// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_ARM64_SIMULATOR_ARM64_H_
#define V8_ARM64_SIMULATOR_ARM64_H_
#include <stdarg.h>
#include <vector>
#include "src/v8.h"
#include "src/allocation.h"
#include "src/arm64/assembler-arm64.h"
#include "src/arm64/decoder-arm64.h"
#include "src/arm64/disasm-arm64.h"
#include "src/arm64/instrument-arm64.h"
#include "src/assembler.h"
#include "src/globals.h"
#include "src/utils.h"
#define REGISTER_CODE_LIST(R) \
R(0) R(1) R(2) R(3) R(4) R(5) R(6) R(7) \
R(8) R(9) R(10) R(11) R(12) R(13) R(14) R(15) \
R(16) R(17) R(18) R(19) R(20) R(21) R(22) R(23) \
R(24) R(25) R(26) R(27) R(28) R(29) R(30) R(31)
namespace v8 {
namespace internal {
#if !defined(USE_SIMULATOR)
// Running without a simulator on a native ARM64 platform.
// When running without a simulator we call the entry directly.
#define CALL_GENERATED_CODE(entry, p0, p1, p2, p3, p4) \
(entry(p0, p1, p2, p3, p4))
typedef int (*arm64_regexp_matcher)(String* input,
int64_t start_offset,
const byte* input_start,
const byte* input_end,
int* output,
int64_t output_size,
Address stack_base,
int64_t direct_call,
void* return_address,
Isolate* isolate);
// Call the generated regexp code directly. The code at the entry address
// should act as a function matching the type arm64_regexp_matcher.
// The ninth argument is a dummy that reserves the space used for
// the return address added by the ExitFrame in native calls.
#define CALL_GENERATED_REGEXP_CODE(entry, p0, p1, p2, p3, p4, p5, p6, p7, p8) \
(FUNCTION_CAST<arm64_regexp_matcher>(entry)( \
p0, p1, p2, p3, p4, p5, p6, p7, NULL, p8))
// Running without a simulator there is nothing to do.
class SimulatorStack : public v8::internal::AllStatic {
public:
static uintptr_t JsLimitFromCLimit(v8::internal::Isolate* isolate,
uintptr_t c_limit) {
USE(isolate);
return c_limit;
}
static uintptr_t RegisterCTryCatch(uintptr_t try_catch_address) {
return try_catch_address;
}
static void UnregisterCTryCatch() { }
};
#else // !defined(USE_SIMULATOR)
enum ReverseByteMode {
Reverse16 = 0,
Reverse32 = 1,
Reverse64 = 2
};
// The proper way to initialize a simulated system register (such as NZCV) is as
// follows:
// SimSystemRegister nzcv = SimSystemRegister::DefaultValueFor(NZCV);
class SimSystemRegister {
public:
// The default constructor represents a register which has no writable bits.
// It is not possible to set its value to anything other than 0.
SimSystemRegister() : value_(0), write_ignore_mask_(0xffffffff) { }
uint32_t RawValue() const {
return value_;
}
void SetRawValue(uint32_t new_value) {
value_ = (value_ & write_ignore_mask_) | (new_value & ~write_ignore_mask_);
}
uint32_t Bits(int msb, int lsb) const {
return unsigned_bitextract_32(msb, lsb, value_);
}
int32_t SignedBits(int msb, int lsb) const {
return signed_bitextract_32(msb, lsb, value_);
}
void SetBits(int msb, int lsb, uint32_t bits);
// Default system register values.
static SimSystemRegister DefaultValueFor(SystemRegister id);
#define DEFINE_GETTER(Name, HighBit, LowBit, Func, Type) \
Type Name() const { return static_cast<Type>(Func(HighBit, LowBit)); } \
void Set##Name(Type bits) { \
SetBits(HighBit, LowBit, static_cast<Type>(bits)); \
}
#define DEFINE_WRITE_IGNORE_MASK(Name, Mask) \
static const uint32_t Name##WriteIgnoreMask = ~static_cast<uint32_t>(Mask);
SYSTEM_REGISTER_FIELDS_LIST(DEFINE_GETTER, DEFINE_WRITE_IGNORE_MASK)
#undef DEFINE_ZERO_BITS
#undef DEFINE_GETTER
protected:
// Most system registers only implement a few of the bits in the word. Other
// bits are "read-as-zero, write-ignored". The write_ignore_mask argument
// describes the bits which are not modifiable.
SimSystemRegister(uint32_t value, uint32_t write_ignore_mask)
: value_(value), write_ignore_mask_(write_ignore_mask) { }
uint32_t value_;
uint32_t write_ignore_mask_;
};
// Represent a register (r0-r31, v0-v31).
class SimRegisterBase {
public:
template<typename T>
void Set(T new_value) {
value_ = 0;
memcpy(&value_, &new_value, sizeof(T));
}
template<typename T>
T Get() const {
T result;
memcpy(&result, &value_, sizeof(T));
return result;
}
protected:
int64_t value_;
};
typedef SimRegisterBase SimRegister; // r0-r31
typedef SimRegisterBase SimFPRegister; // v0-v31
class Simulator : public DecoderVisitor {
public:
explicit Simulator(Decoder<DispatchingDecoderVisitor>* decoder,
Isolate* isolate = NULL,
FILE* stream = stderr);
Simulator();
~Simulator();
// System functions.
static void Initialize(Isolate* isolate);
static Simulator* current(v8::internal::Isolate* isolate);
class CallArgument;
// Call an arbitrary function taking an arbitrary number of arguments. The
// varargs list must be a set of arguments with type CallArgument, and
// terminated by CallArgument::End().
void CallVoid(byte* entry, CallArgument* args);
// Like CallVoid, but expect a return value.
int64_t CallInt64(byte* entry, CallArgument* args);
double CallDouble(byte* entry, CallArgument* args);
// V8 calls into generated JS code with 5 parameters and into
// generated RegExp code with 10 parameters. These are convenience functions,
// which set up the simulator state and grab the result on return.
int64_t CallJS(byte* entry,
byte* function_entry,
JSFunction* func,
Object* revc,
int64_t argc,
Object*** argv);
int64_t CallRegExp(byte* entry,
String* input,
int64_t start_offset,
const byte* input_start,
const byte* input_end,
int* output,
int64_t output_size,
Address stack_base,
int64_t direct_call,
void* return_address,
Isolate* isolate);
// A wrapper class that stores an argument for one of the above Call
// functions.
//
// Only arguments up to 64 bits in size are supported.
class CallArgument {
public:
template<typename T>
explicit CallArgument(T argument) {
bits_ = 0;
DCHECK(sizeof(argument) <= sizeof(bits_));
memcpy(&bits_, &argument, sizeof(argument));
type_ = X_ARG;
}
explicit CallArgument(double argument) {
DCHECK(sizeof(argument) == sizeof(bits_));
memcpy(&bits_, &argument, sizeof(argument));
type_ = D_ARG;
}
explicit CallArgument(float argument) {
// TODO(all): CallArgument(float) is untested, remove this check once
// tested.
UNIMPLEMENTED();
// Make the D register a NaN to try to trap errors if the callee expects a
// double. If it expects a float, the callee should ignore the top word.
DCHECK(sizeof(kFP64SignallingNaN) == sizeof(bits_));
memcpy(&bits_, &kFP64SignallingNaN, sizeof(kFP64SignallingNaN));
// Write the float payload to the S register.
DCHECK(sizeof(argument) <= sizeof(bits_));
memcpy(&bits_, &argument, sizeof(argument));
type_ = D_ARG;
}
// This indicates the end of the arguments list, so that CallArgument
// objects can be passed into varargs functions.
static CallArgument End() { return CallArgument(); }
int64_t bits() const { return bits_; }
bool IsEnd() const { return type_ == NO_ARG; }
bool IsX() const { return type_ == X_ARG; }
bool IsD() const { return type_ == D_ARG; }
private:
enum CallArgumentType { X_ARG, D_ARG, NO_ARG };
// All arguments are aligned to at least 64 bits and we don't support
// passing bigger arguments, so the payload size can be fixed at 64 bits.
int64_t bits_;
CallArgumentType type_;
CallArgument() { type_ = NO_ARG; }
};
// Start the debugging command line.
void Debug();
bool GetValue(const char* desc, int64_t* value);
bool PrintValue(const char* desc);
// Push an address onto the JS stack.
uintptr_t PushAddress(uintptr_t address);
// Pop an address from the JS stack.
uintptr_t PopAddress();
// Accessor to the internal simulator stack area.
uintptr_t StackLimit() const;
void ResetState();
// Runtime call support.
static void* RedirectExternalReference(void* external_function,
ExternalReference::Type type);
void DoRuntimeCall(Instruction* instr);
// Run the simulator.
static const Instruction* kEndOfSimAddress;
void DecodeInstruction();
void Run();
void RunFrom(Instruction* start);
// Simulation helpers.
template <typename T>
void set_pc(T new_pc) {
DCHECK(sizeof(T) == sizeof(pc_));
memcpy(&pc_, &new_pc, sizeof(T));
pc_modified_ = true;
}
Instruction* pc() { return pc_; }
void increment_pc() {
if (!pc_modified_) {
pc_ = pc_->following();
}
pc_modified_ = false;
}
virtual void Decode(Instruction* instr) {
decoder_->Decode(instr);
}
void ExecuteInstruction() {
DCHECK(IsAligned(reinterpret_cast<uintptr_t>(pc_), kInstructionSize));
CheckBreakNext();
Decode(pc_);
increment_pc();
CheckBreakpoints();
}
// Declare all Visitor functions.
#define DECLARE(A) void Visit##A(Instruction* instr);
VISITOR_LIST(DECLARE)
#undef DECLARE
bool IsZeroRegister(unsigned code, Reg31Mode r31mode) const {
return ((code == 31) && (r31mode == Reg31IsZeroRegister));
}
// Register accessors.
// Return 'size' bits of the value of an integer register, as the specified
// type. The value is zero-extended to fill the result.
//
template<typename T>
T reg(unsigned code, Reg31Mode r31mode = Reg31IsZeroRegister) const {
DCHECK(code < kNumberOfRegisters);
if (IsZeroRegister(code, r31mode)) {
return 0;
}
return registers_[code].Get<T>();
}
// Common specialized accessors for the reg() template.
int32_t wreg(unsigned code, Reg31Mode r31mode = Reg31IsZeroRegister) const {
return reg<int32_t>(code, r31mode);
}
int64_t xreg(unsigned code, Reg31Mode r31mode = Reg31IsZeroRegister) const {
return reg<int64_t>(code, r31mode);
}
// Write 'value' into an integer register. The value is zero-extended. This
// behaviour matches AArch64 register writes.
template<typename T>
void set_reg(unsigned code, T value,
Reg31Mode r31mode = Reg31IsZeroRegister) {
set_reg_no_log(code, value, r31mode);
LogRegister(code, r31mode);
}
// Common specialized accessors for the set_reg() template.
void set_wreg(unsigned code, int32_t value,
Reg31Mode r31mode = Reg31IsZeroRegister) {
set_reg(code, value, r31mode);
}
void set_xreg(unsigned code, int64_t value,
Reg31Mode r31mode = Reg31IsZeroRegister) {
set_reg(code, value, r31mode);
}
// As above, but don't automatically log the register update.
template <typename T>
void set_reg_no_log(unsigned code, T value,
Reg31Mode r31mode = Reg31IsZeroRegister) {
DCHECK(code < kNumberOfRegisters);
if (!IsZeroRegister(code, r31mode)) {
registers_[code].Set(value);
}
}
void set_wreg_no_log(unsigned code, int32_t value,
Reg31Mode r31mode = Reg31IsZeroRegister) {
set_reg_no_log(code, value, r31mode);
}
void set_xreg_no_log(unsigned code, int64_t value,
Reg31Mode r31mode = Reg31IsZeroRegister) {
set_reg_no_log(code, value, r31mode);
}
// Commonly-used special cases.
template<typename T>
void set_lr(T value) {
DCHECK(sizeof(T) == kPointerSize);
set_reg(kLinkRegCode, value);
}
template<typename T>
void set_sp(T value) {
DCHECK(sizeof(T) == kPointerSize);
set_reg(31, value, Reg31IsStackPointer);
}
int64_t sp() { return xreg(31, Reg31IsStackPointer); }
int64_t jssp() { return xreg(kJSSPCode, Reg31IsStackPointer); }
int64_t fp() {
return xreg(kFramePointerRegCode, Reg31IsStackPointer);
}
Instruction* lr() { return reg<Instruction*>(kLinkRegCode); }
Address get_sp() { return reg<Address>(31, Reg31IsStackPointer); }
template<typename T>
T fpreg(unsigned code) const {
DCHECK(code < kNumberOfRegisters);
return fpregisters_[code].Get<T>();
}
// Common specialized accessors for the fpreg() template.
float sreg(unsigned code) const {
return fpreg<float>(code);
}
uint32_t sreg_bits(unsigned code) const {
return fpreg<uint32_t>(code);
}
double dreg(unsigned code) const {
return fpreg<double>(code);
}
uint64_t dreg_bits(unsigned code) const {
return fpreg<uint64_t>(code);
}
double fpreg(unsigned size, unsigned code) const {
switch (size) {
case kSRegSizeInBits: return sreg(code);
case kDRegSizeInBits: return dreg(code);
default:
UNREACHABLE();
return 0.0;
}
}
// Write 'value' into a floating-point register. The value is zero-extended.
// This behaviour matches AArch64 register writes.
template<typename T>
void set_fpreg(unsigned code, T value) {
set_fpreg_no_log(code, value);
if (sizeof(value) <= kSRegSize) {
LogFPRegister(code, kPrintSRegValue);
} else {
LogFPRegister(code, kPrintDRegValue);
}
}
// Common specialized accessors for the set_fpreg() template.
void set_sreg(unsigned code, float value) {
set_fpreg(code, value);
}
void set_sreg_bits(unsigned code, uint32_t value) {
set_fpreg(code, value);
}
void set_dreg(unsigned code, double value) {
set_fpreg(code, value);
}
void set_dreg_bits(unsigned code, uint64_t value) {
set_fpreg(code, value);
}
// As above, but don't automatically log the register update.
template <typename T>
void set_fpreg_no_log(unsigned code, T value) {
DCHECK((sizeof(value) == kDRegSize) || (sizeof(value) == kSRegSize));
DCHECK(code < kNumberOfFPRegisters);
fpregisters_[code].Set(value);
}
void set_sreg_no_log(unsigned code, float value) {
set_fpreg_no_log(code, value);
}
void set_dreg_no_log(unsigned code, double value) {
set_fpreg_no_log(code, value);
}
SimSystemRegister& nzcv() { return nzcv_; }
SimSystemRegister& fpcr() { return fpcr_; }
// Debug helpers
// Simulator breakpoints.
struct Breakpoint {
Instruction* location;
bool enabled;
};
std::vector<Breakpoint> breakpoints_;
void SetBreakpoint(Instruction* breakpoint);
void ListBreakpoints();
void CheckBreakpoints();
// Helpers for the 'next' command.
// When this is set, the Simulator will insert a breakpoint after the next BL
// instruction it meets.
bool break_on_next_;
// Check if the Simulator should insert a break after the current instruction
// for the 'next' command.
void CheckBreakNext();
// Disassemble instruction at the given address.
void PrintInstructionsAt(Instruction* pc, uint64_t count);
// Print all registers of the specified types.
void PrintRegisters();
void PrintFPRegisters();
void PrintSystemRegisters();
// Like Print* (above), but respect log_parameters().
void LogSystemRegisters() {
if (log_parameters() & LOG_SYS_REGS) PrintSystemRegisters();
}
void LogRegisters() {
if (log_parameters() & LOG_REGS) PrintRegisters();
}
void LogFPRegisters() {
if (log_parameters() & LOG_FP_REGS) PrintFPRegisters();
}
// Specify relevant register sizes, for PrintFPRegister.
//
// These values are bit masks; they can be combined in case multiple views of
// a machine register are interesting.
enum PrintFPRegisterSizes {
kPrintDRegValue = 1 << kDRegSize,
kPrintSRegValue = 1 << kSRegSize,
kPrintAllFPRegValues = kPrintDRegValue | kPrintSRegValue
};
// Print individual register values (after update).
void PrintRegister(unsigned code, Reg31Mode r31mode = Reg31IsStackPointer);
void PrintFPRegister(unsigned code,
PrintFPRegisterSizes sizes = kPrintAllFPRegValues);
void PrintSystemRegister(SystemRegister id);
// Like Print* (above), but respect log_parameters().
void LogRegister(unsigned code, Reg31Mode r31mode = Reg31IsStackPointer) {
if (log_parameters() & LOG_REGS) PrintRegister(code, r31mode);
}
void LogFPRegister(unsigned code,
PrintFPRegisterSizes sizes = kPrintAllFPRegValues) {
if (log_parameters() & LOG_FP_REGS) PrintFPRegister(code, sizes);
}
void LogSystemRegister(SystemRegister id) {
if (log_parameters() & LOG_SYS_REGS) PrintSystemRegister(id);
}
// Print memory accesses.
void PrintRead(uintptr_t address, size_t size, unsigned reg_code);
void PrintReadFP(uintptr_t address, size_t size, unsigned reg_code);
void PrintWrite(uintptr_t address, size_t size, unsigned reg_code);
void PrintWriteFP(uintptr_t address, size_t size, unsigned reg_code);
// Like Print* (above), but respect log_parameters().
void LogRead(uintptr_t address, size_t size, unsigned reg_code) {
if (log_parameters() & LOG_REGS) PrintRead(address, size, reg_code);
}
void LogReadFP(uintptr_t address, size_t size, unsigned reg_code) {
if (log_parameters() & LOG_FP_REGS) PrintReadFP(address, size, reg_code);
}
void LogWrite(uintptr_t address, size_t size, unsigned reg_code) {
if (log_parameters() & LOG_WRITE) PrintWrite(address, size, reg_code);
}
void LogWriteFP(uintptr_t address, size_t size, unsigned reg_code) {
if (log_parameters() & LOG_WRITE) PrintWriteFP(address, size, reg_code);
}
int log_parameters() { return log_parameters_; }
void set_log_parameters(int new_parameters) {
log_parameters_ = new_parameters;
if (!decoder_) {
if (new_parameters & LOG_DISASM) {
PrintF("Run --debug-sim to dynamically turn on disassembler\n");
}
return;
}
if (new_parameters & LOG_DISASM) {
decoder_->InsertVisitorBefore(print_disasm_, this);
} else {
decoder_->RemoveVisitor(print_disasm_);
}
}
static inline const char* WRegNameForCode(unsigned code,
Reg31Mode mode = Reg31IsZeroRegister);
static inline const char* XRegNameForCode(unsigned code,
Reg31Mode mode = Reg31IsZeroRegister);
static inline const char* SRegNameForCode(unsigned code);
static inline const char* DRegNameForCode(unsigned code);
static inline const char* VRegNameForCode(unsigned code);
static inline int CodeFromName(const char* name);
protected:
// Simulation helpers ------------------------------------
bool ConditionPassed(Condition cond) {
SimSystemRegister& flags = nzcv();
switch (cond) {
case eq:
return flags.Z();
case ne:
return !flags.Z();
case hs:
return flags.C();
case lo:
return !flags.C();
case mi:
return flags.N();
case pl:
return !flags.N();
case vs:
return flags.V();
case vc:
return !flags.V();
case hi:
return flags.C() && !flags.Z();
case ls:
return !(flags.C() && !flags.Z());
case ge:
return flags.N() == flags.V();
case lt:
return flags.N() != flags.V();
case gt:
return !flags.Z() && (flags.N() == flags.V());
case le:
return !(!flags.Z() && (flags.N() == flags.V()));
case nv: // Fall through.
case al:
return true;
default:
UNREACHABLE();
return false;
}
}
bool ConditionFailed(Condition cond) {
return !ConditionPassed(cond);
}
template<typename T>
void AddSubHelper(Instruction* instr, T op2);
template<typename T>
T AddWithCarry(bool set_flags,
T src1,
T src2,
T carry_in = 0);
template<typename T>
void AddSubWithCarry(Instruction* instr);
template<typename T>
void LogicalHelper(Instruction* instr, T op2);
template<typename T>
void ConditionalCompareHelper(Instruction* instr, T op2);
void LoadStoreHelper(Instruction* instr,
int64_t offset,
AddrMode addrmode);
void LoadStorePairHelper(Instruction* instr, AddrMode addrmode);
uintptr_t LoadStoreAddress(unsigned addr_reg, int64_t offset,
AddrMode addrmode);
void LoadStoreWriteBack(unsigned addr_reg,
int64_t offset,
AddrMode addrmode);
void CheckMemoryAccess(uintptr_t address, uintptr_t stack);
// Memory read helpers.
template <typename T, typename A>
T MemoryRead(A address) {
T value;
STATIC_ASSERT((sizeof(value) == 1) || (sizeof(value) == 2) ||
(sizeof(value) == 4) || (sizeof(value) == 8));
memcpy(&value, reinterpret_cast<const void*>(address), sizeof(value));
return value;
}
// Memory write helpers.
template <typename T, typename A>
void MemoryWrite(A address, T value) {
STATIC_ASSERT((sizeof(value) == 1) || (sizeof(value) == 2) ||
(sizeof(value) == 4) || (sizeof(value) == 8));
memcpy(reinterpret_cast<void*>(address), &value, sizeof(value));
}
template <typename T>
T ShiftOperand(T value,
Shift shift_type,
unsigned amount);
template <typename T>
T ExtendValue(T value,
Extend extend_type,
unsigned left_shift = 0);
template <typename T>
void Extract(Instruction* instr);
template <typename T>
void DataProcessing2Source(Instruction* instr);
template <typename T>
void BitfieldHelper(Instruction* instr);
uint64_t ReverseBits(uint64_t value, unsigned num_bits);
uint64_t ReverseBytes(uint64_t value, ReverseByteMode mode);
template <typename T>
T FPDefaultNaN() const;
void FPCompare(double val0, double val1);
double FPRoundInt(double value, FPRounding round_mode);
double FPToDouble(float value);
float FPToFloat(double value, FPRounding round_mode);
double FixedToDouble(int64_t src, int fbits, FPRounding round_mode);
double UFixedToDouble(uint64_t src, int fbits, FPRounding round_mode);
float FixedToFloat(int64_t src, int fbits, FPRounding round_mode);
float UFixedToFloat(uint64_t src, int fbits, FPRounding round_mode);
int32_t FPToInt32(double value, FPRounding rmode);
int64_t FPToInt64(double value, FPRounding rmode);
uint32_t FPToUInt32(double value, FPRounding rmode);
uint64_t FPToUInt64(double value, FPRounding rmode);
template <typename T>
T FPAdd(T op1, T op2);
template <typename T>
T FPDiv(T op1, T op2);
template <typename T>
T FPMax(T a, T b);
template <typename T>
T FPMaxNM(T a, T b);
template <typename T>
T FPMin(T a, T b);
template <typename T>
T FPMinNM(T a, T b);
template <typename T>
T FPMul(T op1, T op2);
template <typename T>
T FPMulAdd(T a, T op1, T op2);
template <typename T>
T FPSqrt(T op);
template <typename T>
T FPSub(T op1, T op2);
// Standard NaN processing.
template <typename T>
T FPProcessNaN(T op);
bool FPProcessNaNs(Instruction* instr);
template <typename T>
T FPProcessNaNs(T op1, T op2);
template <typename T>
T FPProcessNaNs3(T op1, T op2, T op3);
void CheckStackAlignment();
inline void CheckPCSComplianceAndRun();
#ifdef DEBUG
// Corruption values should have their least significant byte cleared to
// allow the code of the register being corrupted to be inserted.
static const uint64_t kCallerSavedRegisterCorruptionValue =
0xca11edc0de000000UL;
// This value is a NaN in both 32-bit and 64-bit FP.
static const uint64_t kCallerSavedFPRegisterCorruptionValue =
0x7ff000007f801000UL;
// This value is a mix of 32/64-bits NaN and "verbose" immediate.
static const uint64_t kDefaultCPURegisterCorruptionValue =
0x7ffbad007f8bad00UL;
void CorruptRegisters(CPURegList* list,
uint64_t value = kDefaultCPURegisterCorruptionValue);
void CorruptAllCallerSavedCPURegisters();
#endif
// Pseudo Printf instruction
void DoPrintf(Instruction* instr);
// Processor state ---------------------------------------
// Output stream.
FILE* stream_;
PrintDisassembler* print_disasm_;
void PRINTF_METHOD_CHECKING TraceSim(const char* format, ...);
// Instrumentation.
Instrument* instrument_;
// General purpose registers. Register 31 is the stack pointer.
SimRegister registers_[kNumberOfRegisters];
// Floating point registers
SimFPRegister fpregisters_[kNumberOfFPRegisters];
// Processor state
// bits[31, 27]: Condition flags N, Z, C, and V.
// (Negative, Zero, Carry, Overflow)
SimSystemRegister nzcv_;
// Floating-Point Control Register
SimSystemRegister fpcr_;
// Only a subset of FPCR features are supported by the simulator. This helper
// checks that the FPCR settings are supported.
//
// This is checked when floating-point instructions are executed, not when
// FPCR is set. This allows generated code to modify FPCR for external
// functions, or to save and restore it when entering and leaving generated
// code.
void AssertSupportedFPCR() {
DCHECK(fpcr().FZ() == 0); // No flush-to-zero support.
DCHECK(fpcr().RMode() == FPTieEven); // Ties-to-even rounding only.
// The simulator does not support half-precision operations so fpcr().AHP()
// is irrelevant, and is not checked here.
}
template <typename T>
static int CalcNFlag(T result) {
return (result >> (sizeof(T) * 8 - 1)) & 1;
}
static int CalcZFlag(uint64_t result) {
return result == 0;
}
static const uint32_t kConditionFlagsMask = 0xf0000000;
// Stack
uintptr_t stack_;
static const size_t stack_protection_size_ = KB;
size_t stack_size_;
uintptr_t stack_limit_;
Decoder<DispatchingDecoderVisitor>* decoder_;
Decoder<DispatchingDecoderVisitor>* disassembler_decoder_;
// Indicates if the pc has been modified by the instruction and should not be
// automatically incremented.
bool pc_modified_;
Instruction* pc_;
static const char* xreg_names[];
static const char* wreg_names[];
static const char* sreg_names[];
static const char* dreg_names[];
static const char* vreg_names[];
// Debugger input.
void set_last_debugger_input(char* input) {
DeleteArray(last_debugger_input_);
last_debugger_input_ = input;
}
char* last_debugger_input() { return last_debugger_input_; }
char* last_debugger_input_;
private:
void Init(FILE* stream);
int log_parameters_;
Isolate* isolate_;
};
// When running with the simulator transition into simulated execution at this
// point.
#define CALL_GENERATED_CODE(entry, p0, p1, p2, p3, p4) \
reinterpret_cast<Object*>(Simulator::current(Isolate::Current())->CallJS( \
FUNCTION_ADDR(entry), \
p0, p1, p2, p3, p4))
#define CALL_GENERATED_REGEXP_CODE(entry, p0, p1, p2, p3, p4, p5, p6, p7, p8) \
Simulator::current(Isolate::Current())->CallRegExp( \
entry, \
p0, p1, p2, p3, p4, p5, p6, p7, NULL, p8)
// The simulator has its own stack. Thus it has a different stack limit from
// the C-based native code.
// See also 'class SimulatorStack' in arm/simulator-arm.h.
class SimulatorStack : public v8::internal::AllStatic {
public:
static uintptr_t JsLimitFromCLimit(v8::internal::Isolate* isolate,
uintptr_t c_limit) {
return Simulator::current(isolate)->StackLimit();
}
static uintptr_t RegisterCTryCatch(uintptr_t try_catch_address) {
Simulator* sim = Simulator::current(Isolate::Current());
return sim->PushAddress(try_catch_address);
}
static void UnregisterCTryCatch() {
Simulator::current(Isolate::Current())->PopAddress();
}
};
#endif // !defined(USE_SIMULATOR)
} } // namespace v8::internal
#endif // V8_ARM64_SIMULATOR_ARM64_H_