// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/compiler/code-generator.h"
#include "src/compiler/code-generator-impl.h"
#include "src/compiler/gap-resolver.h"
#include "src/compiler/node-matchers.h"
#include "src/compiler/node-properties-inl.h"
#include "src/ia32/assembler-ia32.h"
#include "src/ia32/macro-assembler-ia32.h"
#include "src/scopes.h"
namespace v8 {
namespace internal {
namespace compiler {
#define __ masm()->
// Adds IA-32 specific methods for decoding operands.
class IA32OperandConverter : public InstructionOperandConverter {
public:
IA32OperandConverter(CodeGenerator* gen, Instruction* instr)
: InstructionOperandConverter(gen, instr) {}
Operand InputOperand(int index) { return ToOperand(instr_->InputAt(index)); }
Immediate InputImmediate(int index) {
return ToImmediate(instr_->InputAt(index));
}
Operand OutputOperand() { return ToOperand(instr_->Output()); }
Operand TempOperand(int index) { return ToOperand(instr_->TempAt(index)); }
Operand ToOperand(InstructionOperand* op, int extra = 0) {
if (op->IsRegister()) {
DCHECK(extra == 0);
return Operand(ToRegister(op));
} else if (op->IsDoubleRegister()) {
DCHECK(extra == 0);
return Operand(ToDoubleRegister(op));
}
DCHECK(op->IsStackSlot() || op->IsDoubleStackSlot());
// The linkage computes where all spill slots are located.
FrameOffset offset = linkage()->GetFrameOffset(op->index(), frame(), extra);
return Operand(offset.from_stack_pointer() ? esp : ebp, offset.offset());
}
Operand HighOperand(InstructionOperand* op) {
DCHECK(op->IsDoubleStackSlot());
return ToOperand(op, kPointerSize);
}
Immediate ToImmediate(InstructionOperand* operand) {
Constant constant = ToConstant(operand);
switch (constant.type()) {
case Constant::kInt32:
return Immediate(constant.ToInt32());
case Constant::kFloat64:
return Immediate(
isolate()->factory()->NewNumber(constant.ToFloat64(), TENURED));
case Constant::kExternalReference:
return Immediate(constant.ToExternalReference());
case Constant::kHeapObject:
return Immediate(constant.ToHeapObject());
case Constant::kInt64:
break;
}
UNREACHABLE();
return Immediate(-1);
}
Operand MemoryOperand(int* first_input) {
const int offset = *first_input;
switch (AddressingModeField::decode(instr_->opcode())) {
case kMode_MR1I:
*first_input += 2;
return Operand(InputRegister(offset + 0), InputRegister(offset + 1),
times_1,
0); // TODO(dcarney): K != 0
case kMode_MRI:
*first_input += 2;
return Operand::ForRegisterPlusImmediate(InputRegister(offset + 0),
InputImmediate(offset + 1));
case kMode_MI:
*first_input += 1;
return Operand(InputImmediate(offset + 0));
default:
UNREACHABLE();
return Operand(no_reg);
}
}
Operand MemoryOperand() {
int first_input = 0;
return MemoryOperand(&first_input);
}
};
static bool HasImmediateInput(Instruction* instr, int index) {
return instr->InputAt(index)->IsImmediate();
}
// Assembles an instruction after register allocation, producing machine code.
void CodeGenerator::AssembleArchInstruction(Instruction* instr) {
IA32OperandConverter i(this, instr);
switch (ArchOpcodeField::decode(instr->opcode())) {
case kArchCallCodeObject: {
EnsureSpaceForLazyDeopt();
if (HasImmediateInput(instr, 0)) {
Handle<Code> code = Handle<Code>::cast(i.InputHeapObject(0));
__ call(code, RelocInfo::CODE_TARGET);
} else {
Register reg = i.InputRegister(0);
__ call(Operand(reg, Code::kHeaderSize - kHeapObjectTag));
}
AddSafepointAndDeopt(instr);
break;
}
case kArchCallJSFunction: {
EnsureSpaceForLazyDeopt();
Register func = i.InputRegister(0);
if (FLAG_debug_code) {
// Check the function's context matches the context argument.
__ cmp(esi, FieldOperand(func, JSFunction::kContextOffset));
__ Assert(equal, kWrongFunctionContext);
}
__ call(FieldOperand(func, JSFunction::kCodeEntryOffset));
AddSafepointAndDeopt(instr);
break;
}
case kArchJmp:
__ jmp(code()->GetLabel(i.InputBlock(0)));
break;
case kArchNop:
// don't emit code for nops.
break;
case kArchRet:
AssembleReturn();
break;
case kArchTruncateDoubleToI:
__ TruncateDoubleToI(i.OutputRegister(), i.InputDoubleRegister(0));
break;
case kIA32Add:
if (HasImmediateInput(instr, 1)) {
__ add(i.InputOperand(0), i.InputImmediate(1));
} else {
__ add(i.InputRegister(0), i.InputOperand(1));
}
break;
case kIA32And:
if (HasImmediateInput(instr, 1)) {
__ and_(i.InputOperand(0), i.InputImmediate(1));
} else {
__ and_(i.InputRegister(0), i.InputOperand(1));
}
break;
case kIA32Cmp:
if (HasImmediateInput(instr, 1)) {
__ cmp(i.InputOperand(0), i.InputImmediate(1));
} else {
__ cmp(i.InputRegister(0), i.InputOperand(1));
}
break;
case kIA32Test:
if (HasImmediateInput(instr, 1)) {
__ test(i.InputOperand(0), i.InputImmediate(1));
} else {
__ test(i.InputRegister(0), i.InputOperand(1));
}
break;
case kIA32Imul:
if (HasImmediateInput(instr, 1)) {
__ imul(i.OutputRegister(), i.InputOperand(0), i.InputInt32(1));
} else {
__ imul(i.OutputRegister(), i.InputOperand(1));
}
break;
case kIA32Idiv:
__ cdq();
__ idiv(i.InputOperand(1));
break;
case kIA32Udiv:
__ xor_(edx, edx);
__ div(i.InputOperand(1));
break;
case kIA32Not:
__ not_(i.OutputOperand());
break;
case kIA32Neg:
__ neg(i.OutputOperand());
break;
case kIA32Or:
if (HasImmediateInput(instr, 1)) {
__ or_(i.InputOperand(0), i.InputImmediate(1));
} else {
__ or_(i.InputRegister(0), i.InputOperand(1));
}
break;
case kIA32Xor:
if (HasImmediateInput(instr, 1)) {
__ xor_(i.InputOperand(0), i.InputImmediate(1));
} else {
__ xor_(i.InputRegister(0), i.InputOperand(1));
}
break;
case kIA32Sub:
if (HasImmediateInput(instr, 1)) {
__ sub(i.InputOperand(0), i.InputImmediate(1));
} else {
__ sub(i.InputRegister(0), i.InputOperand(1));
}
break;
case kIA32Shl:
if (HasImmediateInput(instr, 1)) {
__ shl(i.OutputRegister(), i.InputInt5(1));
} else {
__ shl_cl(i.OutputRegister());
}
break;
case kIA32Shr:
if (HasImmediateInput(instr, 1)) {
__ shr(i.OutputRegister(), i.InputInt5(1));
} else {
__ shr_cl(i.OutputRegister());
}
break;
case kIA32Sar:
if (HasImmediateInput(instr, 1)) {
__ sar(i.OutputRegister(), i.InputInt5(1));
} else {
__ sar_cl(i.OutputRegister());
}
break;
case kIA32Ror:
if (HasImmediateInput(instr, 1)) {
__ ror(i.OutputRegister(), i.InputInt5(1));
} else {
__ ror_cl(i.OutputRegister());
}
break;
case kSSEFloat64Cmp:
__ ucomisd(i.InputDoubleRegister(0), i.InputOperand(1));
break;
case kSSEFloat64Add:
__ addsd(i.InputDoubleRegister(0), i.InputDoubleRegister(1));
break;
case kSSEFloat64Sub:
__ subsd(i.InputDoubleRegister(0), i.InputDoubleRegister(1));
break;
case kSSEFloat64Mul:
__ mulsd(i.InputDoubleRegister(0), i.InputDoubleRegister(1));
break;
case kSSEFloat64Div:
__ divsd(i.InputDoubleRegister(0), i.InputDoubleRegister(1));
break;
case kSSEFloat64Mod: {
// TODO(dcarney): alignment is wrong.
__ sub(esp, Immediate(kDoubleSize));
// Move values to st(0) and st(1).
__ movsd(Operand(esp, 0), i.InputDoubleRegister(1));
__ fld_d(Operand(esp, 0));
__ movsd(Operand(esp, 0), i.InputDoubleRegister(0));
__ fld_d(Operand(esp, 0));
// Loop while fprem isn't done.
Label mod_loop;
__ bind(&mod_loop);
// This instructions traps on all kinds inputs, but we are assuming the
// floating point control word is set to ignore them all.
__ fprem();
// The following 2 instruction implicitly use eax.
__ fnstsw_ax();
__ sahf();
__ j(parity_even, &mod_loop);
// Move output to stack and clean up.
__ fstp(1);
__ fstp_d(Operand(esp, 0));
__ movsd(i.OutputDoubleRegister(), Operand(esp, 0));
__ add(esp, Immediate(kDoubleSize));
break;
}
case kSSEFloat64Sqrt:
__ sqrtsd(i.OutputDoubleRegister(), i.InputOperand(0));
break;
case kSSEFloat64ToInt32:
__ cvttsd2si(i.OutputRegister(), i.InputOperand(0));
break;
case kSSEFloat64ToUint32: {
XMMRegister scratch = xmm0;
__ Move(scratch, -2147483648.0);
__ addsd(scratch, i.InputOperand(0));
__ cvttsd2si(i.OutputRegister(), scratch);
__ add(i.OutputRegister(), Immediate(0x80000000));
break;
}
case kSSEInt32ToFloat64:
__ cvtsi2sd(i.OutputDoubleRegister(), i.InputOperand(0));
break;
case kSSEUint32ToFloat64:
// TODO(turbofan): IA32 SSE LoadUint32() should take an operand.
__ LoadUint32(i.OutputDoubleRegister(), i.InputRegister(0));
break;
case kIA32Movsxbl:
__ movsx_b(i.OutputRegister(), i.MemoryOperand());
break;
case kIA32Movzxbl:
__ movzx_b(i.OutputRegister(), i.MemoryOperand());
break;
case kIA32Movb: {
int index = 0;
Operand operand = i.MemoryOperand(&index);
if (HasImmediateInput(instr, index)) {
__ mov_b(operand, i.InputInt8(index));
} else {
__ mov_b(operand, i.InputRegister(index));
}
break;
}
case kIA32Movsxwl:
__ movsx_w(i.OutputRegister(), i.MemoryOperand());
break;
case kIA32Movzxwl:
__ movzx_w(i.OutputRegister(), i.MemoryOperand());
break;
case kIA32Movw: {
int index = 0;
Operand operand = i.MemoryOperand(&index);
if (HasImmediateInput(instr, index)) {
__ mov_w(operand, i.InputInt16(index));
} else {
__ mov_w(operand, i.InputRegister(index));
}
break;
}
case kIA32Movl:
if (instr->HasOutput()) {
__ mov(i.OutputRegister(), i.MemoryOperand());
} else {
int index = 0;
Operand operand = i.MemoryOperand(&index);
if (HasImmediateInput(instr, index)) {
__ mov(operand, i.InputImmediate(index));
} else {
__ mov(operand, i.InputRegister(index));
}
}
break;
case kIA32Movsd:
if (instr->HasOutput()) {
__ movsd(i.OutputDoubleRegister(), i.MemoryOperand());
} else {
int index = 0;
Operand operand = i.MemoryOperand(&index);
__ movsd(operand, i.InputDoubleRegister(index));
}
break;
case kIA32Movss:
if (instr->HasOutput()) {
__ movss(i.OutputDoubleRegister(), i.MemoryOperand());
__ cvtss2sd(i.OutputDoubleRegister(), i.OutputDoubleRegister());
} else {
int index = 0;
Operand operand = i.MemoryOperand(&index);
__ cvtsd2ss(xmm0, i.InputDoubleRegister(index));
__ movss(operand, xmm0);
}
break;
case kIA32Push:
if (HasImmediateInput(instr, 0)) {
__ push(i.InputImmediate(0));
} else {
__ push(i.InputOperand(0));
}
break;
case kIA32StoreWriteBarrier: {
Register object = i.InputRegister(0);
Register index = i.InputRegister(1);
Register value = i.InputRegister(2);
__ mov(Operand(object, index, times_1, 0), value);
__ lea(index, Operand(object, index, times_1, 0));
SaveFPRegsMode mode = code_->frame()->DidAllocateDoubleRegisters()
? kSaveFPRegs
: kDontSaveFPRegs;
__ RecordWrite(object, index, value, mode);
break;
}
}
}
// Assembles branches after an instruction.
void CodeGenerator::AssembleArchBranch(Instruction* instr,
FlagsCondition condition) {
IA32OperandConverter i(this, instr);
Label done;
// Emit a branch. The true and false targets are always the last two inputs
// to the instruction.
BasicBlock* tblock = i.InputBlock(instr->InputCount() - 2);
BasicBlock* fblock = i.InputBlock(instr->InputCount() - 1);
bool fallthru = IsNextInAssemblyOrder(fblock);
Label* tlabel = code()->GetLabel(tblock);
Label* flabel = fallthru ? &done : code()->GetLabel(fblock);
Label::Distance flabel_distance = fallthru ? Label::kNear : Label::kFar;
switch (condition) {
case kUnorderedEqual:
__ j(parity_even, flabel, flabel_distance);
// Fall through.
case kEqual:
__ j(equal, tlabel);
break;
case kUnorderedNotEqual:
__ j(parity_even, tlabel);
// Fall through.
case kNotEqual:
__ j(not_equal, tlabel);
break;
case kSignedLessThan:
__ j(less, tlabel);
break;
case kSignedGreaterThanOrEqual:
__ j(greater_equal, tlabel);
break;
case kSignedLessThanOrEqual:
__ j(less_equal, tlabel);
break;
case kSignedGreaterThan:
__ j(greater, tlabel);
break;
case kUnorderedLessThan:
__ j(parity_even, flabel, flabel_distance);
// Fall through.
case kUnsignedLessThan:
__ j(below, tlabel);
break;
case kUnorderedGreaterThanOrEqual:
__ j(parity_even, tlabel);
// Fall through.
case kUnsignedGreaterThanOrEqual:
__ j(above_equal, tlabel);
break;
case kUnorderedLessThanOrEqual:
__ j(parity_even, flabel, flabel_distance);
// Fall through.
case kUnsignedLessThanOrEqual:
__ j(below_equal, tlabel);
break;
case kUnorderedGreaterThan:
__ j(parity_even, tlabel);
// Fall through.
case kUnsignedGreaterThan:
__ j(above, tlabel);
break;
case kOverflow:
__ j(overflow, tlabel);
break;
case kNotOverflow:
__ j(no_overflow, tlabel);
break;
}
if (!fallthru) __ jmp(flabel, flabel_distance); // no fallthru to flabel.
__ bind(&done);
}
// Assembles boolean materializations after an instruction.
void CodeGenerator::AssembleArchBoolean(Instruction* instr,
FlagsCondition condition) {
IA32OperandConverter i(this, instr);
Label done;
// Materialize a full 32-bit 1 or 0 value. The result register is always the
// last output of the instruction.
Label check;
DCHECK_NE(0, instr->OutputCount());
Register reg = i.OutputRegister(instr->OutputCount() - 1);
Condition cc = no_condition;
switch (condition) {
case kUnorderedEqual:
__ j(parity_odd, &check, Label::kNear);
__ mov(reg, Immediate(0));
__ jmp(&done, Label::kNear);
// Fall through.
case kEqual:
cc = equal;
break;
case kUnorderedNotEqual:
__ j(parity_odd, &check, Label::kNear);
__ mov(reg, Immediate(1));
__ jmp(&done, Label::kNear);
// Fall through.
case kNotEqual:
cc = not_equal;
break;
case kSignedLessThan:
cc = less;
break;
case kSignedGreaterThanOrEqual:
cc = greater_equal;
break;
case kSignedLessThanOrEqual:
cc = less_equal;
break;
case kSignedGreaterThan:
cc = greater;
break;
case kUnorderedLessThan:
__ j(parity_odd, &check, Label::kNear);
__ mov(reg, Immediate(0));
__ jmp(&done, Label::kNear);
// Fall through.
case kUnsignedLessThan:
cc = below;
break;
case kUnorderedGreaterThanOrEqual:
__ j(parity_odd, &check, Label::kNear);
__ mov(reg, Immediate(1));
__ jmp(&done, Label::kNear);
// Fall through.
case kUnsignedGreaterThanOrEqual:
cc = above_equal;
break;
case kUnorderedLessThanOrEqual:
__ j(parity_odd, &check, Label::kNear);
__ mov(reg, Immediate(0));
__ jmp(&done, Label::kNear);
// Fall through.
case kUnsignedLessThanOrEqual:
cc = below_equal;
break;
case kUnorderedGreaterThan:
__ j(parity_odd, &check, Label::kNear);
__ mov(reg, Immediate(1));
__ jmp(&done, Label::kNear);
// Fall through.
case kUnsignedGreaterThan:
cc = above;
break;
case kOverflow:
cc = overflow;
break;
case kNotOverflow:
cc = no_overflow;
break;
}
__ bind(&check);
if (reg.is_byte_register()) {
// setcc for byte registers (al, bl, cl, dl).
__ setcc(cc, reg);
__ movzx_b(reg, reg);
} else {
// Emit a branch to set a register to either 1 or 0.
Label set;
__ j(cc, &set, Label::kNear);
__ mov(reg, Immediate(0));
__ jmp(&done, Label::kNear);
__ bind(&set);
__ mov(reg, Immediate(1));
}
__ bind(&done);
}
void CodeGenerator::AssembleDeoptimizerCall(int deoptimization_id) {
Address deopt_entry = Deoptimizer::GetDeoptimizationEntry(
isolate(), deoptimization_id, Deoptimizer::LAZY);
__ call(deopt_entry, RelocInfo::RUNTIME_ENTRY);
}
// The calling convention for JSFunctions on IA32 passes arguments on the
// stack and the JSFunction and context in EDI and ESI, respectively, thus
// the steps of the call look as follows:
// --{ before the call instruction }--------------------------------------------
// | caller frame |
// ^ esp ^ ebp
// --{ push arguments and setup ESI, EDI }--------------------------------------
// | args + receiver | caller frame |
// ^ esp ^ ebp
// [edi = JSFunction, esi = context]
// --{ call [edi + kCodeEntryOffset] }------------------------------------------
// | RET | args + receiver | caller frame |
// ^ esp ^ ebp
// =={ prologue of called function }============================================
// --{ push ebp }---------------------------------------------------------------
// | FP | RET | args + receiver | caller frame |
// ^ esp ^ ebp
// --{ mov ebp, esp }-----------------------------------------------------------
// | FP | RET | args + receiver | caller frame |
// ^ ebp,esp
// --{ push esi }---------------------------------------------------------------
// | CTX | FP | RET | args + receiver | caller frame |
// ^esp ^ ebp
// --{ push edi }---------------------------------------------------------------
// | FNC | CTX | FP | RET | args + receiver | caller frame |
// ^esp ^ ebp
// --{ subi esp, #N }-----------------------------------------------------------
// | callee frame | FNC | CTX | FP | RET | args + receiver | caller frame |
// ^esp ^ ebp
// =={ body of called function }================================================
// =={ epilogue of called function }============================================
// --{ mov esp, ebp }-----------------------------------------------------------
// | FP | RET | args + receiver | caller frame |
// ^ esp,ebp
// --{ pop ebp }-----------------------------------------------------------
// | | RET | args + receiver | caller frame |
// ^ esp ^ ebp
// --{ ret #A+1 }-----------------------------------------------------------
// | | caller frame |
// ^ esp ^ ebp
// Runtime function calls are accomplished by doing a stub call to the
// CEntryStub (a real code object). On IA32 passes arguments on the
// stack, the number of arguments in EAX, the address of the runtime function
// in EBX, and the context in ESI.
// --{ before the call instruction }--------------------------------------------
// | caller frame |
// ^ esp ^ ebp
// --{ push arguments and setup EAX, EBX, and ESI }-----------------------------
// | args + receiver | caller frame |
// ^ esp ^ ebp
// [eax = #args, ebx = runtime function, esi = context]
// --{ call #CEntryStub }-------------------------------------------------------
// | RET | args + receiver | caller frame |
// ^ esp ^ ebp
// =={ body of runtime function }===============================================
// --{ runtime returns }--------------------------------------------------------
// | caller frame |
// ^ esp ^ ebp
// Other custom linkages (e.g. for calling directly into and out of C++) may
// need to save callee-saved registers on the stack, which is done in the
// function prologue of generated code.
// --{ before the call instruction }--------------------------------------------
// | caller frame |
// ^ esp ^ ebp
// --{ set up arguments in registers on stack }---------------------------------
// | args | caller frame |
// ^ esp ^ ebp
// [r0 = arg0, r1 = arg1, ...]
// --{ call code }--------------------------------------------------------------
// | RET | args | caller frame |
// ^ esp ^ ebp
// =={ prologue of called function }============================================
// --{ push ebp }---------------------------------------------------------------
// | FP | RET | args | caller frame |
// ^ esp ^ ebp
// --{ mov ebp, esp }-----------------------------------------------------------
// | FP | RET | args | caller frame |
// ^ ebp,esp
// --{ save registers }---------------------------------------------------------
// | regs | FP | RET | args | caller frame |
// ^ esp ^ ebp
// --{ subi esp, #N }-----------------------------------------------------------
// | callee frame | regs | FP | RET | args | caller frame |
// ^esp ^ ebp
// =={ body of called function }================================================
// =={ epilogue of called function }============================================
// --{ restore registers }------------------------------------------------------
// | regs | FP | RET | args | caller frame |
// ^ esp ^ ebp
// --{ mov esp, ebp }-----------------------------------------------------------
// | FP | RET | args | caller frame |
// ^ esp,ebp
// --{ pop ebp }----------------------------------------------------------------
// | RET | args | caller frame |
// ^ esp ^ ebp
void CodeGenerator::AssemblePrologue() {
CallDescriptor* descriptor = linkage()->GetIncomingDescriptor();
Frame* frame = code_->frame();
int stack_slots = frame->GetSpillSlotCount();
if (descriptor->kind() == CallDescriptor::kCallAddress) {
// Assemble a prologue similar the to cdecl calling convention.
__ push(ebp);
__ mov(ebp, esp);
const RegList saves = descriptor->CalleeSavedRegisters();
if (saves != 0) { // Save callee-saved registers.
int register_save_area_size = 0;
for (int i = Register::kNumRegisters - 1; i >= 0; i--) {
if (!((1 << i) & saves)) continue;
__ push(Register::from_code(i));
register_save_area_size += kPointerSize;
}
frame->SetRegisterSaveAreaSize(register_save_area_size);
}
} else if (descriptor->IsJSFunctionCall()) {
CompilationInfo* info = linkage()->info();
__ Prologue(info->IsCodePreAgingActive());
frame->SetRegisterSaveAreaSize(
StandardFrameConstants::kFixedFrameSizeFromFp);
// Sloppy mode functions and builtins need to replace the receiver with the
// global proxy when called as functions (without an explicit receiver
// object).
// TODO(mstarzinger/verwaest): Should this be moved back into the CallIC?
if (info->strict_mode() == SLOPPY && !info->is_native()) {
Label ok;
// +2 for return address and saved frame pointer.
int receiver_slot = info->scope()->num_parameters() + 2;
__ mov(ecx, Operand(ebp, receiver_slot * kPointerSize));
__ cmp(ecx, isolate()->factory()->undefined_value());
__ j(not_equal, &ok, Label::kNear);
__ mov(ecx, GlobalObjectOperand());
__ mov(ecx, FieldOperand(ecx, GlobalObject::kGlobalProxyOffset));
__ mov(Operand(ebp, receiver_slot * kPointerSize), ecx);
__ bind(&ok);
}
} else {
__ StubPrologue();
frame->SetRegisterSaveAreaSize(
StandardFrameConstants::kFixedFrameSizeFromFp);
}
if (stack_slots > 0) {
__ sub(esp, Immediate(stack_slots * kPointerSize));
}
}
void CodeGenerator::AssembleReturn() {
CallDescriptor* descriptor = linkage()->GetIncomingDescriptor();
if (descriptor->kind() == CallDescriptor::kCallAddress) {
const RegList saves = descriptor->CalleeSavedRegisters();
if (frame()->GetRegisterSaveAreaSize() > 0) {
// Remove this frame's spill slots first.
int stack_slots = frame()->GetSpillSlotCount();
if (stack_slots > 0) {
__ add(esp, Immediate(stack_slots * kPointerSize));
}
// Restore registers.
if (saves != 0) {
for (int i = 0; i < Register::kNumRegisters; i++) {
if (!((1 << i) & saves)) continue;
__ pop(Register::from_code(i));
}
}
__ pop(ebp); // Pop caller's frame pointer.
__ ret(0);
} else {
// No saved registers.
__ mov(esp, ebp); // Move stack pointer back to frame pointer.
__ pop(ebp); // Pop caller's frame pointer.
__ ret(0);
}
} else {
__ mov(esp, ebp); // Move stack pointer back to frame pointer.
__ pop(ebp); // Pop caller's frame pointer.
int pop_count = descriptor->IsJSFunctionCall()
? static_cast<int>(descriptor->JSParameterCount())
: 0;
__ ret(pop_count * kPointerSize);
}
}
void CodeGenerator::AssembleMove(InstructionOperand* source,
InstructionOperand* destination) {
IA32OperandConverter g(this, NULL);
// Dispatch on the source and destination operand kinds. Not all
// combinations are possible.
if (source->IsRegister()) {
DCHECK(destination->IsRegister() || destination->IsStackSlot());
Register src = g.ToRegister(source);
Operand dst = g.ToOperand(destination);
__ mov(dst, src);
} else if (source->IsStackSlot()) {
DCHECK(destination->IsRegister() || destination->IsStackSlot());
Operand src = g.ToOperand(source);
if (destination->IsRegister()) {
Register dst = g.ToRegister(destination);
__ mov(dst, src);
} else {
Operand dst = g.ToOperand(destination);
__ push(src);
__ pop(dst);
}
} else if (source->IsConstant()) {
Constant src_constant = g.ToConstant(source);
if (src_constant.type() == Constant::kHeapObject) {
Handle<HeapObject> src = src_constant.ToHeapObject();
if (destination->IsRegister()) {
Register dst = g.ToRegister(destination);
__ LoadHeapObject(dst, src);
} else {
DCHECK(destination->IsStackSlot());
Operand dst = g.ToOperand(destination);
AllowDeferredHandleDereference embedding_raw_address;
if (isolate()->heap()->InNewSpace(*src)) {
__ PushHeapObject(src);
__ pop(dst);
} else {
__ mov(dst, src);
}
}
} else if (destination->IsRegister()) {
Register dst = g.ToRegister(destination);
__ mov(dst, g.ToImmediate(source));
} else if (destination->IsStackSlot()) {
Operand dst = g.ToOperand(destination);
__ mov(dst, g.ToImmediate(source));
} else {
double v = g.ToDouble(source);
uint64_t int_val = bit_cast<uint64_t, double>(v);
int32_t lower = static_cast<int32_t>(int_val);
int32_t upper = static_cast<int32_t>(int_val >> kBitsPerInt);
if (destination->IsDoubleRegister()) {
XMMRegister dst = g.ToDoubleRegister(destination);
__ Move(dst, v);
} else {
DCHECK(destination->IsDoubleStackSlot());
Operand dst0 = g.ToOperand(destination);
Operand dst1 = g.HighOperand(destination);
__ mov(dst0, Immediate(lower));
__ mov(dst1, Immediate(upper));
}
}
} else if (source->IsDoubleRegister()) {
XMMRegister src = g.ToDoubleRegister(source);
if (destination->IsDoubleRegister()) {
XMMRegister dst = g.ToDoubleRegister(destination);
__ movaps(dst, src);
} else {
DCHECK(destination->IsDoubleStackSlot());
Operand dst = g.ToOperand(destination);
__ movsd(dst, src);
}
} else if (source->IsDoubleStackSlot()) {
DCHECK(destination->IsDoubleRegister() || destination->IsDoubleStackSlot());
Operand src = g.ToOperand(source);
if (destination->IsDoubleRegister()) {
XMMRegister dst = g.ToDoubleRegister(destination);
__ movsd(dst, src);
} else {
// We rely on having xmm0 available as a fixed scratch register.
Operand dst = g.ToOperand(destination);
__ movsd(xmm0, src);
__ movsd(dst, xmm0);
}
} else {
UNREACHABLE();
}
}
void CodeGenerator::AssembleSwap(InstructionOperand* source,
InstructionOperand* destination) {
IA32OperandConverter g(this, NULL);
// Dispatch on the source and destination operand kinds. Not all
// combinations are possible.
if (source->IsRegister() && destination->IsRegister()) {
// Register-register.
Register src = g.ToRegister(source);
Register dst = g.ToRegister(destination);
__ xchg(dst, src);
} else if (source->IsRegister() && destination->IsStackSlot()) {
// Register-memory.
__ xchg(g.ToRegister(source), g.ToOperand(destination));
} else if (source->IsStackSlot() && destination->IsStackSlot()) {
// Memory-memory.
Operand src = g.ToOperand(source);
Operand dst = g.ToOperand(destination);
__ push(dst);
__ push(src);
__ pop(dst);
__ pop(src);
} else if (source->IsDoubleRegister() && destination->IsDoubleRegister()) {
// XMM register-register swap. We rely on having xmm0
// available as a fixed scratch register.
XMMRegister src = g.ToDoubleRegister(source);
XMMRegister dst = g.ToDoubleRegister(destination);
__ movaps(xmm0, src);
__ movaps(src, dst);
__ movaps(dst, xmm0);
} else if (source->IsDoubleRegister() && source->IsDoubleStackSlot()) {
// XMM register-memory swap. We rely on having xmm0
// available as a fixed scratch register.
XMMRegister reg = g.ToDoubleRegister(source);
Operand other = g.ToOperand(destination);
__ movsd(xmm0, other);
__ movsd(other, reg);
__ movaps(reg, xmm0);
} else if (source->IsDoubleStackSlot() && destination->IsDoubleStackSlot()) {
// Double-width memory-to-memory.
Operand src0 = g.ToOperand(source);
Operand src1 = g.HighOperand(source);
Operand dst0 = g.ToOperand(destination);
Operand dst1 = g.HighOperand(destination);
__ movsd(xmm0, dst0); // Save destination in xmm0.
__ push(src0); // Then use stack to copy source to destination.
__ pop(dst0);
__ push(src1);
__ pop(dst1);
__ movsd(src0, xmm0);
} else {
// No other combinations are possible.
UNREACHABLE();
}
}
void CodeGenerator::AddNopForSmiCodeInlining() { __ nop(); }
void CodeGenerator::EnsureSpaceForLazyDeopt() {
int space_needed = Deoptimizer::patch_size();
if (!linkage()->info()->IsStub()) {
// Ensure that we have enough space after the previous lazy-bailout
// instruction for patching the code here.
int current_pc = masm()->pc_offset();
if (current_pc < last_lazy_deopt_pc_ + space_needed) {
int padding_size = last_lazy_deopt_pc_ + space_needed - current_pc;
__ Nop(padding_size);
}
}
MarkLazyDeoptSite();
}
#undef __
} // namespace compiler
} // namespace internal
} // namespace v8