// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/base/utils/random-number-generator.h"
#include <stdio.h>
#include <stdlib.h>
#include <new>
#include "src/base/macros.h"
#include "src/base/platform/mutex.h"
#include "src/base/platform/time.h"
namespace v8 {
namespace base {
static LazyMutex entropy_mutex = LAZY_MUTEX_INITIALIZER;
static RandomNumberGenerator::EntropySource entropy_source = NULL;
// static
void RandomNumberGenerator::SetEntropySource(EntropySource source) {
LockGuard<Mutex> lock_guard(entropy_mutex.Pointer());
entropy_source = source;
}
RandomNumberGenerator::RandomNumberGenerator() {
// Check if embedder supplied an entropy source.
{ LockGuard<Mutex> lock_guard(entropy_mutex.Pointer());
if (entropy_source != NULL) {
int64_t seed;
if (entropy_source(reinterpret_cast<unsigned char*>(&seed),
sizeof(seed))) {
SetSeed(seed);
return;
}
}
}
#if V8_OS_CYGWIN || V8_OS_WIN
// Use rand_s() to gather entropy on Windows. See:
// https://code.google.com/p/v8/issues/detail?id=2905
unsigned first_half, second_half;
errno_t result = rand_s(&first_half);
DCHECK_EQ(0, result);
result = rand_s(&second_half);
DCHECK_EQ(0, result);
SetSeed((static_cast<int64_t>(first_half) << 32) + second_half);
#else
// Gather entropy from /dev/urandom if available.
FILE* fp = fopen("/dev/urandom", "rb");
if (fp != NULL) {
int64_t seed;
size_t n = fread(&seed, sizeof(seed), 1, fp);
fclose(fp);
if (n == 1) {
SetSeed(seed);
return;
}
}
// We cannot assume that random() or rand() were seeded
// properly, so instead of relying on random() or rand(),
// we just seed our PRNG using timing data as fallback.
// This is weak entropy, but it's sufficient, because
// it is the responsibility of the embedder to install
// an entropy source using v8::V8::SetEntropySource(),
// which provides reasonable entropy, see:
// https://code.google.com/p/v8/issues/detail?id=2905
int64_t seed = Time::NowFromSystemTime().ToInternalValue() << 24;
seed ^= TimeTicks::HighResolutionNow().ToInternalValue() << 16;
seed ^= TimeTicks::Now().ToInternalValue() << 8;
SetSeed(seed);
#endif // V8_OS_CYGWIN || V8_OS_WIN
}
int RandomNumberGenerator::NextInt(int max) {
DCHECK_LE(0, max);
// Fast path if max is a power of 2.
if (IS_POWER_OF_TWO(max)) {
return static_cast<int>((max * static_cast<int64_t>(Next(31))) >> 31);
}
while (true) {
int rnd = Next(31);
int val = rnd % max;
if (rnd - val + (max - 1) >= 0) {
return val;
}
}
}
double RandomNumberGenerator::NextDouble() {
return ((static_cast<int64_t>(Next(26)) << 27) + Next(27)) /
static_cast<double>(static_cast<int64_t>(1) << 53);
}
void RandomNumberGenerator::NextBytes(void* buffer, size_t buflen) {
for (size_t n = 0; n < buflen; ++n) {
static_cast<uint8_t*>(buffer)[n] = static_cast<uint8_t>(Next(8));
}
}
int RandomNumberGenerator::Next(int bits) {
DCHECK_LT(0, bits);
DCHECK_GE(32, bits);
// Do unsigned multiplication, which has the intended modulo semantics, while
// signed multiplication would expose undefined behavior.
uint64_t product = static_cast<uint64_t>(seed_) * kMultiplier;
// Assigning a uint64_t to an int64_t is implementation defined, but this
// should be OK. Use a static_cast to explicitly state that we know what we're
// doing. (Famous last words...)
int64_t seed = static_cast<int64_t>((product + kAddend) & kMask);
seed_ = seed;
return static_cast<int>(seed >> (48 - bits));
}
void RandomNumberGenerator::SetSeed(int64_t seed) {
initial_seed_ = seed;
seed_ = (seed ^ kMultiplier) & kMask;
}
} } // namespace v8::base