// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_ARM_MACRO_ASSEMBLER_ARM_H_
#define V8_ARM_MACRO_ASSEMBLER_ARM_H_
#include "src/assembler.h"
#include "src/bailout-reason.h"
#include "src/frames.h"
#include "src/globals.h"
namespace v8 {
namespace internal {
// ----------------------------------------------------------------------------
// Static helper functions
// Generate a MemOperand for loading a field from an object.
inline MemOperand FieldMemOperand(Register object, int offset) {
return MemOperand(object, offset - kHeapObjectTag);
}
// Give alias names to registers
const Register cp = { kRegister_r7_Code }; // JavaScript context pointer.
const Register pp = { kRegister_r8_Code }; // Constant pool pointer.
const Register kRootRegister = { kRegister_r10_Code }; // Roots array pointer.
// Flags used for AllocateHeapNumber
enum TaggingMode {
// Tag the result.
TAG_RESULT,
// Don't tag
DONT_TAG_RESULT
};
enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
enum PointersToHereCheck {
kPointersToHereMaybeInteresting,
kPointersToHereAreAlwaysInteresting
};
enum LinkRegisterStatus { kLRHasNotBeenSaved, kLRHasBeenSaved };
Register GetRegisterThatIsNotOneOf(Register reg1,
Register reg2 = no_reg,
Register reg3 = no_reg,
Register reg4 = no_reg,
Register reg5 = no_reg,
Register reg6 = no_reg);
#ifdef DEBUG
bool AreAliased(Register reg1,
Register reg2,
Register reg3 = no_reg,
Register reg4 = no_reg,
Register reg5 = no_reg,
Register reg6 = no_reg,
Register reg7 = no_reg,
Register reg8 = no_reg);
#endif
enum TargetAddressStorageMode {
CAN_INLINE_TARGET_ADDRESS,
NEVER_INLINE_TARGET_ADDRESS
};
// MacroAssembler implements a collection of frequently used macros.
class MacroAssembler: public Assembler {
public:
// The isolate parameter can be NULL if the macro assembler should
// not use isolate-dependent functionality. In this case, it's the
// responsibility of the caller to never invoke such function on the
// macro assembler.
MacroAssembler(Isolate* isolate, void* buffer, int size);
// Returns the size of a call in instructions. Note, the value returned is
// only valid as long as no entries are added to the constant pool between
// checking the call size and emitting the actual call.
static int CallSize(Register target, Condition cond = al);
int CallSize(Address target, RelocInfo::Mode rmode, Condition cond = al);
int CallStubSize(CodeStub* stub,
TypeFeedbackId ast_id = TypeFeedbackId::None(),
Condition cond = al);
static int CallSizeNotPredictableCodeSize(Isolate* isolate,
Address target,
RelocInfo::Mode rmode,
Condition cond = al);
// Jump, Call, and Ret pseudo instructions implementing inter-working.
void Jump(Register target, Condition cond = al);
void Jump(Address target, RelocInfo::Mode rmode, Condition cond = al);
void Jump(Handle<Code> code, RelocInfo::Mode rmode, Condition cond = al);
void Call(Register target, Condition cond = al);
void Call(Address target, RelocInfo::Mode rmode,
Condition cond = al,
TargetAddressStorageMode mode = CAN_INLINE_TARGET_ADDRESS);
int CallSize(Handle<Code> code,
RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
TypeFeedbackId ast_id = TypeFeedbackId::None(),
Condition cond = al);
void Call(Handle<Code> code,
RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
TypeFeedbackId ast_id = TypeFeedbackId::None(),
Condition cond = al,
TargetAddressStorageMode mode = CAN_INLINE_TARGET_ADDRESS);
void Ret(Condition cond = al);
// Emit code to discard a non-negative number of pointer-sized elements
// from the stack, clobbering only the sp register.
void Drop(int count, Condition cond = al);
void Ret(int drop, Condition cond = al);
// Swap two registers. If the scratch register is omitted then a slightly
// less efficient form using xor instead of mov is emitted.
void Swap(Register reg1,
Register reg2,
Register scratch = no_reg,
Condition cond = al);
void Mls(Register dst, Register src1, Register src2, Register srcA,
Condition cond = al);
void And(Register dst, Register src1, const Operand& src2,
Condition cond = al);
void Ubfx(Register dst, Register src, int lsb, int width,
Condition cond = al);
void Sbfx(Register dst, Register src, int lsb, int width,
Condition cond = al);
// The scratch register is not used for ARMv7.
// scratch can be the same register as src (in which case it is trashed), but
// not the same as dst.
void Bfi(Register dst,
Register src,
Register scratch,
int lsb,
int width,
Condition cond = al);
void Bfc(Register dst, Register src, int lsb, int width, Condition cond = al);
void Usat(Register dst, int satpos, const Operand& src,
Condition cond = al);
void Call(Label* target);
void Push(Register src) { push(src); }
void Pop(Register dst) { pop(dst); }
// Register move. May do nothing if the registers are identical.
void Move(Register dst, Handle<Object> value);
void Move(Register dst, Register src, Condition cond = al);
void Move(Register dst, const Operand& src, SBit sbit = LeaveCC,
Condition cond = al) {
if (!src.is_reg() || !src.rm().is(dst) || sbit != LeaveCC) {
mov(dst, src, sbit, cond);
}
}
void Move(DwVfpRegister dst, DwVfpRegister src);
void Load(Register dst, const MemOperand& src, Representation r);
void Store(Register src, const MemOperand& dst, Representation r);
// Load an object from the root table.
void LoadRoot(Register destination,
Heap::RootListIndex index,
Condition cond = al);
// Store an object to the root table.
void StoreRoot(Register source,
Heap::RootListIndex index,
Condition cond = al);
// ---------------------------------------------------------------------------
// GC Support
void IncrementalMarkingRecordWriteHelper(Register object,
Register value,
Register address);
enum RememberedSetFinalAction {
kReturnAtEnd,
kFallThroughAtEnd
};
// Record in the remembered set the fact that we have a pointer to new space
// at the address pointed to by the addr register. Only works if addr is not
// in new space.
void RememberedSetHelper(Register object, // Used for debug code.
Register addr,
Register scratch,
SaveFPRegsMode save_fp,
RememberedSetFinalAction and_then);
void CheckPageFlag(Register object,
Register scratch,
int mask,
Condition cc,
Label* condition_met);
void CheckMapDeprecated(Handle<Map> map,
Register scratch,
Label* if_deprecated);
// Check if object is in new space. Jumps if the object is not in new space.
// The register scratch can be object itself, but scratch will be clobbered.
void JumpIfNotInNewSpace(Register object,
Register scratch,
Label* branch) {
InNewSpace(object, scratch, ne, branch);
}
// Check if object is in new space. Jumps if the object is in new space.
// The register scratch can be object itself, but it will be clobbered.
void JumpIfInNewSpace(Register object,
Register scratch,
Label* branch) {
InNewSpace(object, scratch, eq, branch);
}
// Check if an object has a given incremental marking color.
void HasColor(Register object,
Register scratch0,
Register scratch1,
Label* has_color,
int first_bit,
int second_bit);
void JumpIfBlack(Register object,
Register scratch0,
Register scratch1,
Label* on_black);
// Checks the color of an object. If the object is already grey or black
// then we just fall through, since it is already live. If it is white and
// we can determine that it doesn't need to be scanned, then we just mark it
// black and fall through. For the rest we jump to the label so the
// incremental marker can fix its assumptions.
void EnsureNotWhite(Register object,
Register scratch1,
Register scratch2,
Register scratch3,
Label* object_is_white_and_not_data);
// Detects conservatively whether an object is data-only, i.e. it does need to
// be scanned by the garbage collector.
void JumpIfDataObject(Register value,
Register scratch,
Label* not_data_object);
// Notify the garbage collector that we wrote a pointer into an object.
// |object| is the object being stored into, |value| is the object being
// stored. value and scratch registers are clobbered by the operation.
// The offset is the offset from the start of the object, not the offset from
// the tagged HeapObject pointer. For use with FieldOperand(reg, off).
void RecordWriteField(
Register object,
int offset,
Register value,
Register scratch,
LinkRegisterStatus lr_status,
SaveFPRegsMode save_fp,
RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
SmiCheck smi_check = INLINE_SMI_CHECK,
PointersToHereCheck pointers_to_here_check_for_value =
kPointersToHereMaybeInteresting);
// As above, but the offset has the tag presubtracted. For use with
// MemOperand(reg, off).
inline void RecordWriteContextSlot(
Register context,
int offset,
Register value,
Register scratch,
LinkRegisterStatus lr_status,
SaveFPRegsMode save_fp,
RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
SmiCheck smi_check = INLINE_SMI_CHECK,
PointersToHereCheck pointers_to_here_check_for_value =
kPointersToHereMaybeInteresting) {
RecordWriteField(context,
offset + kHeapObjectTag,
value,
scratch,
lr_status,
save_fp,
remembered_set_action,
smi_check,
pointers_to_here_check_for_value);
}
void RecordWriteForMap(
Register object,
Register map,
Register dst,
LinkRegisterStatus lr_status,
SaveFPRegsMode save_fp);
// For a given |object| notify the garbage collector that the slot |address|
// has been written. |value| is the object being stored. The value and
// address registers are clobbered by the operation.
void RecordWrite(
Register object,
Register address,
Register value,
LinkRegisterStatus lr_status,
SaveFPRegsMode save_fp,
RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
SmiCheck smi_check = INLINE_SMI_CHECK,
PointersToHereCheck pointers_to_here_check_for_value =
kPointersToHereMaybeInteresting);
// Push a handle.
void Push(Handle<Object> handle);
void Push(Smi* smi) { Push(Handle<Smi>(smi, isolate())); }
// Push two registers. Pushes leftmost register first (to highest address).
void Push(Register src1, Register src2, Condition cond = al) {
DCHECK(!src1.is(src2));
if (src1.code() > src2.code()) {
stm(db_w, sp, src1.bit() | src2.bit(), cond);
} else {
str(src1, MemOperand(sp, 4, NegPreIndex), cond);
str(src2, MemOperand(sp, 4, NegPreIndex), cond);
}
}
// Push three registers. Pushes leftmost register first (to highest address).
void Push(Register src1, Register src2, Register src3, Condition cond = al) {
DCHECK(!src1.is(src2));
DCHECK(!src2.is(src3));
DCHECK(!src1.is(src3));
if (src1.code() > src2.code()) {
if (src2.code() > src3.code()) {
stm(db_w, sp, src1.bit() | src2.bit() | src3.bit(), cond);
} else {
stm(db_w, sp, src1.bit() | src2.bit(), cond);
str(src3, MemOperand(sp, 4, NegPreIndex), cond);
}
} else {
str(src1, MemOperand(sp, 4, NegPreIndex), cond);
Push(src2, src3, cond);
}
}
// Push four registers. Pushes leftmost register first (to highest address).
void Push(Register src1,
Register src2,
Register src3,
Register src4,
Condition cond = al) {
DCHECK(!src1.is(src2));
DCHECK(!src2.is(src3));
DCHECK(!src1.is(src3));
DCHECK(!src1.is(src4));
DCHECK(!src2.is(src4));
DCHECK(!src3.is(src4));
if (src1.code() > src2.code()) {
if (src2.code() > src3.code()) {
if (src3.code() > src4.code()) {
stm(db_w,
sp,
src1.bit() | src2.bit() | src3.bit() | src4.bit(),
cond);
} else {
stm(db_w, sp, src1.bit() | src2.bit() | src3.bit(), cond);
str(src4, MemOperand(sp, 4, NegPreIndex), cond);
}
} else {
stm(db_w, sp, src1.bit() | src2.bit(), cond);
Push(src3, src4, cond);
}
} else {
str(src1, MemOperand(sp, 4, NegPreIndex), cond);
Push(src2, src3, src4, cond);
}
}
// Pop two registers. Pops rightmost register first (from lower address).
void Pop(Register src1, Register src2, Condition cond = al) {
DCHECK(!src1.is(src2));
if (src1.code() > src2.code()) {
ldm(ia_w, sp, src1.bit() | src2.bit(), cond);
} else {
ldr(src2, MemOperand(sp, 4, PostIndex), cond);
ldr(src1, MemOperand(sp, 4, PostIndex), cond);
}
}
// Pop three registers. Pops rightmost register first (from lower address).
void Pop(Register src1, Register src2, Register src3, Condition cond = al) {
DCHECK(!src1.is(src2));
DCHECK(!src2.is(src3));
DCHECK(!src1.is(src3));
if (src1.code() > src2.code()) {
if (src2.code() > src3.code()) {
ldm(ia_w, sp, src1.bit() | src2.bit() | src3.bit(), cond);
} else {
ldr(src3, MemOperand(sp, 4, PostIndex), cond);
ldm(ia_w, sp, src1.bit() | src2.bit(), cond);
}
} else {
Pop(src2, src3, cond);
ldr(src1, MemOperand(sp, 4, PostIndex), cond);
}
}
// Pop four registers. Pops rightmost register first (from lower address).
void Pop(Register src1,
Register src2,
Register src3,
Register src4,
Condition cond = al) {
DCHECK(!src1.is(src2));
DCHECK(!src2.is(src3));
DCHECK(!src1.is(src3));
DCHECK(!src1.is(src4));
DCHECK(!src2.is(src4));
DCHECK(!src3.is(src4));
if (src1.code() > src2.code()) {
if (src2.code() > src3.code()) {
if (src3.code() > src4.code()) {
ldm(ia_w,
sp,
src1.bit() | src2.bit() | src3.bit() | src4.bit(),
cond);
} else {
ldr(src4, MemOperand(sp, 4, PostIndex), cond);
ldm(ia_w, sp, src1.bit() | src2.bit() | src3.bit(), cond);
}
} else {
Pop(src3, src4, cond);
ldm(ia_w, sp, src1.bit() | src2.bit(), cond);
}
} else {
Pop(src2, src3, src4, cond);
ldr(src1, MemOperand(sp, 4, PostIndex), cond);
}
}
// Push a fixed frame, consisting of lr, fp, constant pool (if
// FLAG_enable_ool_constant_pool), context and JS function / marker id if
// marker_reg is a valid register.
void PushFixedFrame(Register marker_reg = no_reg);
void PopFixedFrame(Register marker_reg = no_reg);
// Push and pop the registers that can hold pointers, as defined by the
// RegList constant kSafepointSavedRegisters.
void PushSafepointRegisters();
void PopSafepointRegisters();
// Store value in register src in the safepoint stack slot for
// register dst.
void StoreToSafepointRegisterSlot(Register src, Register dst);
// Load the value of the src register from its safepoint stack slot
// into register dst.
void LoadFromSafepointRegisterSlot(Register dst, Register src);
// Load two consecutive registers with two consecutive memory locations.
void Ldrd(Register dst1,
Register dst2,
const MemOperand& src,
Condition cond = al);
// Store two consecutive registers to two consecutive memory locations.
void Strd(Register src1,
Register src2,
const MemOperand& dst,
Condition cond = al);
// Ensure that FPSCR contains values needed by JavaScript.
// We need the NaNModeControlBit to be sure that operations like
// vadd and vsub generate the Canonical NaN (if a NaN must be generated).
// In VFP3 it will be always the Canonical NaN.
// In VFP2 it will be either the Canonical NaN or the negative version
// of the Canonical NaN. It doesn't matter if we have two values. The aim
// is to be sure to never generate the hole NaN.
void VFPEnsureFPSCRState(Register scratch);
// If the value is a NaN, canonicalize the value else, do nothing.
void VFPCanonicalizeNaN(const DwVfpRegister dst,
const DwVfpRegister src,
const Condition cond = al);
void VFPCanonicalizeNaN(const DwVfpRegister value,
const Condition cond = al) {
VFPCanonicalizeNaN(value, value, cond);
}
// Compare double values and move the result to the normal condition flags.
void VFPCompareAndSetFlags(const DwVfpRegister src1,
const DwVfpRegister src2,
const Condition cond = al);
void VFPCompareAndSetFlags(const DwVfpRegister src1,
const double src2,
const Condition cond = al);
// Compare double values and then load the fpscr flags to a register.
void VFPCompareAndLoadFlags(const DwVfpRegister src1,
const DwVfpRegister src2,
const Register fpscr_flags,
const Condition cond = al);
void VFPCompareAndLoadFlags(const DwVfpRegister src1,
const double src2,
const Register fpscr_flags,
const Condition cond = al);
void Vmov(const DwVfpRegister dst,
const double imm,
const Register scratch = no_reg);
void VmovHigh(Register dst, DwVfpRegister src);
void VmovHigh(DwVfpRegister dst, Register src);
void VmovLow(Register dst, DwVfpRegister src);
void VmovLow(DwVfpRegister dst, Register src);
// Loads the number from object into dst register.
// If |object| is neither smi nor heap number, |not_number| is jumped to
// with |object| still intact.
void LoadNumber(Register object,
LowDwVfpRegister dst,
Register heap_number_map,
Register scratch,
Label* not_number);
// Loads the number from object into double_dst in the double format.
// Control will jump to not_int32 if the value cannot be exactly represented
// by a 32-bit integer.
// Floating point value in the 32-bit integer range that are not exact integer
// won't be loaded.
void LoadNumberAsInt32Double(Register object,
DwVfpRegister double_dst,
Register heap_number_map,
Register scratch,
LowDwVfpRegister double_scratch,
Label* not_int32);
// Loads the number from object into dst as a 32-bit integer.
// Control will jump to not_int32 if the object cannot be exactly represented
// by a 32-bit integer.
// Floating point value in the 32-bit integer range that are not exact integer
// won't be converted.
void LoadNumberAsInt32(Register object,
Register dst,
Register heap_number_map,
Register scratch,
DwVfpRegister double_scratch0,
LowDwVfpRegister double_scratch1,
Label* not_int32);
// Generates function and stub prologue code.
void StubPrologue();
void Prologue(bool code_pre_aging);
// Enter exit frame.
// stack_space - extra stack space, used for alignment before call to C.
void EnterExitFrame(bool save_doubles, int stack_space = 0);
// Leave the current exit frame. Expects the return value in r0.
// Expect the number of values, pushed prior to the exit frame, to
// remove in a register (or no_reg, if there is nothing to remove).
void LeaveExitFrame(bool save_doubles,
Register argument_count,
bool restore_context);
// Get the actual activation frame alignment for target environment.
static int ActivationFrameAlignment();
void LoadContext(Register dst, int context_chain_length);
// Conditionally load the cached Array transitioned map of type
// transitioned_kind from the native context if the map in register
// map_in_out is the cached Array map in the native context of
// expected_kind.
void LoadTransitionedArrayMapConditional(
ElementsKind expected_kind,
ElementsKind transitioned_kind,
Register map_in_out,
Register scratch,
Label* no_map_match);
void LoadGlobalFunction(int index, Register function);
// Load the initial map from the global function. The registers
// function and map can be the same, function is then overwritten.
void LoadGlobalFunctionInitialMap(Register function,
Register map,
Register scratch);
void InitializeRootRegister() {
ExternalReference roots_array_start =
ExternalReference::roots_array_start(isolate());
mov(kRootRegister, Operand(roots_array_start));
}
// ---------------------------------------------------------------------------
// JavaScript invokes
// Invoke the JavaScript function code by either calling or jumping.
void InvokeCode(Register code,
const ParameterCount& expected,
const ParameterCount& actual,
InvokeFlag flag,
const CallWrapper& call_wrapper);
// Invoke the JavaScript function in the given register. Changes the
// current context to the context in the function before invoking.
void InvokeFunction(Register function,
const ParameterCount& actual,
InvokeFlag flag,
const CallWrapper& call_wrapper);
void InvokeFunction(Register function,
const ParameterCount& expected,
const ParameterCount& actual,
InvokeFlag flag,
const CallWrapper& call_wrapper);
void InvokeFunction(Handle<JSFunction> function,
const ParameterCount& expected,
const ParameterCount& actual,
InvokeFlag flag,
const CallWrapper& call_wrapper);
void IsObjectJSObjectType(Register heap_object,
Register map,
Register scratch,
Label* fail);
void IsInstanceJSObjectType(Register map,
Register scratch,
Label* fail);
void IsObjectJSStringType(Register object,
Register scratch,
Label* fail);
void IsObjectNameType(Register object,
Register scratch,
Label* fail);
// ---------------------------------------------------------------------------
// Debugger Support
void DebugBreak();
// ---------------------------------------------------------------------------
// Exception handling
// Push a new try handler and link into try handler chain.
void PushTryHandler(StackHandler::Kind kind, int handler_index);
// Unlink the stack handler on top of the stack from the try handler chain.
// Must preserve the result register.
void PopTryHandler();
// Passes thrown value to the handler of top of the try handler chain.
void Throw(Register value);
// Propagates an uncatchable exception to the top of the current JS stack's
// handler chain.
void ThrowUncatchable(Register value);
// ---------------------------------------------------------------------------
// Inline caching support
// Generate code for checking access rights - used for security checks
// on access to global objects across environments. The holder register
// is left untouched, whereas both scratch registers are clobbered.
void CheckAccessGlobalProxy(Register holder_reg,
Register scratch,
Label* miss);
void GetNumberHash(Register t0, Register scratch);
void LoadFromNumberDictionary(Label* miss,
Register elements,
Register key,
Register result,
Register t0,
Register t1,
Register t2);
inline void MarkCode(NopMarkerTypes type) {
nop(type);
}
// Check if the given instruction is a 'type' marker.
// i.e. check if is is a mov r<type>, r<type> (referenced as nop(type))
// These instructions are generated to mark special location in the code,
// like some special IC code.
static inline bool IsMarkedCode(Instr instr, int type) {
DCHECK((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER));
return IsNop(instr, type);
}
static inline int GetCodeMarker(Instr instr) {
int dst_reg_offset = 12;
int dst_mask = 0xf << dst_reg_offset;
int src_mask = 0xf;
int dst_reg = (instr & dst_mask) >> dst_reg_offset;
int src_reg = instr & src_mask;
uint32_t non_register_mask = ~(dst_mask | src_mask);
uint32_t mov_mask = al | 13 << 21;
// Return <n> if we have a mov rn rn, else return -1.
int type = ((instr & non_register_mask) == mov_mask) &&
(dst_reg == src_reg) &&
(FIRST_IC_MARKER <= dst_reg) && (dst_reg < LAST_CODE_MARKER)
? src_reg
: -1;
DCHECK((type == -1) ||
((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER)));
return type;
}
// ---------------------------------------------------------------------------
// Allocation support
// Allocate an object in new space or old pointer space. The object_size is
// specified either in bytes or in words if the allocation flag SIZE_IN_WORDS
// is passed. If the space is exhausted control continues at the gc_required
// label. The allocated object is returned in result. If the flag
// tag_allocated_object is true the result is tagged as as a heap object.
// All registers are clobbered also when control continues at the gc_required
// label.
void Allocate(int object_size,
Register result,
Register scratch1,
Register scratch2,
Label* gc_required,
AllocationFlags flags);
void Allocate(Register object_size,
Register result,
Register scratch1,
Register scratch2,
Label* gc_required,
AllocationFlags flags);
// Undo allocation in new space. The object passed and objects allocated after
// it will no longer be allocated. The caller must make sure that no pointers
// are left to the object(s) no longer allocated as they would be invalid when
// allocation is undone.
void UndoAllocationInNewSpace(Register object, Register scratch);
void AllocateTwoByteString(Register result,
Register length,
Register scratch1,
Register scratch2,
Register scratch3,
Label* gc_required);
void AllocateOneByteString(Register result, Register length,
Register scratch1, Register scratch2,
Register scratch3, Label* gc_required);
void AllocateTwoByteConsString(Register result,
Register length,
Register scratch1,
Register scratch2,
Label* gc_required);
void AllocateOneByteConsString(Register result, Register length,
Register scratch1, Register scratch2,
Label* gc_required);
void AllocateTwoByteSlicedString(Register result,
Register length,
Register scratch1,
Register scratch2,
Label* gc_required);
void AllocateOneByteSlicedString(Register result, Register length,
Register scratch1, Register scratch2,
Label* gc_required);
// Allocates a heap number or jumps to the gc_required label if the young
// space is full and a scavenge is needed. All registers are clobbered also
// when control continues at the gc_required label.
void AllocateHeapNumber(Register result,
Register scratch1,
Register scratch2,
Register heap_number_map,
Label* gc_required,
TaggingMode tagging_mode = TAG_RESULT,
MutableMode mode = IMMUTABLE);
void AllocateHeapNumberWithValue(Register result,
DwVfpRegister value,
Register scratch1,
Register scratch2,
Register heap_number_map,
Label* gc_required);
// Copies a fixed number of fields of heap objects from src to dst.
void CopyFields(Register dst,
Register src,
LowDwVfpRegister double_scratch,
int field_count);
// Copies a number of bytes from src to dst. All registers are clobbered. On
// exit src and dst will point to the place just after where the last byte was
// read or written and length will be zero.
void CopyBytes(Register src,
Register dst,
Register length,
Register scratch);
// Initialize fields with filler values. Fields starting at |start_offset|
// not including end_offset are overwritten with the value in |filler|. At
// the end the loop, |start_offset| takes the value of |end_offset|.
void InitializeFieldsWithFiller(Register start_offset,
Register end_offset,
Register filler);
// ---------------------------------------------------------------------------
// Support functions.
// Try to get function prototype of a function and puts the value in
// the result register. Checks that the function really is a
// function and jumps to the miss label if the fast checks fail. The
// function register will be untouched; the other registers may be
// clobbered.
void TryGetFunctionPrototype(Register function,
Register result,
Register scratch,
Label* miss,
bool miss_on_bound_function = false);
// Compare object type for heap object. heap_object contains a non-Smi
// whose object type should be compared with the given type. This both
// sets the flags and leaves the object type in the type_reg register.
// It leaves the map in the map register (unless the type_reg and map register
// are the same register). It leaves the heap object in the heap_object
// register unless the heap_object register is the same register as one of the
// other registers.
// Type_reg can be no_reg. In that case ip is used.
void CompareObjectType(Register heap_object,
Register map,
Register type_reg,
InstanceType type);
// Compare object type for heap object. Branch to false_label if type
// is lower than min_type or greater than max_type.
// Load map into the register map.
void CheckObjectTypeRange(Register heap_object,
Register map,
InstanceType min_type,
InstanceType max_type,
Label* false_label);
// Compare instance type in a map. map contains a valid map object whose
// object type should be compared with the given type. This both
// sets the flags and leaves the object type in the type_reg register.
void CompareInstanceType(Register map,
Register type_reg,
InstanceType type);
// Check if a map for a JSObject indicates that the object has fast elements.
// Jump to the specified label if it does not.
void CheckFastElements(Register map,
Register scratch,
Label* fail);
// Check if a map for a JSObject indicates that the object can have both smi
// and HeapObject elements. Jump to the specified label if it does not.
void CheckFastObjectElements(Register map,
Register scratch,
Label* fail);
// Check if a map for a JSObject indicates that the object has fast smi only
// elements. Jump to the specified label if it does not.
void CheckFastSmiElements(Register map,
Register scratch,
Label* fail);
// Check to see if maybe_number can be stored as a double in
// FastDoubleElements. If it can, store it at the index specified by key in
// the FastDoubleElements array elements. Otherwise jump to fail.
void StoreNumberToDoubleElements(Register value_reg,
Register key_reg,
Register elements_reg,
Register scratch1,
LowDwVfpRegister double_scratch,
Label* fail,
int elements_offset = 0);
// Compare an object's map with the specified map and its transitioned
// elements maps if mode is ALLOW_ELEMENT_TRANSITION_MAPS. Condition flags are
// set with result of map compare. If multiple map compares are required, the
// compare sequences branches to early_success.
void CompareMap(Register obj,
Register scratch,
Handle<Map> map,
Label* early_success);
// As above, but the map of the object is already loaded into the register
// which is preserved by the code generated.
void CompareMap(Register obj_map,
Handle<Map> map,
Label* early_success);
// Check if the map of an object is equal to a specified map and branch to
// label if not. Skip the smi check if not required (object is known to be a
// heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
// against maps that are ElementsKind transition maps of the specified map.
void CheckMap(Register obj,
Register scratch,
Handle<Map> map,
Label* fail,
SmiCheckType smi_check_type);
void CheckMap(Register obj,
Register scratch,
Heap::RootListIndex index,
Label* fail,
SmiCheckType smi_check_type);
// Check if the map of an object is equal to a specified map and branch to a
// specified target if equal. Skip the smi check if not required (object is
// known to be a heap object)
void DispatchMap(Register obj,
Register scratch,
Handle<Map> map,
Handle<Code> success,
SmiCheckType smi_check_type);
// Compare the object in a register to a value from the root list.
// Uses the ip register as scratch.
void CompareRoot(Register obj, Heap::RootListIndex index);
// Load and check the instance type of an object for being a string.
// Loads the type into the second argument register.
// Returns a condition that will be enabled if the object was a string
// and the passed-in condition passed. If the passed-in condition failed
// then flags remain unchanged.
Condition IsObjectStringType(Register obj,
Register type,
Condition cond = al) {
ldr(type, FieldMemOperand(obj, HeapObject::kMapOffset), cond);
ldrb(type, FieldMemOperand(type, Map::kInstanceTypeOffset), cond);
tst(type, Operand(kIsNotStringMask), cond);
DCHECK_EQ(0, kStringTag);
return eq;
}
// Picks out an array index from the hash field.
// Register use:
// hash - holds the index's hash. Clobbered.
// index - holds the overwritten index on exit.
void IndexFromHash(Register hash, Register index);
// Get the number of least significant bits from a register
void GetLeastBitsFromSmi(Register dst, Register src, int num_least_bits);
void GetLeastBitsFromInt32(Register dst, Register src, int mun_least_bits);
// Load the value of a smi object into a double register.
// The register value must be between d0 and d15.
void SmiToDouble(LowDwVfpRegister value, Register smi);
// Check if a double can be exactly represented as a signed 32-bit integer.
// Z flag set to one if true.
void TestDoubleIsInt32(DwVfpRegister double_input,
LowDwVfpRegister double_scratch);
// Try to convert a double to a signed 32-bit integer.
// Z flag set to one and result assigned if the conversion is exact.
void TryDoubleToInt32Exact(Register result,
DwVfpRegister double_input,
LowDwVfpRegister double_scratch);
// Floor a double and writes the value to the result register.
// Go to exact if the conversion is exact (to be able to test -0),
// fall through calling code if an overflow occurred, else go to done.
// In return, input_high is loaded with high bits of input.
void TryInt32Floor(Register result,
DwVfpRegister double_input,
Register input_high,
LowDwVfpRegister double_scratch,
Label* done,
Label* exact);
// Performs a truncating conversion of a floating point number as used by
// the JS bitwise operations. See ECMA-262 9.5: ToInt32. Goes to 'done' if it
// succeeds, otherwise falls through if result is saturated. On return
// 'result' either holds answer, or is clobbered on fall through.
//
// Only public for the test code in test-code-stubs-arm.cc.
void TryInlineTruncateDoubleToI(Register result,
DwVfpRegister input,
Label* done);
// Performs a truncating conversion of a floating point number as used by
// the JS bitwise operations. See ECMA-262 9.5: ToInt32.
// Exits with 'result' holding the answer.
void TruncateDoubleToI(Register result, DwVfpRegister double_input);
// Performs a truncating conversion of a heap number as used by
// the JS bitwise operations. See ECMA-262 9.5: ToInt32. 'result' and 'input'
// must be different registers. Exits with 'result' holding the answer.
void TruncateHeapNumberToI(Register result, Register object);
// Converts the smi or heap number in object to an int32 using the rules
// for ToInt32 as described in ECMAScript 9.5.: the value is truncated
// and brought into the range -2^31 .. +2^31 - 1. 'result' and 'input' must be
// different registers.
void TruncateNumberToI(Register object,
Register result,
Register heap_number_map,
Register scratch1,
Label* not_int32);
// Check whether d16-d31 are available on the CPU. The result is given by the
// Z condition flag: Z==0 if d16-d31 available, Z==1 otherwise.
void CheckFor32DRegs(Register scratch);
// Does a runtime check for 16/32 FP registers. Either way, pushes 32 double
// values to location, saving [d0..(d15|d31)].
void SaveFPRegs(Register location, Register scratch);
// Does a runtime check for 16/32 FP registers. Either way, pops 32 double
// values to location, restoring [d0..(d15|d31)].
void RestoreFPRegs(Register location, Register scratch);
// ---------------------------------------------------------------------------
// Runtime calls
// Call a code stub.
void CallStub(CodeStub* stub,
TypeFeedbackId ast_id = TypeFeedbackId::None(),
Condition cond = al);
// Call a code stub.
void TailCallStub(CodeStub* stub, Condition cond = al);
// Call a runtime routine.
void CallRuntime(const Runtime::Function* f,
int num_arguments,
SaveFPRegsMode save_doubles = kDontSaveFPRegs);
void CallRuntimeSaveDoubles(Runtime::FunctionId id) {
const Runtime::Function* function = Runtime::FunctionForId(id);
CallRuntime(function, function->nargs, kSaveFPRegs);
}
// Convenience function: Same as above, but takes the fid instead.
void CallRuntime(Runtime::FunctionId id,
int num_arguments,
SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
CallRuntime(Runtime::FunctionForId(id), num_arguments, save_doubles);
}
// Convenience function: call an external reference.
void CallExternalReference(const ExternalReference& ext,
int num_arguments);
// Tail call of a runtime routine (jump).
// Like JumpToExternalReference, but also takes care of passing the number
// of parameters.
void TailCallExternalReference(const ExternalReference& ext,
int num_arguments,
int result_size);
// Convenience function: tail call a runtime routine (jump).
void TailCallRuntime(Runtime::FunctionId fid,
int num_arguments,
int result_size);
int CalculateStackPassedWords(int num_reg_arguments,
int num_double_arguments);
// Before calling a C-function from generated code, align arguments on stack.
// After aligning the frame, non-register arguments must be stored in
// sp[0], sp[4], etc., not pushed. The argument count assumes all arguments
// are word sized. If double arguments are used, this function assumes that
// all double arguments are stored before core registers; otherwise the
// correct alignment of the double values is not guaranteed.
// Some compilers/platforms require the stack to be aligned when calling
// C++ code.
// Needs a scratch register to do some arithmetic. This register will be
// trashed.
void PrepareCallCFunction(int num_reg_arguments,
int num_double_registers,
Register scratch);
void PrepareCallCFunction(int num_reg_arguments,
Register scratch);
// There are two ways of passing double arguments on ARM, depending on
// whether soft or hard floating point ABI is used. These functions
// abstract parameter passing for the three different ways we call
// C functions from generated code.
void MovToFloatParameter(DwVfpRegister src);
void MovToFloatParameters(DwVfpRegister src1, DwVfpRegister src2);
void MovToFloatResult(DwVfpRegister src);
// Calls a C function and cleans up the space for arguments allocated
// by PrepareCallCFunction. The called function is not allowed to trigger a
// garbage collection, since that might move the code and invalidate the
// return address (unless this is somehow accounted for by the called
// function).
void CallCFunction(ExternalReference function, int num_arguments);
void CallCFunction(Register function, int num_arguments);
void CallCFunction(ExternalReference function,
int num_reg_arguments,
int num_double_arguments);
void CallCFunction(Register function,
int num_reg_arguments,
int num_double_arguments);
void MovFromFloatParameter(DwVfpRegister dst);
void MovFromFloatResult(DwVfpRegister dst);
// Calls an API function. Allocates HandleScope, extracts returned value
// from handle and propagates exceptions. Restores context. stack_space
// - space to be unwound on exit (includes the call JS arguments space and
// the additional space allocated for the fast call).
void CallApiFunctionAndReturn(Register function_address,
ExternalReference thunk_ref,
int stack_space,
MemOperand return_value_operand,
MemOperand* context_restore_operand);
// Jump to a runtime routine.
void JumpToExternalReference(const ExternalReference& builtin);
// Invoke specified builtin JavaScript function. Adds an entry to
// the unresolved list if the name does not resolve.
void InvokeBuiltin(Builtins::JavaScript id,
InvokeFlag flag,
const CallWrapper& call_wrapper = NullCallWrapper());
// Store the code object for the given builtin in the target register and
// setup the function in r1.
void GetBuiltinEntry(Register target, Builtins::JavaScript id);
// Store the function for the given builtin in the target register.
void GetBuiltinFunction(Register target, Builtins::JavaScript id);
Handle<Object> CodeObject() {
DCHECK(!code_object_.is_null());
return code_object_;
}
// Emit code for a truncating division by a constant. The dividend register is
// unchanged and ip gets clobbered. Dividend and result must be different.
void TruncatingDiv(Register result, Register dividend, int32_t divisor);
// ---------------------------------------------------------------------------
// StatsCounter support
void SetCounter(StatsCounter* counter, int value,
Register scratch1, Register scratch2);
void IncrementCounter(StatsCounter* counter, int value,
Register scratch1, Register scratch2);
void DecrementCounter(StatsCounter* counter, int value,
Register scratch1, Register scratch2);
// ---------------------------------------------------------------------------
// Debugging
// Calls Abort(msg) if the condition cond is not satisfied.
// Use --debug_code to enable.
void Assert(Condition cond, BailoutReason reason);
void AssertFastElements(Register elements);
// Like Assert(), but always enabled.
void Check(Condition cond, BailoutReason reason);
// Print a message to stdout and abort execution.
void Abort(BailoutReason msg);
// Verify restrictions about code generated in stubs.
void set_generating_stub(bool value) { generating_stub_ = value; }
bool generating_stub() { return generating_stub_; }
void set_has_frame(bool value) { has_frame_ = value; }
bool has_frame() { return has_frame_; }
inline bool AllowThisStubCall(CodeStub* stub);
// EABI variant for double arguments in use.
bool use_eabi_hardfloat() {
#ifdef __arm__
return base::OS::ArmUsingHardFloat();
#elif USE_EABI_HARDFLOAT
return true;
#else
return false;
#endif
}
// ---------------------------------------------------------------------------
// Number utilities
// Check whether the value of reg is a power of two and not zero. If not
// control continues at the label not_power_of_two. If reg is a power of two
// the register scratch contains the value of (reg - 1) when control falls
// through.
void JumpIfNotPowerOfTwoOrZero(Register reg,
Register scratch,
Label* not_power_of_two_or_zero);
// Check whether the value of reg is a power of two and not zero.
// Control falls through if it is, with scratch containing the mask
// value (reg - 1).
// Otherwise control jumps to the 'zero_and_neg' label if the value of reg is
// zero or negative, or jumps to the 'not_power_of_two' label if the value is
// strictly positive but not a power of two.
void JumpIfNotPowerOfTwoOrZeroAndNeg(Register reg,
Register scratch,
Label* zero_and_neg,
Label* not_power_of_two);
// ---------------------------------------------------------------------------
// Smi utilities
void SmiTag(Register reg, SBit s = LeaveCC) {
add(reg, reg, Operand(reg), s);
}
void SmiTag(Register dst, Register src, SBit s = LeaveCC) {
add(dst, src, Operand(src), s);
}
// Try to convert int32 to smi. If the value is to large, preserve
// the original value and jump to not_a_smi. Destroys scratch and
// sets flags.
void TrySmiTag(Register reg, Label* not_a_smi) {
TrySmiTag(reg, reg, not_a_smi);
}
void TrySmiTag(Register reg, Register src, Label* not_a_smi) {
SmiTag(ip, src, SetCC);
b(vs, not_a_smi);
mov(reg, ip);
}
void SmiUntag(Register reg, SBit s = LeaveCC) {
mov(reg, Operand::SmiUntag(reg), s);
}
void SmiUntag(Register dst, Register src, SBit s = LeaveCC) {
mov(dst, Operand::SmiUntag(src), s);
}
// Untag the source value into destination and jump if source is a smi.
// Souce and destination can be the same register.
void UntagAndJumpIfSmi(Register dst, Register src, Label* smi_case);
// Untag the source value into destination and jump if source is not a smi.
// Souce and destination can be the same register.
void UntagAndJumpIfNotSmi(Register dst, Register src, Label* non_smi_case);
// Test if the register contains a smi (Z == 0 (eq) if true).
inline void SmiTst(Register value) {
tst(value, Operand(kSmiTagMask));
}
inline void NonNegativeSmiTst(Register value) {
tst(value, Operand(kSmiTagMask | kSmiSignMask));
}
// Jump if the register contains a smi.
inline void JumpIfSmi(Register value, Label* smi_label) {
tst(value, Operand(kSmiTagMask));
b(eq, smi_label);
}
// Jump if either of the registers contain a non-smi.
inline void JumpIfNotSmi(Register value, Label* not_smi_label) {
tst(value, Operand(kSmiTagMask));
b(ne, not_smi_label);
}
// Jump if either of the registers contain a non-smi.
void JumpIfNotBothSmi(Register reg1, Register reg2, Label* on_not_both_smi);
// Jump if either of the registers contain a smi.
void JumpIfEitherSmi(Register reg1, Register reg2, Label* on_either_smi);
// Abort execution if argument is a smi, enabled via --debug-code.
void AssertNotSmi(Register object);
void AssertSmi(Register object);
// Abort execution if argument is not a string, enabled via --debug-code.
void AssertString(Register object);
// Abort execution if argument is not a name, enabled via --debug-code.
void AssertName(Register object);
// Abort execution if argument is not undefined or an AllocationSite, enabled
// via --debug-code.
void AssertUndefinedOrAllocationSite(Register object, Register scratch);
// Abort execution if reg is not the root value with the given index,
// enabled via --debug-code.
void AssertIsRoot(Register reg, Heap::RootListIndex index);
// ---------------------------------------------------------------------------
// HeapNumber utilities
void JumpIfNotHeapNumber(Register object,
Register heap_number_map,
Register scratch,
Label* on_not_heap_number);
// ---------------------------------------------------------------------------
// String utilities
// Generate code to do a lookup in the number string cache. If the number in
// the register object is found in the cache the generated code falls through
// with the result in the result register. The object and the result register
// can be the same. If the number is not found in the cache the code jumps to
// the label not_found with only the content of register object unchanged.
void LookupNumberStringCache(Register object,
Register result,
Register scratch1,
Register scratch2,
Register scratch3,
Label* not_found);
// Checks if both objects are sequential one-byte strings and jumps to label
// if either is not. Assumes that neither object is a smi.
void JumpIfNonSmisNotBothSequentialOneByteStrings(Register object1,
Register object2,
Register scratch1,
Register scratch2,
Label* failure);
// Checks if both objects are sequential one-byte strings and jumps to label
// if either is not.
void JumpIfNotBothSequentialOneByteStrings(Register first, Register second,
Register scratch1,
Register scratch2,
Label* not_flat_one_byte_strings);
// Checks if both instance types are sequential one-byte strings and jumps to
// label if either is not.
void JumpIfBothInstanceTypesAreNotSequentialOneByte(
Register first_object_instance_type, Register second_object_instance_type,
Register scratch1, Register scratch2, Label* failure);
// Check if instance type is sequential one-byte string and jump to label if
// it is not.
void JumpIfInstanceTypeIsNotSequentialOneByte(Register type, Register scratch,
Label* failure);
void JumpIfNotUniqueNameInstanceType(Register reg, Label* not_unique_name);
void EmitSeqStringSetCharCheck(Register string,
Register index,
Register value,
uint32_t encoding_mask);
// ---------------------------------------------------------------------------
// Patching helpers.
// Get the location of a relocated constant (its address in the constant pool)
// from its load site.
void GetRelocatedValueLocation(Register ldr_location, Register result,
Register scratch);
void ClampUint8(Register output_reg, Register input_reg);
void ClampDoubleToUint8(Register result_reg,
DwVfpRegister input_reg,
LowDwVfpRegister double_scratch);
void LoadInstanceDescriptors(Register map, Register descriptors);
void EnumLength(Register dst, Register map);
void NumberOfOwnDescriptors(Register dst, Register map);
template<typename Field>
void DecodeField(Register dst, Register src) {
Ubfx(dst, src, Field::kShift, Field::kSize);
}
template<typename Field>
void DecodeField(Register reg) {
DecodeField<Field>(reg, reg);
}
template<typename Field>
void DecodeFieldToSmi(Register dst, Register src) {
static const int shift = Field::kShift;
static const int mask = Field::kMask >> shift << kSmiTagSize;
STATIC_ASSERT((mask & (0x80000000u >> (kSmiTagSize - 1))) == 0);
STATIC_ASSERT(kSmiTag == 0);
if (shift < kSmiTagSize) {
mov(dst, Operand(src, LSL, kSmiTagSize - shift));
and_(dst, dst, Operand(mask));
} else if (shift > kSmiTagSize) {
mov(dst, Operand(src, LSR, shift - kSmiTagSize));
and_(dst, dst, Operand(mask));
} else {
and_(dst, src, Operand(mask));
}
}
template<typename Field>
void DecodeFieldToSmi(Register reg) {
DecodeField<Field>(reg, reg);
}
// Activation support.
void EnterFrame(StackFrame::Type type, bool load_constant_pool = false);
// Returns the pc offset at which the frame ends.
int LeaveFrame(StackFrame::Type type);
// Expects object in r0 and returns map with validated enum cache
// in r0. Assumes that any other register can be used as a scratch.
void CheckEnumCache(Register null_value, Label* call_runtime);
// AllocationMemento support. Arrays may have an associated
// AllocationMemento object that can be checked for in order to pretransition
// to another type.
// On entry, receiver_reg should point to the array object.
// scratch_reg gets clobbered.
// If allocation info is present, condition flags are set to eq.
void TestJSArrayForAllocationMemento(Register receiver_reg,
Register scratch_reg,
Label* no_memento_found);
void JumpIfJSArrayHasAllocationMemento(Register receiver_reg,
Register scratch_reg,
Label* memento_found) {
Label no_memento_found;
TestJSArrayForAllocationMemento(receiver_reg, scratch_reg,
&no_memento_found);
b(eq, memento_found);
bind(&no_memento_found);
}
// Jumps to found label if a prototype map has dictionary elements.
void JumpIfDictionaryInPrototypeChain(Register object, Register scratch0,
Register scratch1, Label* found);
private:
void CallCFunctionHelper(Register function,
int num_reg_arguments,
int num_double_arguments);
void Jump(intptr_t target, RelocInfo::Mode rmode, Condition cond = al);
// Helper functions for generating invokes.
void InvokePrologue(const ParameterCount& expected,
const ParameterCount& actual,
Handle<Code> code_constant,
Register code_reg,
Label* done,
bool* definitely_mismatches,
InvokeFlag flag,
const CallWrapper& call_wrapper);
void InitializeNewString(Register string,
Register length,
Heap::RootListIndex map_index,
Register scratch1,
Register scratch2);
// Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
void InNewSpace(Register object,
Register scratch,
Condition cond, // eq for new space, ne otherwise.
Label* branch);
// Helper for finding the mark bits for an address. Afterwards, the
// bitmap register points at the word with the mark bits and the mask
// the position of the first bit. Leaves addr_reg unchanged.
inline void GetMarkBits(Register addr_reg,
Register bitmap_reg,
Register mask_reg);
// Helper for throwing exceptions. Compute a handler address and jump to
// it. See the implementation for register usage.
void JumpToHandlerEntry();
// Compute memory operands for safepoint stack slots.
static int SafepointRegisterStackIndex(int reg_code);
MemOperand SafepointRegisterSlot(Register reg);
MemOperand SafepointRegistersAndDoublesSlot(Register reg);
// Loads the constant pool pointer (pp) register.
void LoadConstantPoolPointerRegister();
bool generating_stub_;
bool has_frame_;
// This handle will be patched with the code object on installation.
Handle<Object> code_object_;
// Needs access to SafepointRegisterStackIndex for compiled frame
// traversal.
friend class StandardFrame;
};
// The code patcher is used to patch (typically) small parts of code e.g. for
// debugging and other types of instrumentation. When using the code patcher
// the exact number of bytes specified must be emitted. It is not legal to emit
// relocation information. If any of these constraints are violated it causes
// an assertion to fail.
class CodePatcher {
public:
enum FlushICache {
FLUSH,
DONT_FLUSH
};
CodePatcher(byte* address,
int instructions,
FlushICache flush_cache = FLUSH);
virtual ~CodePatcher();
// Macro assembler to emit code.
MacroAssembler* masm() { return &masm_; }
// Emit an instruction directly.
void Emit(Instr instr);
// Emit an address directly.
void Emit(Address addr);
// Emit the condition part of an instruction leaving the rest of the current
// instruction unchanged.
void EmitCondition(Condition cond);
private:
byte* address_; // The address of the code being patched.
int size_; // Number of bytes of the expected patch size.
MacroAssembler masm_; // Macro assembler used to generate the code.
FlushICache flush_cache_; // Whether to flush the I cache after patching.
};
class FrameAndConstantPoolScope {
public:
FrameAndConstantPoolScope(MacroAssembler* masm, StackFrame::Type type)
: masm_(masm),
type_(type),
old_has_frame_(masm->has_frame()),
old_constant_pool_available_(masm->is_constant_pool_available()) {
// We only want to enable constant pool access for non-manual frame scopes
// to ensure the constant pool pointer is valid throughout the scope.
DCHECK(type_ != StackFrame::MANUAL && type_ != StackFrame::NONE);
masm->set_has_frame(true);
masm->set_constant_pool_available(true);
masm->EnterFrame(type, !old_constant_pool_available_);
}
~FrameAndConstantPoolScope() {
masm_->LeaveFrame(type_);
masm_->set_has_frame(old_has_frame_);
masm_->set_constant_pool_available(old_constant_pool_available_);
}
// Normally we generate the leave-frame code when this object goes
// out of scope. Sometimes we may need to generate the code somewhere else
// in addition. Calling this will achieve that, but the object stays in
// scope, the MacroAssembler is still marked as being in a frame scope, and
// the code will be generated again when it goes out of scope.
void GenerateLeaveFrame() {
DCHECK(type_ != StackFrame::MANUAL && type_ != StackFrame::NONE);
masm_->LeaveFrame(type_);
}
private:
MacroAssembler* masm_;
StackFrame::Type type_;
bool old_has_frame_;
bool old_constant_pool_available_;
DISALLOW_IMPLICIT_CONSTRUCTORS(FrameAndConstantPoolScope);
};
// Class for scoping the the unavailability of constant pool access.
class ConstantPoolUnavailableScope {
public:
explicit ConstantPoolUnavailableScope(MacroAssembler* masm)
: masm_(masm),
old_constant_pool_available_(masm->is_constant_pool_available()) {
if (FLAG_enable_ool_constant_pool) {
masm_->set_constant_pool_available(false);
}
}
~ConstantPoolUnavailableScope() {
if (FLAG_enable_ool_constant_pool) {
masm_->set_constant_pool_available(old_constant_pool_available_);
}
}
private:
MacroAssembler* masm_;
int old_constant_pool_available_;
DISALLOW_IMPLICIT_CONSTRUCTORS(ConstantPoolUnavailableScope);
};
// -----------------------------------------------------------------------------
// Static helper functions.
inline MemOperand ContextOperand(Register context, int index) {
return MemOperand(context, Context::SlotOffset(index));
}
inline MemOperand GlobalObjectOperand() {
return ContextOperand(cp, Context::GLOBAL_OBJECT_INDEX);
}
#ifdef GENERATED_CODE_COVERAGE
#define CODE_COVERAGE_STRINGIFY(x) #x
#define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x)
#define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__)
#define ACCESS_MASM(masm) masm->stop(__FILE_LINE__); masm->
#else
#define ACCESS_MASM(masm) masm->
#endif
} } // namespace v8::internal
#endif // V8_ARM_MACRO_ASSEMBLER_ARM_H_