/*
* Copyright 2010-2012, The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "slang_backend.h"
#include <string>
#include <vector>
#include "bcinfo/BitcodeWrapper.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclGroup.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Basic/TargetOptions.h"
#include "clang/CodeGen/ModuleBuilder.h"
#include "clang/Frontend/CodeGenOptions.h"
#include "clang/Frontend/FrontendDiagnostic.h"
#include "llvm/ADT/Twine.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Bitcode/ReaderWriter.h"
#include "llvm/CodeGen/RegAllocRegistry.h"
#include "llvm/CodeGen/SchedulerRegistry.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/IRPrintingPasses.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/Transforms/IPO/PassManagerBuilder.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/MC/SubtargetFeature.h"
#include "slang_assert.h"
#include "slang.h"
#include "slang_rs_context.h"
#include "slang_rs_export_foreach.h"
#include "slang_rs_export_func.h"
#include "slang_rs_export_type.h"
#include "slang_rs_export_var.h"
#include "slang_rs_metadata.h"
#include "strip_unknown_attributes.h"
#include "BitWriter_2_9/ReaderWriter_2_9.h"
#include "BitWriter_2_9_func/ReaderWriter_2_9_func.h"
#include "BitWriter_3_2/ReaderWriter_3_2.h"
namespace slang {
void Backend::CreateFunctionPasses() {
if (!mPerFunctionPasses) {
mPerFunctionPasses = new llvm::legacy::FunctionPassManager(mpModule);
llvm::PassManagerBuilder PMBuilder;
PMBuilder.OptLevel = mCodeGenOpts.OptimizationLevel;
PMBuilder.populateFunctionPassManager(*mPerFunctionPasses);
}
}
void Backend::CreateModulePasses() {
if (!mPerModulePasses) {
mPerModulePasses = new llvm::legacy::PassManager();
llvm::PassManagerBuilder PMBuilder;
PMBuilder.OptLevel = mCodeGenOpts.OptimizationLevel;
PMBuilder.SizeLevel = mCodeGenOpts.OptimizeSize;
if (mCodeGenOpts.UnitAtATime) {
PMBuilder.DisableUnitAtATime = 0;
} else {
PMBuilder.DisableUnitAtATime = 1;
}
if (mCodeGenOpts.UnrollLoops) {
PMBuilder.DisableUnrollLoops = 0;
} else {
PMBuilder.DisableUnrollLoops = 1;
}
PMBuilder.populateModulePassManager(*mPerModulePasses);
// Add a pass to strip off unknown/unsupported attributes.
mPerModulePasses->add(createStripUnknownAttributesPass());
}
}
bool Backend::CreateCodeGenPasses() {
if ((mOT != Slang::OT_Assembly) && (mOT != Slang::OT_Object))
return true;
// Now we add passes for code emitting
if (mCodeGenPasses) {
return true;
} else {
mCodeGenPasses = new llvm::legacy::FunctionPassManager(mpModule);
}
// Create the TargetMachine for generating code.
std::string Triple = mpModule->getTargetTriple();
std::string Error;
const llvm::Target* TargetInfo =
llvm::TargetRegistry::lookupTarget(Triple, Error);
if (TargetInfo == nullptr) {
mDiagEngine.Report(clang::diag::err_fe_unable_to_create_target) << Error;
return false;
}
// Target Machine Options
llvm::TargetOptions Options;
Options.NoFramePointerElim = mCodeGenOpts.DisableFPElim;
// Use hardware FPU.
//
// FIXME: Need to detect the CPU capability and decide whether to use softfp.
// To use softfp, change following 2 lines to
//
// Options.FloatABIType = llvm::FloatABI::Soft;
// Options.UseSoftFloat = true;
Options.FloatABIType = llvm::FloatABI::Hard;
Options.UseSoftFloat = false;
// BCC needs all unknown symbols resolved at compilation time. So we don't
// need any relocation model.
llvm::Reloc::Model RM = llvm::Reloc::Static;
// This is set for the linker (specify how large of the virtual addresses we
// can access for all unknown symbols.)
llvm::CodeModel::Model CM;
if (mpModule->getDataLayout().getPointerSize() == 4) {
CM = llvm::CodeModel::Small;
} else {
// The target may have pointer size greater than 32 (e.g. x86_64
// architecture) may need large data address model
CM = llvm::CodeModel::Medium;
}
// Setup feature string
std::string FeaturesStr;
if (mTargetOpts.CPU.size() || mTargetOpts.Features.size()) {
llvm::SubtargetFeatures Features;
for (std::vector<std::string>::const_iterator
I = mTargetOpts.Features.begin(), E = mTargetOpts.Features.end();
I != E;
I++)
Features.AddFeature(*I);
FeaturesStr = Features.getString();
}
llvm::TargetMachine *TM =
TargetInfo->createTargetMachine(Triple, mTargetOpts.CPU, FeaturesStr,
Options, RM, CM);
// Register scheduler
llvm::RegisterScheduler::setDefault(llvm::createDefaultScheduler);
// Register allocation policy:
// createFastRegisterAllocator: fast but bad quality
// createGreedyRegisterAllocator: not so fast but good quality
llvm::RegisterRegAlloc::setDefault((mCodeGenOpts.OptimizationLevel == 0) ?
llvm::createFastRegisterAllocator :
llvm::createGreedyRegisterAllocator);
llvm::CodeGenOpt::Level OptLevel = llvm::CodeGenOpt::Default;
if (mCodeGenOpts.OptimizationLevel == 0) {
OptLevel = llvm::CodeGenOpt::None;
} else if (mCodeGenOpts.OptimizationLevel == 3) {
OptLevel = llvm::CodeGenOpt::Aggressive;
}
llvm::TargetMachine::CodeGenFileType CGFT =
llvm::TargetMachine::CGFT_AssemblyFile;
if (mOT == Slang::OT_Object) {
CGFT = llvm::TargetMachine::CGFT_ObjectFile;
}
if (TM->addPassesToEmitFile(*mCodeGenPasses, mBufferOutStream,
CGFT, OptLevel)) {
mDiagEngine.Report(clang::diag::err_fe_unable_to_interface_with_target);
return false;
}
return true;
}
Backend::Backend(RSContext *Context, clang::DiagnosticsEngine *DiagEngine,
const clang::CodeGenOptions &CodeGenOpts,
const clang::TargetOptions &TargetOpts, PragmaList *Pragmas,
llvm::raw_ostream *OS, Slang::OutputType OT,
clang::SourceManager &SourceMgr, bool AllowRSPrefix,
bool IsFilterscript)
: ASTConsumer(), mTargetOpts(TargetOpts), mpModule(nullptr), mpOS(OS),
mOT(OT), mGen(nullptr), mPerFunctionPasses(nullptr),
mPerModulePasses(nullptr), mCodeGenPasses(nullptr),
mBufferOutStream(*mpOS), mContext(Context),
mSourceMgr(SourceMgr), mAllowRSPrefix(AllowRSPrefix),
mIsFilterscript(IsFilterscript), mExportVarMetadata(nullptr),
mExportFuncMetadata(nullptr), mExportForEachNameMetadata(nullptr),
mExportForEachSignatureMetadata(nullptr), mExportTypeMetadata(nullptr),
mRSObjectSlotsMetadata(nullptr), mRefCount(mContext->getASTContext()),
mASTChecker(Context, Context->getTargetAPI(), IsFilterscript),
mLLVMContext(llvm::getGlobalContext()), mDiagEngine(*DiagEngine),
mCodeGenOpts(CodeGenOpts), mPragmas(Pragmas) {
mGen = CreateLLVMCodeGen(mDiagEngine, "", mCodeGenOpts, mLLVMContext);
}
void Backend::Initialize(clang::ASTContext &Ctx) {
mGen->Initialize(Ctx);
mpModule = mGen->GetModule();
}
// Encase the Bitcode in a wrapper containing RS version information.
void Backend::WrapBitcode(llvm::raw_string_ostream &Bitcode) {
bcinfo::AndroidBitcodeWrapper wrapper;
size_t actualWrapperLen = bcinfo::writeAndroidBitcodeWrapper(
&wrapper, Bitcode.str().length(), getTargetAPI(),
SlangVersion::CURRENT, mCodeGenOpts.OptimizationLevel);
slangAssert(actualWrapperLen > 0);
// Write out the bitcode wrapper.
mBufferOutStream.write(reinterpret_cast<char*>(&wrapper), actualWrapperLen);
// Write out the actual encoded bitcode.
mBufferOutStream << Bitcode.str();
}
void Backend::HandleTranslationUnit(clang::ASTContext &Ctx) {
HandleTranslationUnitPre(Ctx);
mGen->HandleTranslationUnit(Ctx);
// Here, we complete a translation unit (whole translation unit is now in LLVM
// IR). Now, interact with LLVM backend to generate actual machine code (asm
// or machine code, whatever.)
// Silently ignore if we weren't initialized for some reason.
if (!mpModule)
return;
llvm::Module *M = mGen->ReleaseModule();
if (!M) {
// The module has been released by IR gen on failures, do not double free.
mpModule = nullptr;
return;
}
slangAssert(mpModule == M &&
"Unexpected module change during LLVM IR generation");
// Insert #pragma information into metadata section of module
if (!mPragmas->empty()) {
llvm::NamedMDNode *PragmaMetadata =
mpModule->getOrInsertNamedMetadata(Slang::PragmaMetadataName);
for (PragmaList::const_iterator I = mPragmas->begin(), E = mPragmas->end();
I != E;
I++) {
llvm::SmallVector<llvm::Metadata*, 2> Pragma;
// Name goes first
Pragma.push_back(llvm::MDString::get(mLLVMContext, I->first));
// And then value
Pragma.push_back(llvm::MDString::get(mLLVMContext, I->second));
// Create MDNode and insert into PragmaMetadata
PragmaMetadata->addOperand(
llvm::MDNode::get(mLLVMContext, Pragma));
}
}
HandleTranslationUnitPost(mpModule);
// Create passes for optimization and code emission
// Create and run per-function passes
CreateFunctionPasses();
if (mPerFunctionPasses) {
mPerFunctionPasses->doInitialization();
for (llvm::Module::iterator I = mpModule->begin(), E = mpModule->end();
I != E;
I++)
if (!I->isDeclaration())
mPerFunctionPasses->run(*I);
mPerFunctionPasses->doFinalization();
}
// Create and run module passes
CreateModulePasses();
if (mPerModulePasses)
mPerModulePasses->run(*mpModule);
switch (mOT) {
case Slang::OT_Assembly:
case Slang::OT_Object: {
if (!CreateCodeGenPasses())
return;
mCodeGenPasses->doInitialization();
for (llvm::Module::iterator I = mpModule->begin(), E = mpModule->end();
I != E;
I++)
if (!I->isDeclaration())
mCodeGenPasses->run(*I);
mCodeGenPasses->doFinalization();
break;
}
case Slang::OT_LLVMAssembly: {
llvm::legacy::PassManager *LLEmitPM = new llvm::legacy::PassManager();
LLEmitPM->add(llvm::createPrintModulePass(mBufferOutStream));
LLEmitPM->run(*mpModule);
break;
}
case Slang::OT_Bitcode: {
llvm::legacy::PassManager *BCEmitPM = new llvm::legacy::PassManager();
std::string BCStr;
llvm::raw_string_ostream Bitcode(BCStr);
unsigned int TargetAPI = getTargetAPI();
switch (TargetAPI) {
case SLANG_HC_TARGET_API:
case SLANG_HC_MR1_TARGET_API:
case SLANG_HC_MR2_TARGET_API: {
// Pre-ICS targets must use the LLVM 2.9 BitcodeWriter
BCEmitPM->add(llvm_2_9::createBitcodeWriterPass(Bitcode));
break;
}
case SLANG_ICS_TARGET_API:
case SLANG_ICS_MR1_TARGET_API: {
// ICS targets must use the LLVM 2.9_func BitcodeWriter
BCEmitPM->add(llvm_2_9_func::createBitcodeWriterPass(Bitcode));
break;
}
default: {
if (TargetAPI != SLANG_DEVELOPMENT_TARGET_API &&
(TargetAPI < SLANG_MINIMUM_TARGET_API ||
TargetAPI > SLANG_MAXIMUM_TARGET_API)) {
slangAssert(false && "Invalid target API value");
}
// Switch to the 3.2 BitcodeWriter by default, and don't use
// LLVM's included BitcodeWriter at all (for now).
BCEmitPM->add(llvm_3_2::createBitcodeWriterPass(Bitcode));
//BCEmitPM->add(llvm::createBitcodeWriterPass(Bitcode));
break;
}
}
BCEmitPM->run(*mpModule);
WrapBitcode(Bitcode);
break;
}
case Slang::OT_Nothing: {
return;
}
default: {
slangAssert(false && "Unknown output type");
}
}
mBufferOutStream.flush();
}
void Backend::HandleTagDeclDefinition(clang::TagDecl *D) {
mGen->HandleTagDeclDefinition(D);
}
void Backend::CompleteTentativeDefinition(clang::VarDecl *D) {
mGen->CompleteTentativeDefinition(D);
}
Backend::~Backend() {
delete mpModule;
delete mGen;
delete mPerFunctionPasses;
delete mPerModulePasses;
delete mCodeGenPasses;
}
// 1) Add zero initialization of local RS object types
void Backend::AnnotateFunction(clang::FunctionDecl *FD) {
if (FD &&
FD->hasBody() &&
!Slang::IsLocInRSHeaderFile(FD->getLocation(), mSourceMgr)) {
mRefCount.Init();
mRefCount.Visit(FD->getBody());
}
}
bool Backend::HandleTopLevelDecl(clang::DeclGroupRef D) {
// Disallow user-defined functions with prefix "rs"
if (!mAllowRSPrefix) {
// Iterate all function declarations in the program.
for (clang::DeclGroupRef::iterator I = D.begin(), E = D.end();
I != E; I++) {
clang::FunctionDecl *FD = llvm::dyn_cast<clang::FunctionDecl>(*I);
if (FD == nullptr)
continue;
if (!FD->getName().startswith("rs")) // Check prefix
continue;
if (!Slang::IsLocInRSHeaderFile(FD->getLocation(), mSourceMgr))
mContext->ReportError(FD->getLocation(),
"invalid function name prefix, "
"\"rs\" is reserved: '%0'")
<< FD->getName();
}
}
// Process any non-static function declarations
for (clang::DeclGroupRef::iterator I = D.begin(), E = D.end(); I != E; I++) {
clang::FunctionDecl *FD = llvm::dyn_cast<clang::FunctionDecl>(*I);
if (FD && FD->isGlobal()) {
// Check that we don't have any array parameters being misintrepeted as
// kernel pointers due to the C type system's array to pointer decay.
size_t numParams = FD->getNumParams();
for (size_t i = 0; i < numParams; i++) {
const clang::ParmVarDecl *PVD = FD->getParamDecl(i);
clang::QualType QT = PVD->getOriginalType();
if (QT->isArrayType()) {
mContext->ReportError(
PVD->getTypeSpecStartLoc(),
"exported function parameters may not have array type: %0")
<< QT;
}
}
AnnotateFunction(FD);
}
}
return mGen->HandleTopLevelDecl(D);
}
void Backend::HandleTranslationUnitPre(clang::ASTContext &C) {
clang::TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
// If we have an invalid RS/FS AST, don't check further.
if (!mASTChecker.Validate()) {
return;
}
if (mIsFilterscript) {
mContext->addPragma("rs_fp_relaxed", "");
}
int version = mContext->getVersion();
if (version == 0) {
// Not setting a version is an error
mDiagEngine.Report(
mSourceMgr.getLocForEndOfFile(mSourceMgr.getMainFileID()),
mDiagEngine.getCustomDiagID(
clang::DiagnosticsEngine::Error,
"missing pragma for version in source file"));
} else {
slangAssert(version == 1);
}
if (mContext->getReflectJavaPackageName().empty()) {
mDiagEngine.Report(
mSourceMgr.getLocForEndOfFile(mSourceMgr.getMainFileID()),
mDiagEngine.getCustomDiagID(clang::DiagnosticsEngine::Error,
"missing \"#pragma rs "
"java_package_name(com.foo.bar)\" "
"in source file"));
return;
}
// Create a static global destructor if necessary (to handle RS object
// runtime cleanup).
clang::FunctionDecl *FD = mRefCount.CreateStaticGlobalDtor();
if (FD) {
HandleTopLevelDecl(clang::DeclGroupRef(FD));
}
// Process any static function declarations
for (clang::DeclContext::decl_iterator I = TUDecl->decls_begin(),
E = TUDecl->decls_end(); I != E; I++) {
if ((I->getKind() >= clang::Decl::firstFunction) &&
(I->getKind() <= clang::Decl::lastFunction)) {
clang::FunctionDecl *FD = llvm::dyn_cast<clang::FunctionDecl>(*I);
if (FD && !FD->isGlobal()) {
AnnotateFunction(FD);
}
}
}
}
///////////////////////////////////////////////////////////////////////////////
void Backend::dumpExportVarInfo(llvm::Module *M) {
int slotCount = 0;
if (mExportVarMetadata == nullptr)
mExportVarMetadata = M->getOrInsertNamedMetadata(RS_EXPORT_VAR_MN);
llvm::SmallVector<llvm::Metadata *, 2> ExportVarInfo;
// We emit slot information (#rs_object_slots) for any reference counted
// RS type or pointer (which can also be bound).
for (RSContext::const_export_var_iterator I = mContext->export_vars_begin(),
E = mContext->export_vars_end();
I != E;
I++) {
const RSExportVar *EV = *I;
const RSExportType *ET = EV->getType();
bool countsAsRSObject = false;
// Variable name
ExportVarInfo.push_back(
llvm::MDString::get(mLLVMContext, EV->getName().c_str()));
// Type name
switch (ET->getClass()) {
case RSExportType::ExportClassPrimitive: {
const RSExportPrimitiveType *PT =
static_cast<const RSExportPrimitiveType*>(ET);
ExportVarInfo.push_back(
llvm::MDString::get(
mLLVMContext, llvm::utostr_32(PT->getType())));
if (PT->isRSObjectType()) {
countsAsRSObject = true;
}
break;
}
case RSExportType::ExportClassPointer: {
ExportVarInfo.push_back(
llvm::MDString::get(
mLLVMContext, ("*" + static_cast<const RSExportPointerType*>(ET)
->getPointeeType()->getName()).c_str()));
break;
}
case RSExportType::ExportClassMatrix: {
ExportVarInfo.push_back(
llvm::MDString::get(
mLLVMContext, llvm::utostr_32(
/* TODO Strange value. This pushes just a number, quite
* different than the other cases. What is this used for?
* These are the metadata values that some partner drivers
* want to reference (for TBAA, etc.). We may want to look
* at whether these provide any reasonable value (or have
* distinct enough values to actually depend on).
*/
DataTypeRSMatrix2x2 +
static_cast<const RSExportMatrixType*>(ET)->getDim() - 2)));
break;
}
case RSExportType::ExportClassVector:
case RSExportType::ExportClassConstantArray:
case RSExportType::ExportClassRecord: {
ExportVarInfo.push_back(
llvm::MDString::get(mLLVMContext,
EV->getType()->getName().c_str()));
break;
}
}
mExportVarMetadata->addOperand(
llvm::MDNode::get(mLLVMContext, ExportVarInfo));
ExportVarInfo.clear();
if (mRSObjectSlotsMetadata == nullptr) {
mRSObjectSlotsMetadata =
M->getOrInsertNamedMetadata(RS_OBJECT_SLOTS_MN);
}
if (countsAsRSObject) {
mRSObjectSlotsMetadata->addOperand(llvm::MDNode::get(mLLVMContext,
llvm::MDString::get(mLLVMContext, llvm::utostr_32(slotCount))));
}
slotCount++;
}
}
void Backend::dumpExportFunctionInfo(llvm::Module *M) {
if (mExportFuncMetadata == nullptr)
mExportFuncMetadata =
M->getOrInsertNamedMetadata(RS_EXPORT_FUNC_MN);
llvm::SmallVector<llvm::Metadata *, 1> ExportFuncInfo;
for (RSContext::const_export_func_iterator
I = mContext->export_funcs_begin(),
E = mContext->export_funcs_end();
I != E;
I++) {
const RSExportFunc *EF = *I;
// Function name
if (!EF->hasParam()) {
ExportFuncInfo.push_back(llvm::MDString::get(mLLVMContext,
EF->getName().c_str()));
} else {
llvm::Function *F = M->getFunction(EF->getName());
llvm::Function *HelperFunction;
const std::string HelperFunctionName(".helper_" + EF->getName());
slangAssert(F && "Function marked as exported disappeared in Bitcode");
// Create helper function
{
llvm::StructType *HelperFunctionParameterTy = nullptr;
std::vector<bool> isStructInput;
if (!F->getArgumentList().empty()) {
std::vector<llvm::Type*> HelperFunctionParameterTys;
for (llvm::Function::arg_iterator AI = F->arg_begin(),
AE = F->arg_end(); AI != AE; AI++) {
if (AI->getType()->isPointerTy() && AI->getType()->getPointerElementType()->isStructTy()) {
HelperFunctionParameterTys.push_back(AI->getType()->getPointerElementType());
isStructInput.push_back(true);
} else {
HelperFunctionParameterTys.push_back(AI->getType());
isStructInput.push_back(false);
}
}
HelperFunctionParameterTy =
llvm::StructType::get(mLLVMContext, HelperFunctionParameterTys);
}
if (!EF->checkParameterPacketType(HelperFunctionParameterTy)) {
fprintf(stderr, "Failed to export function %s: parameter type "
"mismatch during creation of helper function.\n",
EF->getName().c_str());
const RSExportRecordType *Expected = EF->getParamPacketType();
if (Expected) {
fprintf(stderr, "Expected:\n");
Expected->getLLVMType()->dump();
}
if (HelperFunctionParameterTy) {
fprintf(stderr, "Got:\n");
HelperFunctionParameterTy->dump();
}
}
std::vector<llvm::Type*> Params;
if (HelperFunctionParameterTy) {
llvm::PointerType *HelperFunctionParameterTyP =
llvm::PointerType::getUnqual(HelperFunctionParameterTy);
Params.push_back(HelperFunctionParameterTyP);
}
llvm::FunctionType * HelperFunctionType =
llvm::FunctionType::get(F->getReturnType(),
Params,
/* IsVarArgs = */false);
HelperFunction =
llvm::Function::Create(HelperFunctionType,
llvm::GlobalValue::ExternalLinkage,
HelperFunctionName,
M);
HelperFunction->addFnAttr(llvm::Attribute::NoInline);
HelperFunction->setCallingConv(F->getCallingConv());
// Create helper function body
{
llvm::Argument *HelperFunctionParameter =
&(*HelperFunction->arg_begin());
llvm::BasicBlock *BB =
llvm::BasicBlock::Create(mLLVMContext, "entry", HelperFunction);
llvm::IRBuilder<> *IB = new llvm::IRBuilder<>(BB);
llvm::SmallVector<llvm::Value*, 6> Params;
llvm::Value *Idx[2];
Idx[0] =
llvm::ConstantInt::get(llvm::Type::getInt32Ty(mLLVMContext), 0);
// getelementptr and load instruction for all elements in
// parameter .p
for (size_t i = 0; i < EF->getNumParameters(); i++) {
// getelementptr
Idx[1] = llvm::ConstantInt::get(
llvm::Type::getInt32Ty(mLLVMContext), i);
llvm::Value *Ptr = NULL;
Ptr = IB->CreateInBoundsGEP(HelperFunctionParameter, Idx);
// Load is only required for non-struct ptrs
if (isStructInput[i]) {
Params.push_back(Ptr);
} else {
llvm::Value *V = IB->CreateLoad(Ptr);
Params.push_back(V);
}
}
// Call and pass the all elements as parameter to F
llvm::CallInst *CI = IB->CreateCall(F, Params);
CI->setCallingConv(F->getCallingConv());
if (F->getReturnType() == llvm::Type::getVoidTy(mLLVMContext))
IB->CreateRetVoid();
else
IB->CreateRet(CI);
delete IB;
}
}
ExportFuncInfo.push_back(
llvm::MDString::get(mLLVMContext, HelperFunctionName.c_str()));
}
mExportFuncMetadata->addOperand(
llvm::MDNode::get(mLLVMContext, ExportFuncInfo));
ExportFuncInfo.clear();
}
}
void Backend::dumpExportForEachInfo(llvm::Module *M) {
if (mExportForEachNameMetadata == nullptr) {
mExportForEachNameMetadata =
M->getOrInsertNamedMetadata(RS_EXPORT_FOREACH_NAME_MN);
}
if (mExportForEachSignatureMetadata == nullptr) {
mExportForEachSignatureMetadata =
M->getOrInsertNamedMetadata(RS_EXPORT_FOREACH_MN);
}
llvm::SmallVector<llvm::Metadata *, 1> ExportForEachName;
llvm::SmallVector<llvm::Metadata *, 1> ExportForEachInfo;
for (RSContext::const_export_foreach_iterator
I = mContext->export_foreach_begin(),
E = mContext->export_foreach_end();
I != E;
I++) {
const RSExportForEach *EFE = *I;
ExportForEachName.push_back(
llvm::MDString::get(mLLVMContext, EFE->getName().c_str()));
mExportForEachNameMetadata->addOperand(
llvm::MDNode::get(mLLVMContext, ExportForEachName));
ExportForEachName.clear();
ExportForEachInfo.push_back(
llvm::MDString::get(mLLVMContext,
llvm::utostr_32(EFE->getSignatureMetadata())));
mExportForEachSignatureMetadata->addOperand(
llvm::MDNode::get(mLLVMContext, ExportForEachInfo));
ExportForEachInfo.clear();
}
}
void Backend::dumpExportTypeInfo(llvm::Module *M) {
llvm::SmallVector<llvm::Metadata *, 1> ExportTypeInfo;
for (RSContext::const_export_type_iterator
I = mContext->export_types_begin(),
E = mContext->export_types_end();
I != E;
I++) {
// First, dump type name list to export
const RSExportType *ET = I->getValue();
ExportTypeInfo.clear();
// Type name
ExportTypeInfo.push_back(
llvm::MDString::get(mLLVMContext, ET->getName().c_str()));
if (ET->getClass() == RSExportType::ExportClassRecord) {
const RSExportRecordType *ERT =
static_cast<const RSExportRecordType*>(ET);
if (mExportTypeMetadata == nullptr)
mExportTypeMetadata =
M->getOrInsertNamedMetadata(RS_EXPORT_TYPE_MN);
mExportTypeMetadata->addOperand(
llvm::MDNode::get(mLLVMContext, ExportTypeInfo));
// Now, export struct field information to %[struct name]
std::string StructInfoMetadataName("%");
StructInfoMetadataName.append(ET->getName());
llvm::NamedMDNode *StructInfoMetadata =
M->getOrInsertNamedMetadata(StructInfoMetadataName);
llvm::SmallVector<llvm::Metadata *, 3> FieldInfo;
slangAssert(StructInfoMetadata->getNumOperands() == 0 &&
"Metadata with same name was created before");
for (RSExportRecordType::const_field_iterator FI = ERT->fields_begin(),
FE = ERT->fields_end();
FI != FE;
FI++) {
const RSExportRecordType::Field *F = *FI;
// 1. field name
FieldInfo.push_back(llvm::MDString::get(mLLVMContext,
F->getName().c_str()));
// 2. field type name
FieldInfo.push_back(
llvm::MDString::get(mLLVMContext,
F->getType()->getName().c_str()));
StructInfoMetadata->addOperand(
llvm::MDNode::get(mLLVMContext, FieldInfo));
FieldInfo.clear();
}
} // ET->getClass() == RSExportType::ExportClassRecord
}
}
void Backend::HandleTranslationUnitPost(llvm::Module *M) {
if (!mContext->is64Bit()) {
M->setDataLayout("e-p:32:32-i64:64-v128:64:128-n32-S64");
}
if (!mContext->processExport()) {
return;
}
if (mContext->hasExportVar())
dumpExportVarInfo(M);
if (mContext->hasExportFunc())
dumpExportFunctionInfo(M);
if (mContext->hasExportForEach())
dumpExportForEachInfo(M);
if (mContext->hasExportType())
dumpExportTypeInfo(M);
}
} // namespace slang