3_op {
ext_fn, dextm_fn, dextu_fn, dext_fn,
ins_fn, dinsm_fn, dinsu_fn, dins_fn,
bshfl_fn = 0x20,
dbshfl_fn = 0x24,
rdhwr_fn = 0x3b
};
// sa field for spec3 opcodes, with BSHFL function
enum func_spec3_bshfl {
wsbh_fn = 0x02,
seb_fn = 0x10,
seh_fn = 0x18
};
// rt field of regimm opcodes.
enum regimm_fn {
bltz_fn, bgez_fn, bltzl_fn, bgezl_fn,
rsrv_ri_fn4, rsrv_ri_fn5, rsrv_ri_fn6, rsrv_ri_fn7,
tgei_fn, tgeiu_fn, tlti_fn, tltiu_fn,
teqi_fn, rsrv_ri_fn_0d, tnei_fn, rsrv_ri_fn0f,
bltzal_fn, bgezal_fn, bltzall_fn, bgezall_fn,
bposge32_fn= 0x1c,
synci_fn = 0x1f
};
// func field for mad opcodes (MIPS IV).
enum mad_func {
madd_fp_op = 0x08, msub_fp_op = 0x0a,
nmadd_fp_op = 0x0c, nmsub_fp_op = 0x0e
};
enum mips_inst_shifts {
OP_SHF = 26,
JTARGET_SHF = 0,
RS_SHF = 21,
RT_SHF = 16,
RD_SHF = 11,
RE_SHF = 6,
SA_SHF = RE_SHF, // synonym
IMM_SHF = 0,
FUNC_SHF = 0,
// mask values
MSK_16 = 0xffff,
CACHEOP_SHF = 18,
CACHESEL_SHF = 16,
};
};
enum mips_regnames {
R_zero = 0,
R_at, R_v0, R_v1, R_a0, R_a1, R_a2, R_a3,
R_t0, R_t1, R_t2, R_t3, R_t4, R_t5, R_t6, R_t7,
R_s0, R_s1, R_s2, R_s3, R_s4, R_s5, R_s6, R_s7,
R_t8, R_t9, R_k0, R_k1, R_gp, R_sp, R_s8, R_ra,
R_lr = R_s8,
// arm regs 0-15 are mips regs 2-17 (meaning s0 & s1 are used)
R_at2 = R_s2, // R_at2 = 18 = s2
R_cmp = R_s3, // R_cmp = 19 = s3
R_cmp2 = R_s4 // R_cmp2 = 20 = s4
};
}; // namespace android
#endif //ANDROID_MIPSASSEMBLER_H