// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/compiler/instruction-selector-impl.h"
#include "src/compiler/node-matchers.h"
namespace v8 {
namespace internal {
namespace compiler {
enum ImmediateMode {
kArithmeticImm, // 12 bit unsigned immediate shifted left 0 or 12 bits
kShift32Imm, // 0 - 31
kShift64Imm, // 0 - 63
kLogical32Imm,
kLogical64Imm,
kLoadStoreImm8, // signed 8 bit or 12 bit unsigned scaled by access size
kLoadStoreImm16,
kLoadStoreImm32,
kLoadStoreImm64,
kNoImmediate
};
// Adds Arm64-specific methods for generating operands.
class Arm64OperandGenerator FINAL : public OperandGenerator {
public:
explicit Arm64OperandGenerator(InstructionSelector* selector)
: OperandGenerator(selector) {}
InstructionOperand* UseOperand(Node* node, ImmediateMode mode) {
if (CanBeImmediate(node, mode)) {
return UseImmediate(node);
}
return UseRegister(node);
}
bool CanBeImmediate(Node* node, ImmediateMode mode) {
int64_t value;
if (node->opcode() == IrOpcode::kInt32Constant)
value = OpParameter<int32_t>(node);
else if (node->opcode() == IrOpcode::kInt64Constant)
value = OpParameter<int64_t>(node);
else
return false;
unsigned ignored;
switch (mode) {
case kLogical32Imm:
// TODO(dcarney): some unencodable values can be handled by
// switching instructions.
return Assembler::IsImmLogical(static_cast<uint64_t>(value), 32,
&ignored, &ignored, &ignored);
case kLogical64Imm:
return Assembler::IsImmLogical(static_cast<uint64_t>(value), 64,
&ignored, &ignored, &ignored);
case kArithmeticImm:
// TODO(dcarney): -values can be handled by instruction swapping
return Assembler::IsImmAddSub(value);
case kShift32Imm:
return 0 <= value && value < 32;
case kShift64Imm:
return 0 <= value && value < 64;
case kLoadStoreImm8:
return IsLoadStoreImmediate(value, LSByte);
case kLoadStoreImm16:
return IsLoadStoreImmediate(value, LSHalfword);
case kLoadStoreImm32:
return IsLoadStoreImmediate(value, LSWord);
case kLoadStoreImm64:
return IsLoadStoreImmediate(value, LSDoubleWord);
case kNoImmediate:
return false;
}
return false;
}
private:
bool IsLoadStoreImmediate(int64_t value, LSDataSize size) {
return Assembler::IsImmLSScaled(value, size) ||
Assembler::IsImmLSUnscaled(value);
}
};
static void VisitRRR(InstructionSelector* selector, ArchOpcode opcode,
Node* node) {
Arm64OperandGenerator g(selector);
selector->Emit(opcode, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)),
g.UseRegister(node->InputAt(1)));
}
static void VisitRRRFloat64(InstructionSelector* selector, ArchOpcode opcode,
Node* node) {
Arm64OperandGenerator g(selector);
selector->Emit(opcode, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)),
g.UseRegister(node->InputAt(1)));
}
static void VisitRRO(InstructionSelector* selector, ArchOpcode opcode,
Node* node, ImmediateMode operand_mode) {
Arm64OperandGenerator g(selector);
selector->Emit(opcode, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)),
g.UseOperand(node->InputAt(1), operand_mode));
}
// Shared routine for multiple binary operations.
template <typename Matcher>
static void VisitBinop(InstructionSelector* selector, Node* node,
InstructionCode opcode, ImmediateMode operand_mode,
FlagsContinuation* cont) {
Arm64OperandGenerator g(selector);
Matcher m(node);
InstructionOperand* inputs[4];
size_t input_count = 0;
InstructionOperand* outputs[2];
size_t output_count = 0;
inputs[input_count++] = g.UseRegister(m.left().node());
inputs[input_count++] = g.UseOperand(m.right().node(), operand_mode);
if (cont->IsBranch()) {
inputs[input_count++] = g.Label(cont->true_block());
inputs[input_count++] = g.Label(cont->false_block());
}
outputs[output_count++] = g.DefineAsRegister(node);
if (cont->IsSet()) {
outputs[output_count++] = g.DefineAsRegister(cont->result());
}
DCHECK_NE(0, input_count);
DCHECK_NE(0, output_count);
DCHECK_GE(arraysize(inputs), input_count);
DCHECK_GE(arraysize(outputs), output_count);
Instruction* instr = selector->Emit(cont->Encode(opcode), output_count,
outputs, input_count, inputs);
if (cont->IsBranch()) instr->MarkAsControl();
}
// Shared routine for multiple binary operations.
template <typename Matcher>
static void VisitBinop(InstructionSelector* selector, Node* node,
ArchOpcode opcode, ImmediateMode operand_mode) {
FlagsContinuation cont;
VisitBinop<Matcher>(selector, node, opcode, operand_mode, &cont);
}
void InstructionSelector::VisitLoad(Node* node) {
MachineType rep = RepresentationOf(OpParameter<LoadRepresentation>(node));
MachineType typ = TypeOf(OpParameter<LoadRepresentation>(node));
Arm64OperandGenerator g(this);
Node* base = node->InputAt(0);
Node* index = node->InputAt(1);
ArchOpcode opcode;
ImmediateMode immediate_mode = kNoImmediate;
switch (rep) {
case kRepFloat32:
opcode = kArm64LdrS;
immediate_mode = kLoadStoreImm32;
break;
case kRepFloat64:
opcode = kArm64LdrD;
immediate_mode = kLoadStoreImm64;
break;
case kRepBit: // Fall through.
case kRepWord8:
opcode = typ == kTypeInt32 ? kArm64Ldrsb : kArm64Ldrb;
immediate_mode = kLoadStoreImm8;
break;
case kRepWord16:
opcode = typ == kTypeInt32 ? kArm64Ldrsh : kArm64Ldrh;
immediate_mode = kLoadStoreImm16;
break;
case kRepWord32:
opcode = kArm64LdrW;
immediate_mode = kLoadStoreImm32;
break;
case kRepTagged: // Fall through.
case kRepWord64:
opcode = kArm64Ldr;
immediate_mode = kLoadStoreImm64;
break;
default:
UNREACHABLE();
return;
}
if (g.CanBeImmediate(index, immediate_mode)) {
Emit(opcode | AddressingModeField::encode(kMode_MRI),
g.DefineAsRegister(node), g.UseRegister(base), g.UseImmediate(index));
} else {
Emit(opcode | AddressingModeField::encode(kMode_MRR),
g.DefineAsRegister(node), g.UseRegister(base), g.UseRegister(index));
}
}
void InstructionSelector::VisitStore(Node* node) {
Arm64OperandGenerator g(this);
Node* base = node->InputAt(0);
Node* index = node->InputAt(1);
Node* value = node->InputAt(2);
StoreRepresentation store_rep = OpParameter<StoreRepresentation>(node);
MachineType rep = RepresentationOf(store_rep.machine_type());
if (store_rep.write_barrier_kind() == kFullWriteBarrier) {
DCHECK(rep == kRepTagged);
// TODO(dcarney): refactor RecordWrite function to take temp registers
// and pass them here instead of using fixed regs
// TODO(dcarney): handle immediate indices.
InstructionOperand* temps[] = {g.TempRegister(x11), g.TempRegister(x12)};
Emit(kArm64StoreWriteBarrier, NULL, g.UseFixed(base, x10),
g.UseFixed(index, x11), g.UseFixed(value, x12), arraysize(temps),
temps);
return;
}
DCHECK_EQ(kNoWriteBarrier, store_rep.write_barrier_kind());
ArchOpcode opcode;
ImmediateMode immediate_mode = kNoImmediate;
switch (rep) {
case kRepFloat32:
opcode = kArm64StrS;
immediate_mode = kLoadStoreImm32;
break;
case kRepFloat64:
opcode = kArm64StrD;
immediate_mode = kLoadStoreImm64;
break;
case kRepBit: // Fall through.
case kRepWord8:
opcode = kArm64Strb;
immediate_mode = kLoadStoreImm8;
break;
case kRepWord16:
opcode = kArm64Strh;
immediate_mode = kLoadStoreImm16;
break;
case kRepWord32:
opcode = kArm64StrW;
immediate_mode = kLoadStoreImm32;
break;
case kRepTagged: // Fall through.
case kRepWord64:
opcode = kArm64Str;
immediate_mode = kLoadStoreImm64;
break;
default:
UNREACHABLE();
return;
}
if (g.CanBeImmediate(index, immediate_mode)) {
Emit(opcode | AddressingModeField::encode(kMode_MRI), NULL,
g.UseRegister(base), g.UseImmediate(index), g.UseRegister(value));
} else {
Emit(opcode | AddressingModeField::encode(kMode_MRR), NULL,
g.UseRegister(base), g.UseRegister(index), g.UseRegister(value));
}
}
void InstructionSelector::VisitWord32And(Node* node) {
VisitBinop<Int32BinopMatcher>(this, node, kArm64And32, kLogical32Imm);
}
void InstructionSelector::VisitWord64And(Node* node) {
VisitBinop<Int64BinopMatcher>(this, node, kArm64And, kLogical64Imm);
}
void InstructionSelector::VisitWord32Or(Node* node) {
VisitBinop<Int32BinopMatcher>(this, node, kArm64Or32, kLogical32Imm);
}
void InstructionSelector::VisitWord64Or(Node* node) {
VisitBinop<Int64BinopMatcher>(this, node, kArm64Or, kLogical64Imm);
}
void InstructionSelector::VisitWord32Xor(Node* node) {
Arm64OperandGenerator g(this);
Int32BinopMatcher m(node);
if (m.right().Is(-1)) {
Emit(kArm64Not32, g.DefineAsRegister(node), g.UseRegister(m.left().node()));
} else {
VisitBinop<Int32BinopMatcher>(this, node, kArm64Xor32, kLogical32Imm);
}
}
void InstructionSelector::VisitWord64Xor(Node* node) {
Arm64OperandGenerator g(this);
Int64BinopMatcher m(node);
if (m.right().Is(-1)) {
Emit(kArm64Not, g.DefineAsRegister(node), g.UseRegister(m.left().node()));
} else {
VisitBinop<Int64BinopMatcher>(this, node, kArm64Xor, kLogical32Imm);
}
}
void InstructionSelector::VisitWord32Shl(Node* node) {
VisitRRO(this, kArm64Shl32, node, kShift32Imm);
}
void InstructionSelector::VisitWord64Shl(Node* node) {
VisitRRO(this, kArm64Shl, node, kShift64Imm);
}
void InstructionSelector::VisitWord32Shr(Node* node) {
VisitRRO(this, kArm64Shr32, node, kShift32Imm);
}
void InstructionSelector::VisitWord64Shr(Node* node) {
VisitRRO(this, kArm64Shr, node, kShift64Imm);
}
void InstructionSelector::VisitWord32Sar(Node* node) {
VisitRRO(this, kArm64Sar32, node, kShift32Imm);
}
void InstructionSelector::VisitWord64Sar(Node* node) {
VisitRRO(this, kArm64Sar, node, kShift64Imm);
}
void InstructionSelector::VisitWord32Ror(Node* node) {
VisitRRO(this, kArm64Ror32, node, kShift32Imm);
}
void InstructionSelector::VisitWord64Ror(Node* node) {
VisitRRO(this, kArm64Ror, node, kShift64Imm);
}
void InstructionSelector::VisitInt32Add(Node* node) {
VisitBinop<Int32BinopMatcher>(this, node, kArm64Add32, kArithmeticImm);
}
void InstructionSelector::VisitInt64Add(Node* node) {
VisitBinop<Int64BinopMatcher>(this, node, kArm64Add, kArithmeticImm);
}
void InstructionSelector::VisitInt32Sub(Node* node) {
Arm64OperandGenerator g(this);
Int32BinopMatcher m(node);
if (m.left().Is(0)) {
Emit(kArm64Neg32, g.DefineAsRegister(node),
g.UseRegister(m.right().node()));
} else {
VisitBinop<Int32BinopMatcher>(this, node, kArm64Sub32, kArithmeticImm);
}
}
void InstructionSelector::VisitInt64Sub(Node* node) {
Arm64OperandGenerator g(this);
Int64BinopMatcher m(node);
if (m.left().Is(0)) {
Emit(kArm64Neg, g.DefineAsRegister(node), g.UseRegister(m.right().node()));
} else {
VisitBinop<Int64BinopMatcher>(this, node, kArm64Sub, kArithmeticImm);
}
}
void InstructionSelector::VisitInt32Mul(Node* node) {
VisitRRR(this, kArm64Mul32, node);
}
void InstructionSelector::VisitInt64Mul(Node* node) {
VisitRRR(this, kArm64Mul, node);
}
void InstructionSelector::VisitInt32Div(Node* node) {
VisitRRR(this, kArm64Idiv32, node);
}
void InstructionSelector::VisitInt64Div(Node* node) {
VisitRRR(this, kArm64Idiv, node);
}
void InstructionSelector::VisitInt32UDiv(Node* node) {
VisitRRR(this, kArm64Udiv32, node);
}
void InstructionSelector::VisitInt64UDiv(Node* node) {
VisitRRR(this, kArm64Udiv, node);
}
void InstructionSelector::VisitInt32Mod(Node* node) {
VisitRRR(this, kArm64Imod32, node);
}
void InstructionSelector::VisitInt64Mod(Node* node) {
VisitRRR(this, kArm64Imod, node);
}
void InstructionSelector::VisitInt32UMod(Node* node) {
VisitRRR(this, kArm64Umod32, node);
}
void InstructionSelector::VisitInt64UMod(Node* node) {
VisitRRR(this, kArm64Umod, node);
}
void InstructionSelector::VisitChangeInt32ToFloat64(Node* node) {
Arm64OperandGenerator g(this);
Emit(kArm64Int32ToFloat64, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)));
}
void InstructionSelector::VisitChangeUint32ToFloat64(Node* node) {
Arm64OperandGenerator g(this);
Emit(kArm64Uint32ToFloat64, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)));
}
void InstructionSelector::VisitChangeFloat64ToInt32(Node* node) {
Arm64OperandGenerator g(this);
Emit(kArm64Float64ToInt32, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)));
}
void InstructionSelector::VisitChangeFloat64ToUint32(Node* node) {
Arm64OperandGenerator g(this);
Emit(kArm64Float64ToUint32, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)));
}
void InstructionSelector::VisitChangeInt32ToInt64(Node* node) {
Arm64OperandGenerator g(this);
Emit(kArm64Sxtw, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)));
}
void InstructionSelector::VisitChangeUint32ToUint64(Node* node) {
Arm64OperandGenerator g(this);
Emit(kArm64Mov32, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)));
}
void InstructionSelector::VisitTruncateInt64ToInt32(Node* node) {
Arm64OperandGenerator g(this);
Emit(kArm64Mov32, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)));
}
void InstructionSelector::VisitFloat64Add(Node* node) {
VisitRRRFloat64(this, kArm64Float64Add, node);
}
void InstructionSelector::VisitFloat64Sub(Node* node) {
VisitRRRFloat64(this, kArm64Float64Sub, node);
}
void InstructionSelector::VisitFloat64Mul(Node* node) {
VisitRRRFloat64(this, kArm64Float64Mul, node);
}
void InstructionSelector::VisitFloat64Div(Node* node) {
VisitRRRFloat64(this, kArm64Float64Div, node);
}
void InstructionSelector::VisitFloat64Mod(Node* node) {
Arm64OperandGenerator g(this);
Emit(kArm64Float64Mod, g.DefineAsFixed(node, d0),
g.UseFixed(node->InputAt(0), d0),
g.UseFixed(node->InputAt(1), d1))->MarkAsCall();
}
void InstructionSelector::VisitFloat64Sqrt(Node* node) {
Arm64OperandGenerator g(this);
Emit(kArm64Float64Sqrt, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)));
}
void InstructionSelector::VisitInt32AddWithOverflow(Node* node,
FlagsContinuation* cont) {
VisitBinop<Int32BinopMatcher>(this, node, kArm64Add32, kArithmeticImm, cont);
}
void InstructionSelector::VisitInt32SubWithOverflow(Node* node,
FlagsContinuation* cont) {
VisitBinop<Int32BinopMatcher>(this, node, kArm64Sub32, kArithmeticImm, cont);
}
// Shared routine for multiple compare operations.
static void VisitCompare(InstructionSelector* selector, InstructionCode opcode,
InstructionOperand* left, InstructionOperand* right,
FlagsContinuation* cont) {
Arm64OperandGenerator g(selector);
opcode = cont->Encode(opcode);
if (cont->IsBranch()) {
selector->Emit(opcode, NULL, left, right, g.Label(cont->true_block()),
g.Label(cont->false_block()))->MarkAsControl();
} else {
DCHECK(cont->IsSet());
selector->Emit(opcode, g.DefineAsRegister(cont->result()), left, right);
}
}
// Shared routine for multiple word compare operations.
static void VisitWordCompare(InstructionSelector* selector, Node* node,
InstructionCode opcode, FlagsContinuation* cont,
bool commutative) {
Arm64OperandGenerator g(selector);
Node* left = node->InputAt(0);
Node* right = node->InputAt(1);
// Match immediates on left or right side of comparison.
if (g.CanBeImmediate(right, kArithmeticImm)) {
VisitCompare(selector, opcode, g.UseRegister(left), g.UseImmediate(right),
cont);
} else if (g.CanBeImmediate(left, kArithmeticImm)) {
if (!commutative) cont->Commute();
VisitCompare(selector, opcode, g.UseRegister(right), g.UseImmediate(left),
cont);
} else {
VisitCompare(selector, opcode, g.UseRegister(left), g.UseRegister(right),
cont);
}
}
void InstructionSelector::VisitWord32Test(Node* node, FlagsContinuation* cont) {
switch (node->opcode()) {
case IrOpcode::kInt32Add:
return VisitWordCompare(this, node, kArm64Cmn32, cont, true);
case IrOpcode::kInt32Sub:
return VisitWordCompare(this, node, kArm64Cmp32, cont, false);
case IrOpcode::kWord32And:
return VisitWordCompare(this, node, kArm64Tst32, cont, true);
default:
break;
}
Arm64OperandGenerator g(this);
VisitCompare(this, kArm64Tst32, g.UseRegister(node), g.UseRegister(node),
cont);
}
void InstructionSelector::VisitWord64Test(Node* node, FlagsContinuation* cont) {
switch (node->opcode()) {
case IrOpcode::kWord64And:
return VisitWordCompare(this, node, kArm64Tst, cont, true);
default:
break;
}
Arm64OperandGenerator g(this);
VisitCompare(this, kArm64Tst, g.UseRegister(node), g.UseRegister(node), cont);
}
void InstructionSelector::VisitWord32Compare(Node* node,
FlagsContinuation* cont) {
VisitWordCompare(this, node, kArm64Cmp32, cont, false);
}
void InstructionSelector::VisitWord64Compare(Node* node,
FlagsContinuation* cont) {
VisitWordCompare(this, node, kArm64Cmp, cont, false);
}
void InstructionSelector::VisitFloat64Compare(Node* node,
FlagsContinuation* cont) {
Arm64OperandGenerator g(this);
Node* left = node->InputAt(0);
Node* right = node->InputAt(1);
VisitCompare(this, kArm64Float64Cmp, g.UseRegister(left),
g.UseRegister(right), cont);
}
void InstructionSelector::VisitCall(Node* call, BasicBlock* continuation,
BasicBlock* deoptimization) {
Arm64OperandGenerator g(this);
CallDescriptor* descriptor = OpParameter<CallDescriptor*>(call);
FrameStateDescriptor* frame_state_descriptor = NULL;
if (descriptor->NeedsFrameState()) {
frame_state_descriptor =
GetFrameStateDescriptor(call->InputAt(descriptor->InputCount()));
}
CallBuffer buffer(zone(), descriptor, frame_state_descriptor);
// Compute InstructionOperands for inputs and outputs.
// TODO(turbofan): on ARM64 it's probably better to use the code object in a
// register if there are multiple uses of it. Improve constant pool and the
// heuristics in the register allocator for where to emit constants.
InitializeCallBuffer(call, &buffer, true, false);
// Push the arguments to the stack.
bool pushed_count_uneven = buffer.pushed_nodes.size() & 1;
int aligned_push_count = buffer.pushed_nodes.size();
// TODO(dcarney): claim and poke probably take small immediates,
// loop here or whatever.
// Bump the stack pointer(s).
if (aligned_push_count > 0) {
// TODO(dcarney): it would be better to bump the csp here only
// and emit paired stores with increment for non c frames.
Emit(kArm64Claim | MiscField::encode(aligned_push_count), NULL);
}
// Move arguments to the stack.
{
int slot = buffer.pushed_nodes.size() - 1;
// Emit the uneven pushes.
if (pushed_count_uneven) {
Node* input = buffer.pushed_nodes[slot];
Emit(kArm64Poke | MiscField::encode(slot), NULL, g.UseRegister(input));
slot--;
}
// Now all pushes can be done in pairs.
for (; slot >= 0; slot -= 2) {
Emit(kArm64PokePair | MiscField::encode(slot), NULL,
g.UseRegister(buffer.pushed_nodes[slot]),
g.UseRegister(buffer.pushed_nodes[slot - 1]));
}
}
// Select the appropriate opcode based on the call type.
InstructionCode opcode;
switch (descriptor->kind()) {
case CallDescriptor::kCallCodeObject: {
opcode = kArchCallCodeObject;
break;
}
case CallDescriptor::kCallJSFunction:
opcode = kArchCallJSFunction;
break;
default:
UNREACHABLE();
return;
}
opcode |= MiscField::encode(descriptor->flags());
// Emit the call instruction.
Instruction* call_instr =
Emit(opcode, buffer.outputs.size(), &buffer.outputs.front(),
buffer.instruction_args.size(), &buffer.instruction_args.front());
call_instr->MarkAsCall();
if (deoptimization != NULL) {
DCHECK(continuation != NULL);
call_instr->MarkAsControl();
}
}
} // namespace compiler
} // namespace internal
} // namespace v8