// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_ARM_CODE_STUBS_ARM_H_
#define V8_ARM_CODE_STUBS_ARM_H_
namespace v8 {
namespace internal {
void ArrayNativeCode(MacroAssembler* masm, Label* call_generic_code);
class StringHelper : public AllStatic {
public:
// Generate code for copying a large number of characters. This function
// is allowed to spend extra time setting up conditions to make copying
// faster. Copying of overlapping regions is not supported.
// Dest register ends at the position after the last character written.
static void GenerateCopyCharacters(MacroAssembler* masm,
Register dest,
Register src,
Register count,
Register scratch,
String::Encoding encoding);
// Compares two flat one-byte strings and returns result in r0.
static void GenerateCompareFlatOneByteStrings(
MacroAssembler* masm, Register left, Register right, Register scratch1,
Register scratch2, Register scratch3, Register scratch4);
// Compares two flat one-byte strings for equality and returns result in r0.
static void GenerateFlatOneByteStringEquals(MacroAssembler* masm,
Register left, Register right,
Register scratch1,
Register scratch2,
Register scratch3);
private:
static void GenerateOneByteCharsCompareLoop(
MacroAssembler* masm, Register left, Register right, Register length,
Register scratch1, Register scratch2, Label* chars_not_equal);
DISALLOW_IMPLICIT_CONSTRUCTORS(StringHelper);
};
// This stub can convert a signed int32 to a heap number (double). It does
// not work for int32s that are in Smi range! No GC occurs during this stub
// so you don't have to set up the frame.
class WriteInt32ToHeapNumberStub : public PlatformCodeStub {
public:
WriteInt32ToHeapNumberStub(Isolate* isolate, Register the_int,
Register the_heap_number, Register scratch)
: PlatformCodeStub(isolate) {
minor_key_ = IntRegisterBits::encode(the_int.code()) |
HeapNumberRegisterBits::encode(the_heap_number.code()) |
ScratchRegisterBits::encode(scratch.code());
}
static void GenerateFixedRegStubsAheadOfTime(Isolate* isolate);
private:
Register the_int() const {
return Register::from_code(IntRegisterBits::decode(minor_key_));
}
Register the_heap_number() const {
return Register::from_code(HeapNumberRegisterBits::decode(minor_key_));
}
Register scratch() const {
return Register::from_code(ScratchRegisterBits::decode(minor_key_));
}
// Minor key encoding in 16 bits.
class IntRegisterBits: public BitField<int, 0, 4> {};
class HeapNumberRegisterBits: public BitField<int, 4, 4> {};
class ScratchRegisterBits: public BitField<int, 8, 4> {};
DEFINE_NULL_CALL_INTERFACE_DESCRIPTOR();
DEFINE_PLATFORM_CODE_STUB(WriteInt32ToHeapNumber, PlatformCodeStub);
};
class RecordWriteStub: public PlatformCodeStub {
public:
RecordWriteStub(Isolate* isolate,
Register object,
Register value,
Register address,
RememberedSetAction remembered_set_action,
SaveFPRegsMode fp_mode)
: PlatformCodeStub(isolate),
regs_(object, // An input reg.
address, // An input reg.
value) { // One scratch reg.
minor_key_ = ObjectBits::encode(object.code()) |
ValueBits::encode(value.code()) |
AddressBits::encode(address.code()) |
RememberedSetActionBits::encode(remembered_set_action) |
SaveFPRegsModeBits::encode(fp_mode);
}
RecordWriteStub(uint32_t key, Isolate* isolate)
: PlatformCodeStub(key, isolate), regs_(object(), address(), value()) {}
enum Mode {
STORE_BUFFER_ONLY,
INCREMENTAL,
INCREMENTAL_COMPACTION
};
virtual bool SometimesSetsUpAFrame() { return false; }
static void PatchBranchIntoNop(MacroAssembler* masm, int pos) {
masm->instr_at_put(pos, (masm->instr_at(pos) & ~B27) | (B24 | B20));
DCHECK(Assembler::IsTstImmediate(masm->instr_at(pos)));
}
static void PatchNopIntoBranch(MacroAssembler* masm, int pos) {
masm->instr_at_put(pos, (masm->instr_at(pos) & ~(B24 | B20)) | B27);
DCHECK(Assembler::IsBranch(masm->instr_at(pos)));
}
static Mode GetMode(Code* stub) {
Instr first_instruction = Assembler::instr_at(stub->instruction_start());
Instr second_instruction = Assembler::instr_at(stub->instruction_start() +
Assembler::kInstrSize);
if (Assembler::IsBranch(first_instruction)) {
return INCREMENTAL;
}
DCHECK(Assembler::IsTstImmediate(first_instruction));
if (Assembler::IsBranch(second_instruction)) {
return INCREMENTAL_COMPACTION;
}
DCHECK(Assembler::IsTstImmediate(second_instruction));
return STORE_BUFFER_ONLY;
}
static void Patch(Code* stub, Mode mode) {
MacroAssembler masm(NULL,
stub->instruction_start(),
stub->instruction_size());
switch (mode) {
case STORE_BUFFER_ONLY:
DCHECK(GetMode(stub) == INCREMENTAL ||
GetMode(stub) == INCREMENTAL_COMPACTION);
PatchBranchIntoNop(&masm, 0);
PatchBranchIntoNop(&masm, Assembler::kInstrSize);
break;
case INCREMENTAL:
DCHECK(GetMode(stub) == STORE_BUFFER_ONLY);
PatchNopIntoBranch(&masm, 0);
break;
case INCREMENTAL_COMPACTION:
DCHECK(GetMode(stub) == STORE_BUFFER_ONLY);
PatchNopIntoBranch(&masm, Assembler::kInstrSize);
break;
}
DCHECK(GetMode(stub) == mode);
CpuFeatures::FlushICache(stub->instruction_start(),
2 * Assembler::kInstrSize);
}
DEFINE_NULL_CALL_INTERFACE_DESCRIPTOR();
private:
// This is a helper class for freeing up 3 scratch registers. The input is
// two registers that must be preserved and one scratch register provided by
// the caller.
class RegisterAllocation {
public:
RegisterAllocation(Register object,
Register address,
Register scratch0)
: object_(object),
address_(address),
scratch0_(scratch0) {
DCHECK(!AreAliased(scratch0, object, address, no_reg));
scratch1_ = GetRegisterThatIsNotOneOf(object_, address_, scratch0_);
}
void Save(MacroAssembler* masm) {
DCHECK(!AreAliased(object_, address_, scratch1_, scratch0_));
// We don't have to save scratch0_ because it was given to us as
// a scratch register.
masm->push(scratch1_);
}
void Restore(MacroAssembler* masm) {
masm->pop(scratch1_);
}
// If we have to call into C then we need to save and restore all caller-
// saved registers that were not already preserved. The scratch registers
// will be restored by other means so we don't bother pushing them here.
void SaveCallerSaveRegisters(MacroAssembler* masm, SaveFPRegsMode mode) {
masm->stm(db_w, sp, (kCallerSaved | lr.bit()) & ~scratch1_.bit());
if (mode == kSaveFPRegs) {
masm->SaveFPRegs(sp, scratch0_);
}
}
inline void RestoreCallerSaveRegisters(MacroAssembler*masm,
SaveFPRegsMode mode) {
if (mode == kSaveFPRegs) {
masm->RestoreFPRegs(sp, scratch0_);
}
masm->ldm(ia_w, sp, (kCallerSaved | lr.bit()) & ~scratch1_.bit());
}
inline Register object() { return object_; }
inline Register address() { return address_; }
inline Register scratch0() { return scratch0_; }
inline Register scratch1() { return scratch1_; }
private:
Register object_;
Register address_;
Register scratch0_;
Register scratch1_;
friend class RecordWriteStub;
};
enum OnNoNeedToInformIncrementalMarker {
kReturnOnNoNeedToInformIncrementalMarker,
kUpdateRememberedSetOnNoNeedToInformIncrementalMarker
};
virtual inline Major MajorKey() const FINAL OVERRIDE { return RecordWrite; }
virtual void Generate(MacroAssembler* masm) OVERRIDE;
void GenerateIncremental(MacroAssembler* masm, Mode mode);
void CheckNeedsToInformIncrementalMarker(
MacroAssembler* masm,
OnNoNeedToInformIncrementalMarker on_no_need,
Mode mode);
void InformIncrementalMarker(MacroAssembler* masm);
void Activate(Code* code) {
code->GetHeap()->incremental_marking()->ActivateGeneratedStub(code);
}
Register object() const {
return Register::from_code(ObjectBits::decode(minor_key_));
}
Register value() const {
return Register::from_code(ValueBits::decode(minor_key_));
}
Register address() const {
return Register::from_code(AddressBits::decode(minor_key_));
}
RememberedSetAction remembered_set_action() const {
return RememberedSetActionBits::decode(minor_key_);
}
SaveFPRegsMode save_fp_regs_mode() const {
return SaveFPRegsModeBits::decode(minor_key_);
}
class ObjectBits: public BitField<int, 0, 4> {};
class ValueBits: public BitField<int, 4, 4> {};
class AddressBits: public BitField<int, 8, 4> {};
class RememberedSetActionBits: public BitField<RememberedSetAction, 12, 1> {};
class SaveFPRegsModeBits: public BitField<SaveFPRegsMode, 13, 1> {};
Label slow_;
RegisterAllocation regs_;
DISALLOW_COPY_AND_ASSIGN(RecordWriteStub);
};
// Trampoline stub to call into native code. To call safely into native code
// in the presence of compacting GC (which can move code objects) we need to
// keep the code which called into native pinned in the memory. Currently the
// simplest approach is to generate such stub early enough so it can never be
// moved by GC
class DirectCEntryStub: public PlatformCodeStub {
public:
explicit DirectCEntryStub(Isolate* isolate) : PlatformCodeStub(isolate) {}
void GenerateCall(MacroAssembler* masm, Register target);
private:
bool NeedsImmovableCode() { return true; }
DEFINE_NULL_CALL_INTERFACE_DESCRIPTOR();
DEFINE_PLATFORM_CODE_STUB(DirectCEntry, PlatformCodeStub);
};
class NameDictionaryLookupStub: public PlatformCodeStub {
public:
enum LookupMode { POSITIVE_LOOKUP, NEGATIVE_LOOKUP };
NameDictionaryLookupStub(Isolate* isolate, LookupMode mode)
: PlatformCodeStub(isolate) {
minor_key_ = LookupModeBits::encode(mode);
}
static void GenerateNegativeLookup(MacroAssembler* masm,
Label* miss,
Label* done,
Register receiver,
Register properties,
Handle<Name> name,
Register scratch0);
static void GeneratePositiveLookup(MacroAssembler* masm,
Label* miss,
Label* done,
Register elements,
Register name,
Register r0,
Register r1);
virtual bool SometimesSetsUpAFrame() { return false; }
private:
static const int kInlinedProbes = 4;
static const int kTotalProbes = 20;
static const int kCapacityOffset =
NameDictionary::kHeaderSize +
NameDictionary::kCapacityIndex * kPointerSize;
static const int kElementsStartOffset =
NameDictionary::kHeaderSize +
NameDictionary::kElementsStartIndex * kPointerSize;
LookupMode mode() const { return LookupModeBits::decode(minor_key_); }
class LookupModeBits: public BitField<LookupMode, 0, 1> {};
DEFINE_NULL_CALL_INTERFACE_DESCRIPTOR();
DEFINE_PLATFORM_CODE_STUB(NameDictionaryLookup, PlatformCodeStub);
};
} } // namespace v8::internal
#endif // V8_ARM_CODE_STUBS_ARM_H_