// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/v8.h"
#if V8_TARGET_ARCH_ARM
#include "src/base/bits.h"
#include "src/bootstrapper.h"
#include "src/code-stubs.h"
#include "src/codegen.h"
#include "src/ic/handler-compiler.h"
#include "src/ic/ic.h"
#include "src/isolate.h"
#include "src/jsregexp.h"
#include "src/regexp-macro-assembler.h"
#include "src/runtime.h"
namespace v8 {
namespace internal {
static void InitializeArrayConstructorDescriptor(
Isolate* isolate, CodeStubDescriptor* descriptor,
int constant_stack_parameter_count) {
Address deopt_handler = Runtime::FunctionForId(
Runtime::kArrayConstructor)->entry;
if (constant_stack_parameter_count == 0) {
descriptor->Initialize(deopt_handler, constant_stack_parameter_count,
JS_FUNCTION_STUB_MODE);
} else {
descriptor->Initialize(r0, deopt_handler, constant_stack_parameter_count,
JS_FUNCTION_STUB_MODE, PASS_ARGUMENTS);
}
}
static void InitializeInternalArrayConstructorDescriptor(
Isolate* isolate, CodeStubDescriptor* descriptor,
int constant_stack_parameter_count) {
Address deopt_handler = Runtime::FunctionForId(
Runtime::kInternalArrayConstructor)->entry;
if (constant_stack_parameter_count == 0) {
descriptor->Initialize(deopt_handler, constant_stack_parameter_count,
JS_FUNCTION_STUB_MODE);
} else {
descriptor->Initialize(r0, deopt_handler, constant_stack_parameter_count,
JS_FUNCTION_STUB_MODE, PASS_ARGUMENTS);
}
}
void ArrayNoArgumentConstructorStub::InitializeDescriptor(
CodeStubDescriptor* descriptor) {
InitializeArrayConstructorDescriptor(isolate(), descriptor, 0);
}
void ArraySingleArgumentConstructorStub::InitializeDescriptor(
CodeStubDescriptor* descriptor) {
InitializeArrayConstructorDescriptor(isolate(), descriptor, 1);
}
void ArrayNArgumentsConstructorStub::InitializeDescriptor(
CodeStubDescriptor* descriptor) {
InitializeArrayConstructorDescriptor(isolate(), descriptor, -1);
}
void InternalArrayNoArgumentConstructorStub::InitializeDescriptor(
CodeStubDescriptor* descriptor) {
InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, 0);
}
void InternalArraySingleArgumentConstructorStub::InitializeDescriptor(
CodeStubDescriptor* descriptor) {
InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, 1);
}
void InternalArrayNArgumentsConstructorStub::InitializeDescriptor(
CodeStubDescriptor* descriptor) {
InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, -1);
}
#define __ ACCESS_MASM(masm)
static void EmitIdenticalObjectComparison(MacroAssembler* masm,
Label* slow,
Condition cond);
static void EmitSmiNonsmiComparison(MacroAssembler* masm,
Register lhs,
Register rhs,
Label* lhs_not_nan,
Label* slow,
bool strict);
static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
Register lhs,
Register rhs);
void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm,
ExternalReference miss) {
// Update the static counter each time a new code stub is generated.
isolate()->counters()->code_stubs()->Increment();
CallInterfaceDescriptor descriptor = GetCallInterfaceDescriptor();
int param_count = descriptor.GetEnvironmentParameterCount();
{
// Call the runtime system in a fresh internal frame.
FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
DCHECK(param_count == 0 ||
r0.is(descriptor.GetEnvironmentParameterRegister(param_count - 1)));
// Push arguments
for (int i = 0; i < param_count; ++i) {
__ push(descriptor.GetEnvironmentParameterRegister(i));
}
__ CallExternalReference(miss, param_count);
}
__ Ret();
}
void DoubleToIStub::Generate(MacroAssembler* masm) {
Label out_of_range, only_low, negate, done;
Register input_reg = source();
Register result_reg = destination();
DCHECK(is_truncating());
int double_offset = offset();
// Account for saved regs if input is sp.
if (input_reg.is(sp)) double_offset += 3 * kPointerSize;
Register scratch = GetRegisterThatIsNotOneOf(input_reg, result_reg);
Register scratch_low =
GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch);
Register scratch_high =
GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch, scratch_low);
LowDwVfpRegister double_scratch = kScratchDoubleReg;
__ Push(scratch_high, scratch_low, scratch);
if (!skip_fastpath()) {
// Load double input.
__ vldr(double_scratch, MemOperand(input_reg, double_offset));
__ vmov(scratch_low, scratch_high, double_scratch);
// Do fast-path convert from double to int.
__ vcvt_s32_f64(double_scratch.low(), double_scratch);
__ vmov(result_reg, double_scratch.low());
// If result is not saturated (0x7fffffff or 0x80000000), we are done.
__ sub(scratch, result_reg, Operand(1));
__ cmp(scratch, Operand(0x7ffffffe));
__ b(lt, &done);
} else {
// We've already done MacroAssembler::TryFastTruncatedDoubleToILoad, so we
// know exponent > 31, so we can skip the vcvt_s32_f64 which will saturate.
if (double_offset == 0) {
__ ldm(ia, input_reg, scratch_low.bit() | scratch_high.bit());
} else {
__ ldr(scratch_low, MemOperand(input_reg, double_offset));
__ ldr(scratch_high, MemOperand(input_reg, double_offset + kIntSize));
}
}
__ Ubfx(scratch, scratch_high,
HeapNumber::kExponentShift, HeapNumber::kExponentBits);
// Load scratch with exponent - 1. This is faster than loading
// with exponent because Bias + 1 = 1024 which is an *ARM* immediate value.
STATIC_ASSERT(HeapNumber::kExponentBias + 1 == 1024);
__ sub(scratch, scratch, Operand(HeapNumber::kExponentBias + 1));
// If exponent is greater than or equal to 84, the 32 less significant
// bits are 0s (2^84 = 1, 52 significant bits, 32 uncoded bits),
// the result is 0.
// Compare exponent with 84 (compare exponent - 1 with 83).
__ cmp(scratch, Operand(83));
__ b(ge, &out_of_range);
// If we reach this code, 31 <= exponent <= 83.
// So, we don't have to handle cases where 0 <= exponent <= 20 for
// which we would need to shift right the high part of the mantissa.
// Scratch contains exponent - 1.
// Load scratch with 52 - exponent (load with 51 - (exponent - 1)).
__ rsb(scratch, scratch, Operand(51), SetCC);
__ b(ls, &only_low);
// 21 <= exponent <= 51, shift scratch_low and scratch_high
// to generate the result.
__ mov(scratch_low, Operand(scratch_low, LSR, scratch));
// Scratch contains: 52 - exponent.
// We needs: exponent - 20.
// So we use: 32 - scratch = 32 - 52 + exponent = exponent - 20.
__ rsb(scratch, scratch, Operand(32));
__ Ubfx(result_reg, scratch_high,
0, HeapNumber::kMantissaBitsInTopWord);
// Set the implicit 1 before the mantissa part in scratch_high.
__ orr(result_reg, result_reg,
Operand(1 << HeapNumber::kMantissaBitsInTopWord));
__ orr(result_reg, scratch_low, Operand(result_reg, LSL, scratch));
__ b(&negate);
__ bind(&out_of_range);
__ mov(result_reg, Operand::Zero());
__ b(&done);
__ bind(&only_low);
// 52 <= exponent <= 83, shift only scratch_low.
// On entry, scratch contains: 52 - exponent.
__ rsb(scratch, scratch, Operand::Zero());
__ mov(result_reg, Operand(scratch_low, LSL, scratch));
__ bind(&negate);
// If input was positive, scratch_high ASR 31 equals 0 and
// scratch_high LSR 31 equals zero.
// New result = (result eor 0) + 0 = result.
// If the input was negative, we have to negate the result.
// Input_high ASR 31 equals 0xffffffff and scratch_high LSR 31 equals 1.
// New result = (result eor 0xffffffff) + 1 = 0 - result.
__ eor(result_reg, result_reg, Operand(scratch_high, ASR, 31));
__ add(result_reg, result_reg, Operand(scratch_high, LSR, 31));
__ bind(&done);
__ Pop(scratch_high, scratch_low, scratch);
__ Ret();
}
void WriteInt32ToHeapNumberStub::GenerateFixedRegStubsAheadOfTime(
Isolate* isolate) {
WriteInt32ToHeapNumberStub stub1(isolate, r1, r0, r2);
WriteInt32ToHeapNumberStub stub2(isolate, r2, r0, r3);
stub1.GetCode();
stub2.GetCode();
}
// See comment for class.
void WriteInt32ToHeapNumberStub::Generate(MacroAssembler* masm) {
Label max_negative_int;
// the_int_ has the answer which is a signed int32 but not a Smi.
// We test for the special value that has a different exponent. This test
// has the neat side effect of setting the flags according to the sign.
STATIC_ASSERT(HeapNumber::kSignMask == 0x80000000u);
__ cmp(the_int(), Operand(0x80000000u));
__ b(eq, &max_negative_int);
// Set up the correct exponent in scratch_. All non-Smi int32s have the same.
// A non-Smi integer is 1.xxx * 2^30 so the exponent is 30 (biased).
uint32_t non_smi_exponent =
(HeapNumber::kExponentBias + 30) << HeapNumber::kExponentShift;
__ mov(scratch(), Operand(non_smi_exponent));
// Set the sign bit in scratch_ if the value was negative.
__ orr(scratch(), scratch(), Operand(HeapNumber::kSignMask), LeaveCC, cs);
// Subtract from 0 if the value was negative.
__ rsb(the_int(), the_int(), Operand::Zero(), LeaveCC, cs);
// We should be masking the implict first digit of the mantissa away here,
// but it just ends up combining harmlessly with the last digit of the
// exponent that happens to be 1. The sign bit is 0 so we shift 10 to get
// the most significant 1 to hit the last bit of the 12 bit sign and exponent.
DCHECK(((1 << HeapNumber::kExponentShift) & non_smi_exponent) != 0);
const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2;
__ orr(scratch(), scratch(), Operand(the_int(), LSR, shift_distance));
__ str(scratch(),
FieldMemOperand(the_heap_number(), HeapNumber::kExponentOffset));
__ mov(scratch(), Operand(the_int(), LSL, 32 - shift_distance));
__ str(scratch(),
FieldMemOperand(the_heap_number(), HeapNumber::kMantissaOffset));
__ Ret();
__ bind(&max_negative_int);
// The max negative int32 is stored as a positive number in the mantissa of
// a double because it uses a sign bit instead of using two's complement.
// The actual mantissa bits stored are all 0 because the implicit most
// significant 1 bit is not stored.
non_smi_exponent += 1 << HeapNumber::kExponentShift;
__ mov(ip, Operand(HeapNumber::kSignMask | non_smi_exponent));
__ str(ip, FieldMemOperand(the_heap_number(), HeapNumber::kExponentOffset));
__ mov(ip, Operand::Zero());
__ str(ip, FieldMemOperand(the_heap_number(), HeapNumber::kMantissaOffset));
__ Ret();
}
// Handle the case where the lhs and rhs are the same object.
// Equality is almost reflexive (everything but NaN), so this is a test
// for "identity and not NaN".
static void EmitIdenticalObjectComparison(MacroAssembler* masm,
Label* slow,
Condition cond) {
Label not_identical;
Label heap_number, return_equal;
__ cmp(r0, r1);
__ b(ne, ¬_identical);
// Test for NaN. Sadly, we can't just compare to Factory::nan_value(),
// so we do the second best thing - test it ourselves.
// They are both equal and they are not both Smis so both of them are not
// Smis. If it's not a heap number, then return equal.
if (cond == lt || cond == gt) {
__ CompareObjectType(r0, r4, r4, FIRST_SPEC_OBJECT_TYPE);
__ b(ge, slow);
} else {
__ CompareObjectType(r0, r4, r4, HEAP_NUMBER_TYPE);
__ b(eq, &heap_number);
// Comparing JS objects with <=, >= is complicated.
if (cond != eq) {
__ cmp(r4, Operand(FIRST_SPEC_OBJECT_TYPE));
__ b(ge, slow);
// Normally here we fall through to return_equal, but undefined is
// special: (undefined == undefined) == true, but
// (undefined <= undefined) == false! See ECMAScript 11.8.5.
if (cond == le || cond == ge) {
__ cmp(r4, Operand(ODDBALL_TYPE));
__ b(ne, &return_equal);
__ LoadRoot(r2, Heap::kUndefinedValueRootIndex);
__ cmp(r0, r2);
__ b(ne, &return_equal);
if (cond == le) {
// undefined <= undefined should fail.
__ mov(r0, Operand(GREATER));
} else {
// undefined >= undefined should fail.
__ mov(r0, Operand(LESS));
}
__ Ret();
}
}
}
__ bind(&return_equal);
if (cond == lt) {
__ mov(r0, Operand(GREATER)); // Things aren't less than themselves.
} else if (cond == gt) {
__ mov(r0, Operand(LESS)); // Things aren't greater than themselves.
} else {
__ mov(r0, Operand(EQUAL)); // Things are <=, >=, ==, === themselves.
}
__ Ret();
// For less and greater we don't have to check for NaN since the result of
// x < x is false regardless. For the others here is some code to check
// for NaN.
if (cond != lt && cond != gt) {
__ bind(&heap_number);
// It is a heap number, so return non-equal if it's NaN and equal if it's
// not NaN.
// The representation of NaN values has all exponent bits (52..62) set,
// and not all mantissa bits (0..51) clear.
// Read top bits of double representation (second word of value).
__ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset));
// Test that exponent bits are all set.
__ Sbfx(r3, r2, HeapNumber::kExponentShift, HeapNumber::kExponentBits);
// NaNs have all-one exponents so they sign extend to -1.
__ cmp(r3, Operand(-1));
__ b(ne, &return_equal);
// Shift out flag and all exponent bits, retaining only mantissa.
__ mov(r2, Operand(r2, LSL, HeapNumber::kNonMantissaBitsInTopWord));
// Or with all low-bits of mantissa.
__ ldr(r3, FieldMemOperand(r0, HeapNumber::kMantissaOffset));
__ orr(r0, r3, Operand(r2), SetCC);
// For equal we already have the right value in r0: Return zero (equal)
// if all bits in mantissa are zero (it's an Infinity) and non-zero if
// not (it's a NaN). For <= and >= we need to load r0 with the failing
// value if it's a NaN.
if (cond != eq) {
// All-zero means Infinity means equal.
__ Ret(eq);
if (cond == le) {
__ mov(r0, Operand(GREATER)); // NaN <= NaN should fail.
} else {
__ mov(r0, Operand(LESS)); // NaN >= NaN should fail.
}
}
__ Ret();
}
// No fall through here.
__ bind(¬_identical);
}
// See comment at call site.
static void EmitSmiNonsmiComparison(MacroAssembler* masm,
Register lhs,
Register rhs,
Label* lhs_not_nan,
Label* slow,
bool strict) {
DCHECK((lhs.is(r0) && rhs.is(r1)) ||
(lhs.is(r1) && rhs.is(r0)));
Label rhs_is_smi;
__ JumpIfSmi(rhs, &rhs_is_smi);
// Lhs is a Smi. Check whether the rhs is a heap number.
__ CompareObjectType(rhs, r4, r4, HEAP_NUMBER_TYPE);
if (strict) {
// If rhs is not a number and lhs is a Smi then strict equality cannot
// succeed. Return non-equal
// If rhs is r0 then there is already a non zero value in it.
if (!rhs.is(r0)) {
__ mov(r0, Operand(NOT_EQUAL), LeaveCC, ne);
}
__ Ret(ne);
} else {
// Smi compared non-strictly with a non-Smi non-heap-number. Call
// the runtime.
__ b(ne, slow);
}
// Lhs is a smi, rhs is a number.
// Convert lhs to a double in d7.
__ SmiToDouble(d7, lhs);
// Load the double from rhs, tagged HeapNumber r0, to d6.
__ vldr(d6, rhs, HeapNumber::kValueOffset - kHeapObjectTag);
// We now have both loaded as doubles but we can skip the lhs nan check
// since it's a smi.
__ jmp(lhs_not_nan);
__ bind(&rhs_is_smi);
// Rhs is a smi. Check whether the non-smi lhs is a heap number.
__ CompareObjectType(lhs, r4, r4, HEAP_NUMBER_TYPE);
if (strict) {
// If lhs is not a number and rhs is a smi then strict equality cannot
// succeed. Return non-equal.
// If lhs is r0 then there is already a non zero value in it.
if (!lhs.is(r0)) {
__ mov(r0, Operand(NOT_EQUAL), LeaveCC, ne);
}
__ Ret(ne);
} else {
// Smi compared non-strictly with a non-smi non-heap-number. Call
// the runtime.
__ b(ne, slow);
}
// Rhs is a smi, lhs is a heap number.
// Load the double from lhs, tagged HeapNumber r1, to d7.
__ vldr(d7, lhs, HeapNumber::kValueOffset - kHeapObjectTag);
// Convert rhs to a double in d6 .
__ SmiToDouble(d6, rhs);
// Fall through to both_loaded_as_doubles.
}
// See comment at call site.
static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
Register lhs,
Register rhs) {
DCHECK((lhs.is(r0) && rhs.is(r1)) ||
(lhs.is(r1) && rhs.is(r0)));
// If either operand is a JS object or an oddball value, then they are
// not equal since their pointers are different.
// There is no test for undetectability in strict equality.
STATIC_ASSERT(LAST_TYPE == LAST_SPEC_OBJECT_TYPE);
Label first_non_object;
// Get the type of the first operand into r2 and compare it with
// FIRST_SPEC_OBJECT_TYPE.
__ CompareObjectType(rhs, r2, r2, FIRST_SPEC_OBJECT_TYPE);
__ b(lt, &first_non_object);
// Return non-zero (r0 is not zero)
Label return_not_equal;
__ bind(&return_not_equal);
__ Ret();
__ bind(&first_non_object);
// Check for oddballs: true, false, null, undefined.
__ cmp(r2, Operand(ODDBALL_TYPE));
__ b(eq, &return_not_equal);
__ CompareObjectType(lhs, r3, r3, FIRST_SPEC_OBJECT_TYPE);
__ b(ge, &return_not_equal);
// Check for oddballs: true, false, null, undefined.
__ cmp(r3, Operand(ODDBALL_TYPE));
__ b(eq, &return_not_equal);
// Now that we have the types we might as well check for
// internalized-internalized.
STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
__ orr(r2, r2, Operand(r3));
__ tst(r2, Operand(kIsNotStringMask | kIsNotInternalizedMask));
__ b(eq, &return_not_equal);
}
// See comment at call site.
static void EmitCheckForTwoHeapNumbers(MacroAssembler* masm,
Register lhs,
Register rhs,
Label* both_loaded_as_doubles,
Label* not_heap_numbers,
Label* slow) {
DCHECK((lhs.is(r0) && rhs.is(r1)) ||
(lhs.is(r1) && rhs.is(r0)));
__ CompareObjectType(rhs, r3, r2, HEAP_NUMBER_TYPE);
__ b(ne, not_heap_numbers);
__ ldr(r2, FieldMemOperand(lhs, HeapObject::kMapOffset));
__ cmp(r2, r3);
__ b(ne, slow); // First was a heap number, second wasn't. Go slow case.
// Both are heap numbers. Load them up then jump to the code we have
// for that.
__ vldr(d6, rhs, HeapNumber::kValueOffset - kHeapObjectTag);
__ vldr(d7, lhs, HeapNumber::kValueOffset - kHeapObjectTag);
__ jmp(both_loaded_as_doubles);
}
// Fast negative check for internalized-to-internalized equality.
static void EmitCheckForInternalizedStringsOrObjects(MacroAssembler* masm,
Register lhs,
Register rhs,
Label* possible_strings,
Label* not_both_strings) {
DCHECK((lhs.is(r0) && rhs.is(r1)) ||
(lhs.is(r1) && rhs.is(r0)));
// r2 is object type of rhs.
Label object_test;
STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
__ tst(r2, Operand(kIsNotStringMask));
__ b(ne, &object_test);
__ tst(r2, Operand(kIsNotInternalizedMask));
__ b(ne, possible_strings);
__ CompareObjectType(lhs, r3, r3, FIRST_NONSTRING_TYPE);
__ b(ge, not_both_strings);
__ tst(r3, Operand(kIsNotInternalizedMask));
__ b(ne, possible_strings);
// Both are internalized. We already checked they weren't the same pointer
// so they are not equal.
__ mov(r0, Operand(NOT_EQUAL));
__ Ret();
__ bind(&object_test);
__ cmp(r2, Operand(FIRST_SPEC_OBJECT_TYPE));
__ b(lt, not_both_strings);
__ CompareObjectType(lhs, r2, r3, FIRST_SPEC_OBJECT_TYPE);
__ b(lt, not_both_strings);
// If both objects are undetectable, they are equal. Otherwise, they
// are not equal, since they are different objects and an object is not
// equal to undefined.
__ ldr(r3, FieldMemOperand(rhs, HeapObject::kMapOffset));
__ ldrb(r2, FieldMemOperand(r2, Map::kBitFieldOffset));
__ ldrb(r3, FieldMemOperand(r3, Map::kBitFieldOffset));
__ and_(r0, r2, Operand(r3));
__ and_(r0, r0, Operand(1 << Map::kIsUndetectable));
__ eor(r0, r0, Operand(1 << Map::kIsUndetectable));
__ Ret();
}
static void CompareICStub_CheckInputType(MacroAssembler* masm, Register input,
Register scratch,
CompareICState::State expected,
Label* fail) {
Label ok;
if (expected == CompareICState::SMI) {
__ JumpIfNotSmi(input, fail);
} else if (expected == CompareICState::NUMBER) {
__ JumpIfSmi(input, &ok);
__ CheckMap(input, scratch, Heap::kHeapNumberMapRootIndex, fail,
DONT_DO_SMI_CHECK);
}
// We could be strict about internalized/non-internalized here, but as long as
// hydrogen doesn't care, the stub doesn't have to care either.
__ bind(&ok);
}
// On entry r1 and r2 are the values to be compared.
// On exit r0 is 0, positive or negative to indicate the result of
// the comparison.
void CompareICStub::GenerateGeneric(MacroAssembler* masm) {
Register lhs = r1;
Register rhs = r0;
Condition cc = GetCondition();
Label miss;
CompareICStub_CheckInputType(masm, lhs, r2, left(), &miss);
CompareICStub_CheckInputType(masm, rhs, r3, right(), &miss);
Label slow; // Call builtin.
Label not_smis, both_loaded_as_doubles, lhs_not_nan;
Label not_two_smis, smi_done;
__ orr(r2, r1, r0);
__ JumpIfNotSmi(r2, ¬_two_smis);
__ mov(r1, Operand(r1, ASR, 1));
__ sub(r0, r1, Operand(r0, ASR, 1));
__ Ret();
__ bind(¬_two_smis);
// NOTICE! This code is only reached after a smi-fast-case check, so
// it is certain that at least one operand isn't a smi.
// Handle the case where the objects are identical. Either returns the answer
// or goes to slow. Only falls through if the objects were not identical.
EmitIdenticalObjectComparison(masm, &slow, cc);
// If either is a Smi (we know that not both are), then they can only
// be strictly equal if the other is a HeapNumber.
STATIC_ASSERT(kSmiTag == 0);
DCHECK_EQ(0, Smi::FromInt(0));
__ and_(r2, lhs, Operand(rhs));
__ JumpIfNotSmi(r2, ¬_smis);
// One operand is a smi. EmitSmiNonsmiComparison generates code that can:
// 1) Return the answer.
// 2) Go to slow.
// 3) Fall through to both_loaded_as_doubles.
// 4) Jump to lhs_not_nan.
// In cases 3 and 4 we have found out we were dealing with a number-number
// comparison. If VFP3 is supported the double values of the numbers have
// been loaded into d7 and d6. Otherwise, the double values have been loaded
// into r0, r1, r2, and r3.
EmitSmiNonsmiComparison(masm, lhs, rhs, &lhs_not_nan, &slow, strict());
__ bind(&both_loaded_as_doubles);
// The arguments have been converted to doubles and stored in d6 and d7, if
// VFP3 is supported, or in r0, r1, r2, and r3.
__ bind(&lhs_not_nan);
Label no_nan;
// ARMv7 VFP3 instructions to implement double precision comparison.
__ VFPCompareAndSetFlags(d7, d6);
Label nan;
__ b(vs, &nan);
__ mov(r0, Operand(EQUAL), LeaveCC, eq);
__ mov(r0, Operand(LESS), LeaveCC, lt);
__ mov(r0, Operand(GREATER), LeaveCC, gt);
__ Ret();
__ bind(&nan);
// If one of the sides was a NaN then the v flag is set. Load r0 with
// whatever it takes to make the comparison fail, since comparisons with NaN
// always fail.
if (cc == lt || cc == le) {
__ mov(r0, Operand(GREATER));
} else {
__ mov(r0, Operand(LESS));
}
__ Ret();
__ bind(¬_smis);
// At this point we know we are dealing with two different objects,
// and neither of them is a Smi. The objects are in rhs_ and lhs_.
if (strict()) {
// This returns non-equal for some object types, or falls through if it
// was not lucky.
EmitStrictTwoHeapObjectCompare(masm, lhs, rhs);
}
Label check_for_internalized_strings;
Label flat_string_check;
// Check for heap-number-heap-number comparison. Can jump to slow case,
// or load both doubles into r0, r1, r2, r3 and jump to the code that handles
// that case. If the inputs are not doubles then jumps to
// check_for_internalized_strings.
// In this case r2 will contain the type of rhs_. Never falls through.
EmitCheckForTwoHeapNumbers(masm,
lhs,
rhs,
&both_loaded_as_doubles,
&check_for_internalized_strings,
&flat_string_check);
__ bind(&check_for_internalized_strings);
// In the strict case the EmitStrictTwoHeapObjectCompare already took care of
// internalized strings.
if (cc == eq && !strict()) {
// Returns an answer for two internalized strings or two detectable objects.
// Otherwise jumps to string case or not both strings case.
// Assumes that r2 is the type of rhs_ on entry.
EmitCheckForInternalizedStringsOrObjects(
masm, lhs, rhs, &flat_string_check, &slow);
}
// Check for both being sequential one-byte strings,
// and inline if that is the case.
__ bind(&flat_string_check);
__ JumpIfNonSmisNotBothSequentialOneByteStrings(lhs, rhs, r2, r3, &slow);
__ IncrementCounter(isolate()->counters()->string_compare_native(), 1, r2,
r3);
if (cc == eq) {
StringHelper::GenerateFlatOneByteStringEquals(masm, lhs, rhs, r2, r3, r4);
} else {
StringHelper::GenerateCompareFlatOneByteStrings(masm, lhs, rhs, r2, r3, r4,
r5);
}
// Never falls through to here.
__ bind(&slow);
__ Push(lhs, rhs);
// Figure out which native to call and setup the arguments.
Builtins::JavaScript native;
if (cc == eq) {
native = strict() ? Builtins::STRICT_EQUALS : Builtins::EQUALS;
} else {
native = Builtins::COMPARE;
int ncr; // NaN compare result
if (cc == lt || cc == le) {
ncr = GREATER;
} else {
DCHECK(cc == gt || cc == ge); // remaining cases
ncr = LESS;
}
__ mov(r0, Operand(Smi::FromInt(ncr)));
__ push(r0);
}
// Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
// tagged as a small integer.
__ InvokeBuiltin(native, JUMP_FUNCTION);
__ bind(&miss);
GenerateMiss(masm);
}
void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
// We don't allow a GC during a store buffer overflow so there is no need to
// store the registers in any particular way, but we do have to store and
// restore them.
__ stm(db_w, sp, kCallerSaved | lr.bit());
const Register scratch = r1;
if (save_doubles()) {
__ SaveFPRegs(sp, scratch);
}
const int argument_count = 1;
const int fp_argument_count = 0;
AllowExternalCallThatCantCauseGC scope(masm);
__ PrepareCallCFunction(argument_count, fp_argument_count, scratch);
__ mov(r0, Operand(ExternalReference::isolate_address(isolate())));
__ CallCFunction(
ExternalReference::store_buffer_overflow_function(isolate()),
argument_count);
if (save_doubles()) {
__ RestoreFPRegs(sp, scratch);
}
__ ldm(ia_w, sp, kCallerSaved | pc.bit()); // Also pop pc to get Ret(0).
}
void MathPowStub::Generate(MacroAssembler* masm) {
const Register base = r1;
const Register exponent = MathPowTaggedDescriptor::exponent();
DCHECK(exponent.is(r2));
const Register heapnumbermap = r5;
const Register heapnumber = r0;
const DwVfpRegister double_base = d0;
const DwVfpRegister double_exponent = d1;
const DwVfpRegister double_result = d2;
const DwVfpRegister double_scratch = d3;
const SwVfpRegister single_scratch = s6;
const Register scratch = r9;
const Register scratch2 = r4;
Label call_runtime, done, int_exponent;
if (exponent_type() == ON_STACK) {
Label base_is_smi, unpack_exponent;
// The exponent and base are supplied as arguments on the stack.
// This can only happen if the stub is called from non-optimized code.
// Load input parameters from stack to double registers.
__ ldr(base, MemOperand(sp, 1 * kPointerSize));
__ ldr(exponent, MemOperand(sp, 0 * kPointerSize));
__ LoadRoot(heapnumbermap, Heap::kHeapNumberMapRootIndex);
__ UntagAndJumpIfSmi(scratch, base, &base_is_smi);
__ ldr(scratch, FieldMemOperand(base, JSObject::kMapOffset));
__ cmp(scratch, heapnumbermap);
__ b(ne, &call_runtime);
__ vldr(double_base, FieldMemOperand(base, HeapNumber::kValueOffset));
__ jmp(&unpack_exponent);
__ bind(&base_is_smi);
__ vmov(single_scratch, scratch);
__ vcvt_f64_s32(double_base, single_scratch);
__ bind(&unpack_exponent);
__ UntagAndJumpIfSmi(scratch, exponent, &int_exponent);
__ ldr(scratch, FieldMemOperand(exponent, JSObject::kMapOffset));
__ cmp(scratch, heapnumbermap);
__ b(ne, &call_runtime);
__ vldr(double_exponent,
FieldMemOperand(exponent, HeapNumber::kValueOffset));
} else if (exponent_type() == TAGGED) {
// Base is already in double_base.
__ UntagAndJumpIfSmi(scratch, exponent, &int_exponent);
__ vldr(double_exponent,
FieldMemOperand(exponent, HeapNumber::kValueOffset));
}
if (exponent_type() != INTEGER) {
Label int_exponent_convert;
// Detect integer exponents stored as double.
__ vcvt_u32_f64(single_scratch, double_exponent);
// We do not check for NaN or Infinity here because comparing numbers on
// ARM correctly distinguishes NaNs. We end up calling the built-in.
__ vcvt_f64_u32(double_scratch, single_scratch);
__ VFPCompareAndSetFlags(double_scratch, double_exponent);
__ b(eq, &int_exponent_convert);
if (exponent_type() == ON_STACK) {
// Detect square root case. Crankshaft detects constant +/-0.5 at
// compile time and uses DoMathPowHalf instead. We then skip this check
// for non-constant cases of +/-0.5 as these hardly occur.
Label not_plus_half;
// Test for 0.5.
__ vmov(double_scratch, 0.5, scratch);
__ VFPCompareAndSetFlags(double_exponent, double_scratch);
__ b(ne, ¬_plus_half);
// Calculates square root of base. Check for the special case of
// Math.pow(-Infinity, 0.5) == Infinity (ECMA spec, 15.8.2.13).
__ vmov(double_scratch, -V8_INFINITY, scratch);
__ VFPCompareAndSetFlags(double_base, double_scratch);
__ vneg(double_result, double_scratch, eq);
__ b(eq, &done);
// Add +0 to convert -0 to +0.
__ vadd(double_scratch, double_base, kDoubleRegZero);
__ vsqrt(double_result, double_scratch);
__ jmp(&done);
__ bind(¬_plus_half);
__ vmov(double_scratch, -0.5, scratch);
__ VFPCompareAndSetFlags(double_exponent, double_scratch);
__ b(ne, &call_runtime);
// Calculates square root of base. Check for the special case of
// Math.pow(-Infinity, -0.5) == 0 (ECMA spec, 15.8.2.13).
__ vmov(double_scratch, -V8_INFINITY, scratch);
__ VFPCompareAndSetFlags(double_base, double_scratch);
__ vmov(double_result, kDoubleRegZero, eq);
__ b(eq, &done);
// Add +0 to convert -0 to +0.
__ vadd(double_scratch, double_base, kDoubleRegZero);
__ vmov(double_result, 1.0, scratch);
__ vsqrt(double_scratch, double_scratch);
__ vdiv(double_result, double_result, double_scratch);
__ jmp(&done);
}
__ push(lr);
{
AllowExternalCallThatCantCauseGC scope(masm);
__ PrepareCallCFunction(0, 2, scratch);
__ MovToFloatParameters(double_base, double_exponent);
__ CallCFunction(
ExternalReference::power_double_double_function(isolate()),
0, 2);
}
__ pop(lr);
__ MovFromFloatResult(double_result);
__ jmp(&done);
__ bind(&int_exponent_convert);
__ vcvt_u32_f64(single_scratch, double_exponent);
__ vmov(scratch, single_scratch);
}
// Calculate power with integer exponent.
__ bind(&int_exponent);
// Get two copies of exponent in the registers scratch and exponent.
if (exponent_type() == INTEGER) {
__ mov(scratch, exponent);
} else {
// Exponent has previously been stored into scratch as untagged integer.
__ mov(exponent, scratch);
}
__ vmov(double_scratch, double_base); // Back up base.
__ vmov(double_result, 1.0, scratch2);
// Get absolute value of exponent.
__ cmp(scratch, Operand::Zero());
__ mov(scratch2, Operand::Zero(), LeaveCC, mi);
__ sub(scratch, scratch2, scratch, LeaveCC, mi);
Label while_true;
__ bind(&while_true);
__ mov(scratch, Operand(scratch, ASR, 1), SetCC);
__ vmul(double_result, double_result, double_scratch, cs);
__ vmul(double_scratch, double_scratch, double_scratch, ne);
__ b(ne, &while_true);
__ cmp(exponent, Operand::Zero());
__ b(ge, &done);
__ vmov(double_scratch, 1.0, scratch);
__ vdiv(double_result, double_scratch, double_result);
// Test whether result is zero. Bail out to check for subnormal result.
// Due to subnormals, x^-y == (1/x)^y does not hold in all cases.
__ VFPCompareAndSetFlags(double_result, 0.0);
__ b(ne, &done);
// double_exponent may not containe the exponent value if the input was a
// smi. We set it with exponent value before bailing out.
__ vmov(single_scratch, exponent);
__ vcvt_f64_s32(double_exponent, single_scratch);
// Returning or bailing out.
Counters* counters = isolate()->counters();
if (exponent_type() == ON_STACK) {
// The arguments are still on the stack.
__ bind(&call_runtime);
__ TailCallRuntime(Runtime::kMathPowRT, 2, 1);
// The stub is called from non-optimized code, which expects the result
// as heap number in exponent.
__ bind(&done);
__ AllocateHeapNumber(
heapnumber, scratch, scratch2, heapnumbermap, &call_runtime);
__ vstr(double_result,
FieldMemOperand(heapnumber, HeapNumber::kValueOffset));
DCHECK(heapnumber.is(r0));
__ IncrementCounter(counters->math_pow(), 1, scratch, scratch2);
__ Ret(2);
} else {
__ push(lr);
{
AllowExternalCallThatCantCauseGC scope(masm);
__ PrepareCallCFunction(0, 2, scratch);
__ MovToFloatParameters(double_base, double_exponent);
__ CallCFunction(
ExternalReference::power_double_double_function(isolate()),
0, 2);
}
__ pop(lr);
__ MovFromFloatResult(double_result);
__ bind(&done);
__ IncrementCounter(counters->math_pow(), 1, scratch, scratch2);
__ Ret();
}
}
bool CEntryStub::NeedsImmovableCode() {
return true;
}
void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) {
CEntryStub::GenerateAheadOfTime(isolate);
WriteInt32ToHeapNumberStub::GenerateFixedRegStubsAheadOfTime(isolate);
StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate);
StubFailureTrampolineStub::GenerateAheadOfTime(isolate);
ArrayConstructorStubBase::GenerateStubsAheadOfTime(isolate);
CreateAllocationSiteStub::GenerateAheadOfTime(isolate);
BinaryOpICStub::GenerateAheadOfTime(isolate);
BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate);
}
void CodeStub::GenerateFPStubs(Isolate* isolate) {
// Generate if not already in cache.
SaveFPRegsMode mode = kSaveFPRegs;
CEntryStub(isolate, 1, mode).GetCode();
StoreBufferOverflowStub(isolate, mode).GetCode();
isolate->set_fp_stubs_generated(true);
}
void CEntryStub::GenerateAheadOfTime(Isolate* isolate) {
CEntryStub stub(isolate, 1, kDontSaveFPRegs);
stub.GetCode();
}
void CEntryStub::Generate(MacroAssembler* masm) {
// Called from JavaScript; parameters are on stack as if calling JS function.
// r0: number of arguments including receiver
// r1: pointer to builtin function
// fp: frame pointer (restored after C call)
// sp: stack pointer (restored as callee's sp after C call)
// cp: current context (C callee-saved)
ProfileEntryHookStub::MaybeCallEntryHook(masm);
__ mov(r5, Operand(r1));
// Compute the argv pointer in a callee-saved register.
__ add(r1, sp, Operand(r0, LSL, kPointerSizeLog2));
__ sub(r1, r1, Operand(kPointerSize));
// Enter the exit frame that transitions from JavaScript to C++.
FrameScope scope(masm, StackFrame::MANUAL);
__ EnterExitFrame(save_doubles());
// Store a copy of argc in callee-saved registers for later.
__ mov(r4, Operand(r0));
// r0, r4: number of arguments including receiver (C callee-saved)
// r1: pointer to the first argument (C callee-saved)
// r5: pointer to builtin function (C callee-saved)
// Result returned in r0 or r0+r1 by default.
#if V8_HOST_ARCH_ARM
int frame_alignment = MacroAssembler::ActivationFrameAlignment();
int frame_alignment_mask = frame_alignment - 1;
if (FLAG_debug_code) {
if (frame_alignment > kPointerSize) {
Label alignment_as_expected;
DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
__ tst(sp, Operand(frame_alignment_mask));
__ b(eq, &alignment_as_expected);
// Don't use Check here, as it will call Runtime_Abort re-entering here.
__ stop("Unexpected alignment");
__ bind(&alignment_as_expected);
}
}
#endif
// Call C built-in.
// r0 = argc, r1 = argv
__ mov(r2, Operand(ExternalReference::isolate_address(isolate())));
// To let the GC traverse the return address of the exit frames, we need to
// know where the return address is. The CEntryStub is unmovable, so
// we can store the address on the stack to be able to find it again and
// we never have to restore it, because it will not change.
// Compute the return address in lr to return to after the jump below. Pc is
// already at '+ 8' from the current instruction but return is after three
// instructions so add another 4 to pc to get the return address.
{
// Prevent literal pool emission before return address.
Assembler::BlockConstPoolScope block_const_pool(masm);
__ add(lr, pc, Operand(4));
__ str(lr, MemOperand(sp, 0));
__ Call(r5);
}
__ VFPEnsureFPSCRState(r2);
// Runtime functions should not return 'the hole'. Allowing it to escape may
// lead to crashes in the IC code later.
if (FLAG_debug_code) {
Label okay;
__ CompareRoot(r0, Heap::kTheHoleValueRootIndex);
__ b(ne, &okay);
__ stop("The hole escaped");
__ bind(&okay);
}
// Check result for exception sentinel.
Label exception_returned;
__ CompareRoot(r0, Heap::kExceptionRootIndex);
__ b(eq, &exception_returned);
ExternalReference pending_exception_address(
Isolate::kPendingExceptionAddress, isolate());
// Check that there is no pending exception, otherwise we
// should have returned the exception sentinel.
if (FLAG_debug_code) {
Label okay;
__ mov(r2, Operand(pending_exception_address));
__ ldr(r2, MemOperand(r2));
__ CompareRoot(r2, Heap::kTheHoleValueRootIndex);
// Cannot use check here as it attempts to generate call into runtime.
__ b(eq, &okay);
__ stop("Unexpected pending exception");
__ bind(&okay);
}
// Exit C frame and return.
// r0:r1: result
// sp: stack pointer
// fp: frame pointer
// Callee-saved register r4 still holds argc.
__ LeaveExitFrame(save_doubles(), r4, true);
__ mov(pc, lr);
// Handling of exception.
__ bind(&exception_returned);
// Retrieve the pending exception.
__ mov(r2, Operand(pending_exception_address));
__ ldr(r0, MemOperand(r2));
// Clear the pending exception.
__ LoadRoot(r3, Heap::kTheHoleValueRootIndex);
__ str(r3, MemOperand(r2));
// Special handling of termination exceptions which are uncatchable
// by javascript code.
Label throw_termination_exception;
__ CompareRoot(r0, Heap::kTerminationExceptionRootIndex);
__ b(eq, &throw_termination_exception);
// Handle normal exception.
__ Throw(r0);
__ bind(&throw_termination_exception);
__ ThrowUncatchable(r0);
}
void JSEntryStub::Generate(MacroAssembler* masm) {
// r0: code entry
// r1: function
// r2: receiver
// r3: argc
// [sp+0]: argv
Label invoke, handler_entry, exit;
ProfileEntryHookStub::MaybeCallEntryHook(masm);
// Called from C, so do not pop argc and args on exit (preserve sp)
// No need to save register-passed args
// Save callee-saved registers (incl. cp and fp), sp, and lr
__ stm(db_w, sp, kCalleeSaved | lr.bit());
// Save callee-saved vfp registers.
__ vstm(db_w, sp, kFirstCalleeSavedDoubleReg, kLastCalleeSavedDoubleReg);
// Set up the reserved register for 0.0.
__ vmov(kDoubleRegZero, 0.0);
__ VFPEnsureFPSCRState(r4);
// Get address of argv, see stm above.
// r0: code entry
// r1: function
// r2: receiver
// r3: argc
// Set up argv in r4.
int offset_to_argv = (kNumCalleeSaved + 1) * kPointerSize;
offset_to_argv += kNumDoubleCalleeSaved * kDoubleSize;
__ ldr(r4, MemOperand(sp, offset_to_argv));
// Push a frame with special values setup to mark it as an entry frame.
// r0: code entry
// r1: function
// r2: receiver
// r3: argc
// r4: argv
int marker = type();
if (FLAG_enable_ool_constant_pool) {
__ mov(r8, Operand(isolate()->factory()->empty_constant_pool_array()));
}
__ mov(r7, Operand(Smi::FromInt(marker)));
__ mov(r6, Operand(Smi::FromInt(marker)));
__ mov(r5,
Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate())));
__ ldr(r5, MemOperand(r5));
__ mov(ip, Operand(-1)); // Push a bad frame pointer to fail if it is used.
__ stm(db_w, sp, r5.bit() | r6.bit() | r7.bit() |
(FLAG_enable_ool_constant_pool ? r8.bit() : 0) |
ip.bit());
// Set up frame pointer for the frame to be pushed.
__ add(fp, sp, Operand(-EntryFrameConstants::kCallerFPOffset));
// If this is the outermost JS call, set js_entry_sp value.
Label non_outermost_js;
ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate());
__ mov(r5, Operand(ExternalReference(js_entry_sp)));
__ ldr(r6, MemOperand(r5));
__ cmp(r6, Operand::Zero());
__ b(ne, &non_outermost_js);
__ str(fp, MemOperand(r5));
__ mov(ip, Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
Label cont;
__ b(&cont);
__ bind(&non_outermost_js);
__ mov(ip, Operand(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME)));
__ bind(&cont);
__ push(ip);
// Jump to a faked try block that does the invoke, with a faked catch
// block that sets the pending exception.
__ jmp(&invoke);
// Block literal pool emission whilst taking the position of the handler
// entry. This avoids making the assumption that literal pools are always
// emitted after an instruction is emitted, rather than before.
{
Assembler::BlockConstPoolScope block_const_pool(masm);
__ bind(&handler_entry);
handler_offset_ = handler_entry.pos();
// Caught exception: Store result (exception) in the pending exception
// field in the JSEnv and return a failure sentinel. Coming in here the
// fp will be invalid because the PushTryHandler below sets it to 0 to
// signal the existence of the JSEntry frame.
__ mov(ip, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
isolate())));
}
__ str(r0, MemOperand(ip));
__ LoadRoot(r0, Heap::kExceptionRootIndex);
__ b(&exit);
// Invoke: Link this frame into the handler chain. There's only one
// handler block in this code object, so its index is 0.
__ bind(&invoke);
// Must preserve r0-r4, r5-r6 are available.
__ PushTryHandler(StackHandler::JS_ENTRY, 0);
// If an exception not caught by another handler occurs, this handler
// returns control to the code after the bl(&invoke) above, which
// restores all kCalleeSaved registers (including cp and fp) to their
// saved values before returning a failure to C.
// Clear any pending exceptions.
__ mov(r5, Operand(isolate()->factory()->the_hole_value()));
__ mov(ip, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
isolate())));
__ str(r5, MemOperand(ip));
// Invoke the function by calling through JS entry trampoline builtin.
// Notice that we cannot store a reference to the trampoline code directly in
// this stub, because runtime stubs are not traversed when doing GC.
// Expected registers by Builtins::JSEntryTrampoline
// r0: code entry
// r1: function
// r2: receiver
// r3: argc
// r4: argv
if (type() == StackFrame::ENTRY_CONSTRUCT) {
ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline,
isolate());
__ mov(ip, Operand(construct_entry));
} else {
ExternalReference entry(Builtins::kJSEntryTrampoline, isolate());
__ mov(ip, Operand(entry));
}
__ ldr(ip, MemOperand(ip)); // deref address
__ add(ip, ip, Operand(Code::kHeaderSize - kHeapObjectTag));
// Branch and link to JSEntryTrampoline.
__ Call(ip);
// Unlink this frame from the handler chain.
__ PopTryHandler();
__ bind(&exit); // r0 holds result
// Check if the current stack frame is marked as the outermost JS frame.
Label non_outermost_js_2;
__ pop(r5);
__ cmp(r5, Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
__ b(ne, &non_outermost_js_2);
__ mov(r6, Operand::Zero());
__ mov(r5, Operand(ExternalReference(js_entry_sp)));
__ str(r6, MemOperand(r5));
__ bind(&non_outermost_js_2);
// Restore the top frame descriptors from the stack.
__ pop(r3);
__ mov(ip,
Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate())));
__ str(r3, MemOperand(ip));
// Reset the stack to the callee saved registers.
__ add(sp, sp, Operand(-EntryFrameConstants::kCallerFPOffset));
// Restore callee-saved registers and return.
#ifdef DEBUG
if (FLAG_debug_code) {
__ mov(lr, Operand(pc));
}
#endif
// Restore callee-saved vfp registers.
__ vldm(ia_w, sp, kFirstCalleeSavedDoubleReg, kLastCalleeSavedDoubleReg);
__ ldm(ia_w, sp, kCalleeSaved | pc.bit());
}
// Uses registers r0 to r4.
// Expected input (depending on whether args are in registers or on the stack):
// * object: r0 or at sp + 1 * kPointerSize.
// * function: r1 or at sp.
//
// An inlined call site may have been generated before calling this stub.
// In this case the offset to the inline sites to patch are passed in r5 and r6.
// (See LCodeGen::DoInstanceOfKnownGlobal)
void InstanceofStub::Generate(MacroAssembler* masm) {
// Call site inlining and patching implies arguments in registers.
DCHECK(HasArgsInRegisters() || !HasCallSiteInlineCheck());
// Fixed register usage throughout the stub:
const Register object = r0; // Object (lhs).
Register map = r3; // Map of the object.
const Register function = r1; // Function (rhs).
const Register prototype = r4; // Prototype of the function.
const Register scratch = r2;
Label slow, loop, is_instance, is_not_instance, not_js_object;
if (!HasArgsInRegisters()) {
__ ldr(object, MemOperand(sp, 1 * kPointerSize));
__ ldr(function, MemOperand(sp, 0));
}
// Check that the left hand is a JS object and load map.
__ JumpIfSmi(object, ¬_js_object);
__ IsObjectJSObjectType(object, map, scratch, ¬_js_object);
// If there is a call site cache don't look in the global cache, but do the
// real lookup and update the call site cache.
if (!HasCallSiteInlineCheck() && !ReturnTrueFalseObject()) {
Label miss;
__ CompareRoot(function, Heap::kInstanceofCacheFunctionRootIndex);
__ b(ne, &miss);
__ CompareRoot(map, Heap::kInstanceofCacheMapRootIndex);
__ b(ne, &miss);
__ LoadRoot(r0, Heap::kInstanceofCacheAnswerRootIndex);
__ Ret(HasArgsInRegisters() ? 0 : 2);
__ bind(&miss);
}
// Get the prototype of the function.
__ TryGetFunctionPrototype(function, prototype, scratch, &slow, true);
// Check that the function prototype is a JS object.
__ JumpIfSmi(prototype, &slow);
__ IsObjectJSObjectType(prototype, scratch, scratch, &slow);
// Update the global instanceof or call site inlined cache with the current
// map and function. The cached answer will be set when it is known below.
if (!HasCallSiteInlineCheck()) {
__ StoreRoot(function, Heap::kInstanceofCacheFunctionRootIndex);
__ StoreRoot(map, Heap::kInstanceofCacheMapRootIndex);
} else {
DCHECK(HasArgsInRegisters());
// Patch the (relocated) inlined map check.
// The map_load_offset was stored in r5
// (See LCodeGen::DoDeferredLInstanceOfKnownGlobal).
const Register map_load_offset = r5;
__ sub(r9, lr, map_load_offset);
// Get the map location in r5 and patch it.
__ GetRelocatedValueLocation(r9, map_load_offset, scratch);
__ ldr(map_load_offset, MemOperand(map_load_offset));
__ str(map, FieldMemOperand(map_load_offset, Cell::kValueOffset));
}
// Register mapping: r3 is object map and r4 is function prototype.
// Get prototype of object into r2.
__ ldr(scratch, FieldMemOperand(map, Map::kPrototypeOffset));
// We don't need map any more. Use it as a scratch register.
Register scratch2 = map;
map = no_reg;
// Loop through the prototype chain looking for the function prototype.
__ LoadRoot(scratch2, Heap::kNullValueRootIndex);
__ bind(&loop);
__ cmp(scratch, Operand(prototype));
__ b(eq, &is_instance);
__ cmp(scratch, scratch2);
__ b(eq, &is_not_instance);
__ ldr(scratch, FieldMemOperand(scratch, HeapObject::kMapOffset));
__ ldr(scratch, FieldMemOperand(scratch, Map::kPrototypeOffset));
__ jmp(&loop);
Factory* factory = isolate()->factory();
__ bind(&is_instance);
if (!HasCallSiteInlineCheck()) {
__ mov(r0, Operand(Smi::FromInt(0)));
__ StoreRoot(r0, Heap::kInstanceofCacheAnswerRootIndex);
if (ReturnTrueFalseObject()) {
__ Move(r0, factory->true_value());
}
} else {
// Patch the call site to return true.
__ LoadRoot(r0, Heap::kTrueValueRootIndex);
// The bool_load_offset was stored in r6
// (See LCodeGen::DoDeferredLInstanceOfKnownGlobal).
const Register bool_load_offset = r6;
__ sub(r9, lr, bool_load_offset);
// Get the boolean result location in scratch and patch it.
__ GetRelocatedValueLocation(r9, scratch, scratch2);
__ str(r0, MemOperand(scratch));
if (!ReturnTrueFalseObject()) {
__ mov(r0, Operand(Smi::FromInt(0)));
}
}
__ Ret(HasArgsInRegisters() ? 0 : 2);
__ bind(&is_not_instance);
if (!HasCallSiteInlineCheck()) {
__ mov(r0, Operand(Smi::FromInt(1)));
__ StoreRoot(r0, Heap::kInstanceofCacheAnswerRootIndex);
if (ReturnTrueFalseObject()) {
__ Move(r0, factory->false_value());
}
} else {
// Patch the call site to return false.
__ LoadRoot(r0, Heap::kFalseValueRootIndex);
// The bool_load_offset was stored in r6
// (See LCodeGen::DoDeferredLInstanceOfKnownGlobal).
const Register bool_load_offset = r6;
__ sub(r9, lr, bool_load_offset);
;
// Get the boolean result location in scratch and patch it.
__ GetRelocatedValueLocation(r9, scratch, scratch2);
__ str(r0, MemOperand(scratch));
if (!ReturnTrueFalseObject()) {
__ mov(r0, Operand(Smi::FromInt(1)));
}
}
__ Ret(HasArgsInRegisters() ? 0 : 2);
Label object_not_null, object_not_null_or_smi;
__ bind(¬_js_object);
// Before null, smi and string value checks, check that the rhs is a function
// as for a non-function rhs an exception needs to be thrown.
__ JumpIfSmi(function, &slow);
__ CompareObjectType(function, scratch2, scratch, JS_FUNCTION_TYPE);
__ b(ne, &slow);
// Null is not instance of anything.
__ cmp(scratch, Operand(isolate()->factory()->null_value()));
__ b(ne, &object_not_null);
if (ReturnTrueFalseObject()) {
__ Move(r0, factory->false_value());
} else {
__ mov(r0, Operand(Smi::FromInt(1)));
}
__ Ret(HasArgsInRegisters() ? 0 : 2);
__ bind(&object_not_null);
// Smi values are not instances of anything.
__ JumpIfNotSmi(object, &object_not_null_or_smi);
if (ReturnTrueFalseObject()) {
__ Move(r0, factory->false_value());
} else {
__ mov(r0, Operand(Smi::FromInt(1)));
}
__ Ret(HasArgsInRegisters() ? 0 : 2);
__ bind(&object_not_null_or_smi);
// String values are not instances of anything.
__ IsObjectJSStringType(object, scratch, &slow);
if (ReturnTrueFalseObject()) {
__ Move(r0, factory->false_value());
} else {
__ mov(r0, Operand(Smi::FromInt(1)));
}
__ Ret(HasArgsInRegisters() ? 0 : 2);
// Slow-case. Tail call builtin.
__ bind(&slow);
if (!ReturnTrueFalseObject()) {
if (HasArgsInRegisters()) {
__ Push(r0, r1);
}
__ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION);
} else {
{
FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
__ Push(r0, r1);
__ InvokeBuiltin(Builtins::INSTANCE_OF, CALL_FUNCTION);
}
__ cmp(r0, Operand::Zero());
__ LoadRoot(r0, Heap::kTrueValueRootIndex, eq);
__ LoadRoot(r0, Heap::kFalseValueRootIndex, ne);
__ Ret(HasArgsInRegisters() ? 0 : 2);
}
}
void FunctionPrototypeStub::Generate(MacroAssembler* masm) {
Label miss;
Register receiver = LoadDescriptor::ReceiverRegister();
NamedLoadHandlerCompiler::GenerateLoadFunctionPrototype(masm, receiver, r3,
r4, &miss);
__ bind(&miss);
PropertyAccessCompiler::TailCallBuiltin(
masm, PropertyAccessCompiler::MissBuiltin(Code::LOAD_IC));
}
void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
// The displacement is the offset of the last parameter (if any)
// relative to the frame pointer.
const int kDisplacement =
StandardFrameConstants::kCallerSPOffset - kPointerSize;
DCHECK(r1.is(ArgumentsAccessReadDescriptor::index()));
DCHECK(r0.is(ArgumentsAccessReadDescriptor::parameter_count()));
// Check that the key is a smi.
Label slow;
__ JumpIfNotSmi(r1, &slow);
// Check if the calling frame is an arguments adaptor frame.
Label adaptor;
__ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
__ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset));
__ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
__ b(eq, &adaptor);
// Check index against formal parameters count limit passed in
// through register r0. Use unsigned comparison to get negative
// check for free.
__ cmp(r1, r0);
__ b(hs, &slow);
// Read the argument from the stack and return it.
__ sub(r3, r0, r1);
__ add(r3, fp, Operand::PointerOffsetFromSmiKey(r3));
__ ldr(r0, MemOperand(r3, kDisplacement));
__ Jump(lr);
// Arguments adaptor case: Check index against actual arguments
// limit found in the arguments adaptor frame. Use unsigned
// comparison to get negative check for free.
__ bind(&adaptor);
__ ldr(r0, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset));
__ cmp(r1, r0);
__ b(cs, &slow);
// Read the argument from the adaptor frame and return it.
__ sub(r3, r0, r1);
__ add(r3, r2, Operand::PointerOffsetFromSmiKey(r3));
__ ldr(r0, MemOperand(r3, kDisplacement));
__ Jump(lr);
// Slow-case: Handle non-smi or out-of-bounds access to arguments
// by calling the runtime system.
__ bind(&slow);
__ push(r1);
__ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1);
}
void ArgumentsAccessStub::GenerateNewSloppySlow(MacroAssembler* masm) {
// sp[0] : number of parameters
// sp[4] : receiver displacement
// sp[8] : function
// Check if the calling frame is an arguments adaptor frame.
Label runtime;
__ ldr(r3, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
__ ldr(r2, MemOperand(r3, StandardFrameConstants::kContextOffset));
__ cmp(r2, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
__ b(ne, &runtime);
// Patch the arguments.length and the parameters pointer in the current frame.
__ ldr(r2, MemOperand(r3, ArgumentsAdaptorFrameConstants::kLengthOffset));
__ str(r2, MemOperand(sp, 0 * kPointerSize));
__ add(r3, r3, Operand(r2, LSL, 1));
__ add(r3, r3, Operand(StandardFrameConstants::kCallerSPOffset));
__ str(r3, MemOperand(sp, 1 * kPointerSize));
__ bind(&runtime);
__ TailCallRuntime(Runtime::kNewSloppyArguments, 3, 1);
}
void ArgumentsAccessStub::GenerateNewSloppyFast(MacroAssembler* masm) {
// Stack layout:
// sp[0] : number of parameters (tagged)
// sp[4] : address of receiver argument
// sp[8] : function
// Registers used over whole function:
// r6 : allocated object (tagged)
// r9 : mapped parameter count (tagged)
__ ldr(r1, MemOperand(sp, 0 * kPointerSize));
// r1 = parameter count (tagged)
// Check if the calling frame is an arguments adaptor frame.
Label runtime;
Label adaptor_frame, try_allocate;
__ ldr(r3, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
__ ldr(r2, MemOperand(r3, StandardFrameConstants::kContextOffset));
__ cmp(r2, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
__ b(eq, &adaptor_frame);
// No adaptor, parameter count = argument count.
__ mov(r2, r1);
__ b(&try_allocate);
// We have an adaptor frame. Patch the parameters pointer.
__ bind(&adaptor_frame);
__ ldr(r2, MemOperand(r3, ArgumentsAdaptorFrameConstants::kLengthOffset));
__ add(r3, r3, Operand(r2, LSL, 1));
__ add(r3, r3, Operand(StandardFrameConstants::kCallerSPOffset));
__ str(r3, MemOperand(sp, 1 * kPointerSize));
// r1 = parameter count (tagged)
// r2 = argument count (tagged)
// Compute the mapped parameter count = min(r1, r2) in r1.
__ cmp(r1, Operand(r2));
__ mov(r1, Operand(r2), LeaveCC, gt);
__ bind(&try_allocate);
// Compute the sizes of backing store, parameter map, and arguments object.
// 1. Parameter map, has 2 extra words containing context and backing store.
const int kParameterMapHeaderSize =
FixedArray::kHeaderSize + 2 * kPointerSize;
// If there are no mapped parameters, we do not need the parameter_map.
__ cmp(r1, Operand(Smi::FromInt(0)));
__ mov(r9, Operand::Zero(), LeaveCC, eq);
__ mov(r9, Operand(r1, LSL, 1), LeaveCC, ne);
__ add(r9, r9, Operand(kParameterMapHeaderSize), LeaveCC, ne);
// 2. Backing store.
__ add(r9, r9, Operand(r2, LSL, 1));
__ add(r9, r9, Operand(FixedArray::kHeaderSize));
// 3. Arguments object.
__ add(r9, r9, Operand(Heap::kSloppyArgumentsObjectSize));
// Do the allocation of all three objects in one go.
__ Allocate(r9, r0, r3, r4, &runtime, TAG_OBJECT);
// r0 = address of new object(s) (tagged)
// r2 = argument count (smi-tagged)
// Get the arguments boilerplate from the current native context into r4.
const int kNormalOffset =
Context::SlotOffset(Context::SLOPPY_ARGUMENTS_MAP_INDEX);
const int kAliasedOffset =
Context::SlotOffset(Context::ALIASED_ARGUMENTS_MAP_INDEX);
__ ldr(r4, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
__ ldr(r4, FieldMemOperand(r4, GlobalObject::kNativeContextOffset));
__ cmp(r1, Operand::Zero());
__ ldr(r4, MemOperand(r4, kNormalOffset), eq);
__ ldr(r4, MemOperand(r4, kAliasedOffset), ne);
// r0 = address of new object (tagged)
// r1 = mapped parameter count (tagged)
// r2 = argument count (smi-tagged)
// r4 = address of arguments map (tagged)
__ str(r4, FieldMemOperand(r0, JSObject::kMapOffset));
__ LoadRoot(r3, Heap::kEmptyFixedArrayRootIndex);
__ str(r3, FieldMemOperand(r0, JSObject::kPropertiesOffset));
__ str(r3, FieldMemOperand(r0, JSObject::kElementsOffset));
// Set up the callee in-object property.
STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1);
__ ldr(r3, MemOperand(sp, 2 * kPointerSize));
__ AssertNotSmi(r3);
const int kCalleeOffset = JSObject::kHeaderSize +
Heap::kArgumentsCalleeIndex * kPointerSize;
__ str(r3, FieldMemOperand(r0, kCalleeOffset));
// Use the length (smi tagged) and set that as an in-object property too.
__ AssertSmi(r2);
STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
const int kLengthOffset = JSObject::kHeaderSize +
Heap::kArgumentsLengthIndex * kPointerSize;
__ str(r2, FieldMemOperand(r0, kLengthOffset));
// Set up the elements pointer in the allocated arguments object.
// If we allocated a parameter map, r4 will point there, otherwise
// it will point to the backing store.
__ add(r4, r0, Operand(Heap::kSloppyArgumentsObjectSize));
__ str(r4, FieldMemOperand(r0, JSObject::kElementsOffset));
// r0 = address of new object (tagged)
// r1 = mapped parameter count (tagged)
// r2 = argument count (tagged)
// r4 = address of parameter map or backing store (tagged)
// Initialize parameter map. If there are no mapped arguments, we're done.
Label skip_parameter_map;
__ cmp(r1, Operand(Smi::FromInt(0)));
// Move backing store address to r3, because it is
// expected there when filling in the unmapped arguments.
__ mov(r3, r4, LeaveCC, eq);
__ b(eq, &skip_parameter_map);
__ LoadRoot(r6, Heap::kSloppyArgumentsElementsMapRootIndex);
__ str(r6, FieldMemOperand(r4, FixedArray::kMapOffset));
__ add(r6, r1, Operand(Smi::FromInt(2)));
__ str(r6, FieldMemOperand(r4, FixedArray::kLengthOffset));
__ str(cp, FieldMemOperand(r4, FixedArray::kHeaderSize + 0 * kPointerSize));
__ add(r6, r4, Operand(r1, LSL, 1));
__ add(r6, r6, Operand(kParameterMapHeaderSize));
__ str(r6, FieldMemOperand(r4, FixedArray::kHeaderSize + 1 * kPointerSize));
// Copy the parameter slots and the holes in the arguments.
// We need to fill in mapped_parameter_count slots. They index the context,
// where parameters are stored in reverse order, at
// MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS+parameter_count-1
// The mapped parameter thus need to get indices
// MIN_CONTEXT_SLOTS+parameter_count-1 ..
// MIN_CONTEXT_SLOTS+parameter_count-mapped_parameter_count
// We loop from right to left.
Label parameters_loop, parameters_test;
__ mov(r6, r1);
__ ldr(r9, MemOperand(sp, 0 * kPointerSize));
__ add(r9, r9, Operand(Smi::FromInt(Context::MIN_CONTEXT_SLOTS)));
__ sub(r9, r9, Operand(r1));
__ LoadRoot(r5, Heap::kTheHoleValueRootIndex);
__ add(r3, r4, Operand(r6, LSL, 1));
__ add(r3, r3, Operand(kParameterMapHeaderSize));
// r6 = loop variable (tagged)
// r1 = mapping index (tagged)
// r3 = address of backing store (tagged)
// r4 = address of parameter map (tagged), which is also the address of new
// object + Heap::kSloppyArgumentsObjectSize (tagged)
// r0 = temporary scratch (a.o., for address calculation)
// r5 = the hole value
__ jmp(¶meters_test);
__ bind(¶meters_loop);
__ sub(r6, r6, Operand(Smi::FromInt(1)));
__ mov(r0, Operand(r6, LSL, 1));
__ add(r0, r0, Operand(kParameterMapHeaderSize - kHeapObjectTag));
__ str(r9, MemOperand(r4, r0));
__ sub(r0, r0, Operand(kParameterMapHeaderSize - FixedArray::kHeaderSize));
__ str(r5, MemOperand(r3, r0));
__ add(r9, r9, Operand(Smi::FromInt(1)));
__ bind(¶meters_test);
__ cmp(r6, Operand(Smi::FromInt(0)));
__ b(ne, ¶meters_loop);
// Restore r0 = new object (tagged)
__ sub(r0, r4, Operand(Heap::kSloppyArgumentsObjectSize));
__ bind(&skip_parameter_map);
// r0 = address of new object (tagged)
// r2 = argument count (tagged)
// r3 = address of backing store (tagged)
// r5 = scratch
// Copy arguments header and remaining slots (if there are any).
__ LoadRoot(r5, Heap::kFixedArrayMapRootIndex);
__ str(r5, FieldMemOperand(r3, FixedArray::kMapOffset));
__ str(r2, FieldMemOperand(r3, FixedArray::kLengthOffset));
Label arguments_loop, arguments_test;
__ mov(r9, r1);
__ ldr(r4, MemOperand(sp, 1 * kPointerSize));
__ sub(r4, r4, Operand(r9, LSL, 1));
__ jmp(&arguments_test);
__ bind(&arguments_loop);
__ sub(r4, r4, Operand(kPointerSize));
__ ldr(r6, MemOperand(r4, 0));
__ add(r5, r3, Operand(r9, LSL, 1));
__ str(r6, FieldMemOperand(r5, FixedArray::kHeaderSize));
__ add(r9, r9, Operand(Smi::FromInt(1)));
__ bind(&arguments_test);
__ cmp(r9, Operand(r2));
__ b(lt, &arguments_loop);
// Return and remove the on-stack parameters.
__ add(sp, sp, Operand(3 * kPointerSize));
__ Ret();
// Do the runtime call to allocate the arguments object.
// r0 = address of new object (tagged)
// r2 = argument count (tagged)
__ bind(&runtime);
__ str(r2, MemOperand(sp, 0 * kPointerSize)); // Patch argument count.
__ TailCallRuntime(Runtime::kNewSloppyArguments, 3, 1);
}
void LoadIndexedInterceptorStub::Generate(MacroAssembler* masm) {
// Return address is in lr.
Label slow;
Register receiver = LoadDescriptor::ReceiverRegister();
Register key = LoadDescriptor::NameRegister();
// Check that the key is an array index, that is Uint32.
__ NonNegativeSmiTst(key);
__ b(ne, &slow);
// Everything is fine, call runtime.
__ Push(receiver, key); // Receiver, key.
// Perform tail call to the entry.
__ TailCallExternalReference(
ExternalReference(IC_Utility(IC::kLoadElementWithInterceptor),
masm->isolate()),
2, 1);
__ bind(&slow);
PropertyAccessCompiler::TailCallBuiltin(
masm, PropertyAccessCompiler::MissBuiltin(Code::KEYED_LOAD_IC));
}
void ArgumentsAccessStub::GenerateNewStrict(MacroAssembler* masm) {
// sp[0] : number of parameters
// sp[4] : receiver displacement
// sp[8] : function
// Check if the calling frame is an arguments adaptor frame.
Label adaptor_frame, try_allocate, runtime;
__ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
__ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset));
__ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
__ b(eq, &adaptor_frame);
// Get the length from the frame.
__ ldr(r1, MemOperand(sp, 0));
__ b(&try_allocate);
// Patch the arguments.length and the parameters pointer.
__ bind(&adaptor_frame);
__ ldr(r1, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset));
__ str(r1, MemOperand(sp, 0));
__ add(r3, r2, Operand::PointerOffsetFromSmiKey(r1));
__ add(r3, r3, Operand(StandardFrameConstants::kCallerSPOffset));
__ str(r3, MemOperand(sp, 1 * kPointerSize));
// Try the new space allocation. Start out with computing the size
// of the arguments object and the elements array in words.
Label add_arguments_object;
__ bind(&try_allocate);
__ SmiUntag(r1, SetCC);
__ b(eq, &add_arguments_object);
__ add(r1, r1, Operand(FixedArray::kHeaderSize / kPointerSize));
__ bind(&add_arguments_object);
__ add(r1, r1, Operand(Heap::kStrictArgumentsObjectSize / kPointerSize));
// Do the allocation of both objects in one go.
__ Allocate(r1, r0, r2, r3, &runtime,
static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS));
// Get the arguments boilerplate from the current native context.
__ ldr(r4, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
__ ldr(r4, FieldMemOperand(r4, GlobalObject::kNativeContextOffset));
__ ldr(r4, MemOperand(
r4, Context::SlotOffset(Context::STRICT_ARGUMENTS_MAP_INDEX)));
__ str(r4, FieldMemOperand(r0, JSObject::kMapOffset));
__ LoadRoot(r3, Heap::kEmptyFixedArrayRootIndex);
__ str(r3, FieldMemOperand(r0, JSObject::kPropertiesOffset));
__ str(r3, FieldMemOperand(r0, JSObject::kElementsOffset));
// Get the length (smi tagged) and set that as an in-object property too.
STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
__ ldr(r1, MemOperand(sp, 0 * kPointerSize));
__ AssertSmi(r1);
__ str(r1, FieldMemOperand(r0, JSObject::kHeaderSize +
Heap::kArgumentsLengthIndex * kPointerSize));
// If there are no actual arguments, we're done.
Label done;
__ cmp(r1, Operand::Zero());
__ b(eq, &done);
// Get the parameters pointer from the stack.
__ ldr(r2, MemOperand(sp, 1 * kPointerSize));
// Set up the elements pointer in the allocated arguments object and
// initialize the header in the elements fixed array.
__ add(r4, r0, Operand(Heap::kStrictArgumentsObjectSize));
__ str(r4, FieldMemOperand(r0, JSObject::kElementsOffset));
__ LoadRoot(r3, Heap::kFixedArrayMapRootIndex);
__ str(r3, FieldMemOperand(r4, FixedArray::kMapOffset));
__ str(r1, FieldMemOperand(r4, FixedArray::kLengthOffset));
__ SmiUntag(r1);
// Copy the fixed array slots.
Label loop;
// Set up r4 to point to the first array slot.
__ add(r4, r4, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
__ bind(&loop);
// Pre-decrement r2 with kPointerSize on each iteration.
// Pre-decrement in order to skip receiver.
__ ldr(r3, MemOperand(r2, kPointerSize, NegPreIndex));
// Post-increment r4 with kPointerSize on each iteration.
__ str(r3, MemOperand(r4, kPointerSize, PostIndex));
__ sub(r1, r1, Operand(1));
__ cmp(r1, Operand::Zero());
__ b(ne, &loop);
// Return and remove the on-stack parameters.
__ bind(&done);
__ add(sp, sp, Operand(3 * kPointerSize));
__ Ret();
// Do the runtime call to allocate the arguments object.
__ bind(&runtime);
__ TailCallRuntime(Runtime::kNewStrictArguments, 3, 1);
}
void RegExpExecStub::Generate(MacroAssembler* masm) {
// Just jump directly to runtime if native RegExp is not selected at compile
// time or if regexp entry in generated code is turned off runtime switch or
// at compilation.
#ifdef V8_INTERPRETED_REGEXP
__ TailCallRuntime(Runtime::kRegExpExecRT, 4, 1);
#else // V8_INTERPRETED_REGEXP
// Stack frame on entry.
// sp[0]: last_match_info (expected JSArray)
// sp[4]: previous index
// sp[8]: subject string
// sp[12]: JSRegExp object
const int kLastMatchInfoOffset = 0 * kPointerSize;
const int kPreviousIndexOffset = 1 * kPointerSize;
const int kSubjectOffset = 2 * kPointerSize;
const int kJSRegExpOffset = 3 * kPointerSize;
Label runtime;
// Allocation of registers for this function. These are in callee save
// registers and will be preserved by the call to the native RegExp code, as
// this code is called using the normal C calling convention. When calling
// directly from generated code the native RegExp code will not do a GC and
// therefore the content of these registers are safe to use after the call.
Register subject = r4;
Register regexp_data = r5;
Register last_match_info_elements = no_reg; // will be r6;
// Ensure that a RegExp stack is allocated.
ExternalReference address_of_regexp_stack_memory_address =
ExternalReference::address_of_regexp_stack_memory_address(isolate());
ExternalReference address_of_regexp_stack_memory_size =
ExternalReference::address_of_regexp_stack_memory_size(isolate());
__ mov(r0, Operand(address_of_regexp_stack_memory_size));
__ ldr(r0, MemOperand(r0, 0));
__ cmp(r0, Operand::Zero());
__ b(eq, &runtime);
// Check that the first argument is a JSRegExp object.
__ ldr(r0, MemOperand(sp, kJSRegExpOffset));
__ JumpIfSmi(r0, &runtime);
__ CompareObjectType(r0, r1, r1, JS_REGEXP_TYPE);
__ b(ne, &runtime);
// Check that the RegExp has been compiled (data contains a fixed array).
__ ldr(regexp_data, FieldMemOperand(r0, JSRegExp::kDataOffset));
if (FLAG_debug_code) {
__ SmiTst(regexp_data);
__ Check(ne, kUnexpectedTypeForRegExpDataFixedArrayExpected);
__ CompareObjectType(regexp_data, r0, r0, FIXED_ARRAY_TYPE);
__ Check(eq, kUnexpectedTypeForRegExpDataFixedArrayExpected);
}
// regexp_data: RegExp data (FixedArray)
// Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
__ ldr(r0, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset));
__ cmp(r0, Operand(Smi::FromInt(JSRegExp::IRREGEXP)));
__ b(ne, &runtime);
// regexp_data: RegExp data (FixedArray)
// Check that the number of captures fit in the static offsets vector buffer.
__ ldr(r2,
FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
// Check (number_of_captures + 1) * 2 <= offsets vector size
// Or number_of_captures * 2 <= offsets vector size - 2
// Multiplying by 2 comes for free since r2 is smi-tagged.
STATIC_ASSERT(kSmiTag == 0);
STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2);
__ cmp(r2, Operand(Isolate::kJSRegexpStaticOffsetsVectorSize - 2));
__ b(hi, &runtime);
// Reset offset for possibly sliced string.
__ mov(r9, Operand::Zero());
__ ldr(subject, MemOperand(sp, kSubjectOffset));
__ JumpIfSmi(subject, &runtime);
__ mov(r3, subject); // Make a copy of the original subject string.
__ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset));
__ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset));
// subject: subject string
// r3: subject string
// r0: subject string instance type
// regexp_data: RegExp data (FixedArray)
// Handle subject string according to its encoding and representation:
// (1) Sequential string? If yes, go to (5).
// (2) Anything but sequential or cons? If yes, go to (6).
// (3) Cons string. If the string is flat, replace subject with first string.
// Otherwise bailout.
// (4) Is subject external? If yes, go to (7).
// (5) Sequential string. Load regexp code according to encoding.
// (E) Carry on.
/// [...]
// Deferred code at the end of the stub:
// (6) Not a long external string? If yes, go to (8).
// (7) External string. Make it, offset-wise, look like a sequential string.
// Go to (5).
// (8) Short external string or not a string? If yes, bail out to runtime.
// (9) Sliced string. Replace subject with parent. Go to (4).
Label seq_string /* 5 */, external_string /* 7 */,
check_underlying /* 4 */, not_seq_nor_cons /* 6 */,
not_long_external /* 8 */;
// (1) Sequential string? If yes, go to (5).
__ and_(r1,
r0,
Operand(kIsNotStringMask |
kStringRepresentationMask |
kShortExternalStringMask),
SetCC);
STATIC_ASSERT((kStringTag | kSeqStringTag) == 0);
__ b(eq, &seq_string); // Go to (5).
// (2) Anything but sequential or cons? If yes, go to (6).
STATIC_ASSERT(kConsStringTag < kExternalStringTag);
STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
__ cmp(r1, Operand(kExternalStringTag));
__ b(ge, ¬_seq_nor_cons); // Go to (6).
// (3) Cons string. Check that it's flat.
// Replace subject with first string and reload instance type.
__ ldr(r0, FieldMemOperand(subject, ConsString::kSecondOffset));
__ CompareRoot(r0, Heap::kempty_stringRootIndex);
__ b(ne, &runtime);
__ ldr(subject, FieldMemOperand(subject, ConsString::kFirstOffset));
// (4) Is subject external? If yes, go to (7).
__ bind(&check_underlying);
__ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset));
__ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset));
STATIC_ASSERT(kSeqStringTag == 0);
__ tst(r0, Operand(kStringRepresentationMask));
// The underlying external string is never a short external string.
STATIC_ASSERT(ExternalString::kMaxShortLength < ConsString::kMinLength);
STATIC_ASSERT(ExternalString::kMaxShortLength < SlicedString::kMinLength);
__ b(ne, &external_string); // Go to (7).
// (5) Sequential string. Load regexp code according to encoding.
__ bind(&seq_string);
// subject: sequential subject string (or look-alike, external string)
// r3: original subject string
// Load previous index and check range before r3 is overwritten. We have to
// use r3 instead of subject here because subject might have been only made
// to look like a sequential string when it actually is an external string.
__ ldr(r1, MemOperand(sp, kPreviousIndexOffset));
__ JumpIfNotSmi(r1, &runtime);
__ ldr(r3, FieldMemOperand(r3, String::kLengthOffset));
__ cmp(r3, Operand(r1));
__ b(ls, &runtime);
__ SmiUntag(r1);
STATIC_ASSERT(4 == kOneByteStringTag);
STATIC_ASSERT(kTwoByteStringTag == 0);
__ and_(r0, r0, Operand(kStringEncodingMask));
__ mov(r3, Operand(r0, ASR, 2), SetCC);
__ ldr(r6, FieldMemOperand(regexp_data, JSRegExp::kDataOneByteCodeOffset),
ne);
__ ldr(r6, FieldMemOperand(regexp_data, JSRegExp::kDataUC16CodeOffset), eq);
// (E) Carry on. String handling is done.
// r6: irregexp code
// Check that the irregexp code has been generated for the actual string
// encoding. If it has, the field contains a code object otherwise it contains
// a smi (code flushing support).
__ JumpIfSmi(r6, &runtime);
// r1: previous index
// r3: encoding of subject string (1 if one_byte, 0 if two_byte);
// r6: code
// subject: Subject string
// regexp_data: RegExp data (FixedArray)
// All checks done. Now push arguments for native regexp code.
__ IncrementCounter(isolate()->counters()->regexp_entry_native(), 1, r0, r2);
// Isolates: note we add an additional parameter here (isolate pointer).
const int kRegExpExecuteArguments = 9;
const int kParameterRegisters = 4;
__ EnterExitFrame(false, kRegExpExecuteArguments - kParameterRegisters);
// Stack pointer now points to cell where return address is to be written.
// Arguments are before that on the stack or in registers.
// Argument 9 (sp[20]): Pass current isolate address.
__ mov(r0, Operand(ExternalReference::isolate_address(isolate())));
__ str(r0, MemOperand(sp, 5 * kPointerSize));
// Argument 8 (sp[16]): Indicate that this is a direct call from JavaScript.
__ mov(r0, Operand(1));
__ str(r0, MemOperand(sp, 4 * kPointerSize));
// Argument 7 (sp[12]): Start (high end) of backtracking stack memory area.
__ mov(r0, Operand(address_of_regexp_stack_memory_address));
__ ldr(r0, MemOperand(r0, 0));
__ mov(r2, Operand(address_of_regexp_stack_memory_size));
__ ldr(r2, MemOperand(r2, 0));
__ add(r0, r0, Operand(r2));
__ str(r0, MemOperand(sp, 3 * kPointerSize));
// Argument 6: Set the number of capture registers to zero to force global
// regexps to behave as non-global. This does not affect non-global regexps.
__ mov(r0, Operand::Zero());
__ str(r0, MemOperand(sp, 2 * kPointerSize));
// Argument 5 (sp[4]): static offsets vector buffer.
__ mov(r0,
Operand(ExternalReference::address_of_static_offsets_vector(
isolate())));
__ str(r0, MemOperand(sp, 1 * kPointerSize));
// For arguments 4 and 3 get string length, calculate start of string data and
// calculate the shift of the index (0 for one-byte and 1 for two-byte).
__ add(r7, subject, Operand(SeqString::kHeaderSize - kHeapObjectTag));
__ eor(r3, r3, Operand(1));
// Load the length from the original subject string from the previous stack
// frame. Therefore we have to use fp, which points exactly to two pointer
// sizes below the previous sp. (Because creating a new stack frame pushes
// the previous fp onto the stack and moves up sp by 2 * kPointerSize.)
__ ldr(subject, MemOperand(fp, kSubjectOffset + 2 * kPointerSize));
// If slice offset is not 0, load the length from the original sliced string.
// Argument 4, r3: End of string data
// Argument 3, r2: Start of string data
// Prepare start and end index of the input.
__ add(r9, r7, Operand(r9, LSL, r3));
__ add(r2, r9, Operand(r1, LSL, r3));
__ ldr(r7, FieldMemOperand(subject, String::kLengthOffset));
__ SmiUntag(r7);
__ add(r3, r9, Operand(r7, LSL, r3));
// Argument 2 (r1): Previous index.
// Already there
// Argument 1 (r0): Subject string.
__ mov(r0, subject);
// Locate the code entry and call it.
__ add(r6, r6, Operand(Code::kHeaderSize - kHeapObjectTag));
DirectCEntryStub stub(isolate());
stub.GenerateCall(masm, r6);
__ LeaveExitFrame(false, no_reg, true);
last_match_info_elements = r6;
// r0: result
// subject: subject string (callee saved)
// regexp_data: RegExp data (callee saved)
// last_match_info_elements: Last match info elements (callee saved)
// Check the result.
Label success;
__ cmp(r0, Operand(1));
// We expect exactly one result since we force the called regexp to behave
// as non-global.
__ b(eq, &success);
Label failure;
__ cmp(r0, Operand(NativeRegExpMacroAssembler::FAILURE));
__ b(eq, &failure);
__ cmp(r0, Operand(NativeRegExpMacroAssembler::EXCEPTION));
// If not exception it can only be retry. Handle that in the runtime system.
__ b(ne, &runtime);
// Result must now be exception. If there is no pending exception already a
// stack overflow (on the backtrack stack) was detected in RegExp code but
// haven't created the exception yet. Handle that in the runtime system.
// TODO(592): Rerunning the RegExp to get the stack overflow exception.
__ mov(r1, Operand(isolate()->factory()->the_hole_value()));
__ mov(r2, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
isolate())));
__ ldr(r0, MemOperand(r2, 0));
__ cmp(r0, r1);
__ b(eq, &runtime);
__ str(r1, MemOperand(r2, 0)); // Clear pending exception.
// Check if the exception is a termination. If so, throw as uncatchable.
__ CompareRoot(r0, Heap::kTerminationExceptionRootIndex);
Label termination_exception;
__ b(eq, &termination_exception);
__ Throw(r0);
__ bind(&termination_exception);
__ ThrowUncatchable(r0);
__ bind(&failure);
// For failure and exception return null.
__ mov(r0, Operand(isolate()->factory()->null_value()));
__ add(sp, sp, Operand(4 * kPointerSize));
__ Ret();
// Process the result from the native regexp code.
__ bind(&success);
__ ldr(r1,
FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
// Calculate number of capture registers (number_of_captures + 1) * 2.
// Multiplying by 2 comes for free since r1 is smi-tagged.
STATIC_ASSERT(kSmiTag == 0);
STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
__ add(r1, r1, Operand(2)); // r1 was a smi.
__ ldr(r0, MemOperand(sp, kLastMatchInfoOffset));
__ JumpIfSmi(r0, &runtime);
__ CompareObjectType(r0, r2, r2, JS_ARRAY_TYPE);
__ b(ne, &runtime);
// Check that the JSArray is in fast case.
__ ldr(last_match_info_elements,
FieldMemOperand(r0, JSArray::kElementsOffset));
__ ldr(r0, FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset));
__ CompareRoot(r0, Heap::kFixedArrayMapRootIndex);
__ b(ne, &runtime);
// Check that the last match info has space for the capture registers and the
// additional information.
__ ldr(r0,
FieldMemOperand(last_match_info_elements, FixedArray::kLengthOffset));
__ add(r2, r1, Operand(RegExpImpl::kLastMatchOverhead));
__ cmp(r2, Operand::SmiUntag(r0));
__ b(gt, &runtime);
// r1: number of capture registers
// r4: subject string
// Store the capture count.
__ SmiTag(r2, r1);
__ str(r2, FieldMemOperand(last_match_info_elements,
RegExpImpl::kLastCaptureCountOffset));
// Store last subject and last input.
__ str(subject,
FieldMemOperand(last_match_info_elements,
RegExpImpl::kLastSubjectOffset));
__ mov(r2, subject);
__ RecordWriteField(last_match_info_elements,
RegExpImpl::kLastSubjectOffset,
subject,
r3,
kLRHasNotBeenSaved,
kDontSaveFPRegs);
__ mov(subject, r2);
__ str(subject,
FieldMemOperand(last_match_info_elements,
RegExpImpl::kLastInputOffset));
__ RecordWriteField(last_match_info_elements,
RegExpImpl::kLastInputOffset,
subject,
r3,
kLRHasNotBeenSaved,
kDontSaveFPRegs);
// Get the static offsets vector filled by the native regexp code.
ExternalReference address_of_static_offsets_vector =
ExternalReference::address_of_static_offsets_vector(isolate());
__ mov(r2, Operand(address_of_static_offsets_vector));
// r1: number of capture registers
// r2: offsets vector
Label next_capture, done;
// Capture register counter starts from number of capture registers and
// counts down until wraping after zero.
__ add(r0,
last_match_info_elements,
Operand(RegExpImpl::kFirstCaptureOffset - kHeapObjectTag));
__ bind(&next_capture);
__ sub(r1, r1, Operand(1), SetCC);
__ b(mi, &done);
// Read the value from the static offsets vector buffer.
__ ldr(r3, MemOperand(r2, kPointerSize, PostIndex));
// Store the smi value in the last match info.
__ SmiTag(r3);
__ str(r3, MemOperand(r0, kPointerSize, PostIndex));
__ jmp(&next_capture);
__ bind(&done);
// Return last match info.
__ ldr(r0, MemOperand(sp, kLastMatchInfoOffset));
__ add(sp, sp, Operand(4 * kPointerSize));
__ Ret();
// Do the runtime call to execute the regexp.
__ bind(&runtime);
__ TailCallRuntime(Runtime::kRegExpExecRT, 4, 1);
// Deferred code for string handling.
// (6) Not a long external string? If yes, go to (8).
__ bind(¬_seq_nor_cons);
// Compare flags are still set.
__ b(gt, ¬_long_external); // Go to (8).
// (7) External string. Make it, offset-wise, look like a sequential string.
__ bind(&external_string);
__ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset));
__ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset));
if (FLAG_debug_code) {
// Assert that we do not have a cons or slice (indirect strings) here.
// Sequential strings have already been ruled out.
__ tst(r0, Operand(kIsIndirectStringMask));
__ Assert(eq, kExternalStringExpectedButNotFound);
}
__ ldr(subject,
FieldMemOperand(subject, ExternalString::kResourceDataOffset));
// Move the pointer so that offset-wise, it looks like a sequential string.
STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
__ sub(subject,
subject,
Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
__ jmp(&seq_string); // Go to (5).
// (8) Short external string or not a string? If yes, bail out to runtime.
__ bind(¬_long_external);
STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0);
__ tst(r1, Operand(kIsNotStringMask | kShortExternalStringMask));
__ b(ne, &runtime);
// (9) Sliced string. Replace subject with parent. Go to (4).
// Load offset into r9 and replace subject string with parent.
__ ldr(r9, FieldMemOperand(subject, SlicedString::kOffsetOffset));
__ SmiUntag(r9);
__ ldr(subject, FieldMemOperand(subject, SlicedString::kParentOffset));
__ jmp(&check_underlying); // Go to (4).
#endif // V8_INTERPRETED_REGEXP
}
static void GenerateRecordCallTarget(MacroAssembler* masm) {
// Cache the called function in a feedback vector slot. Cache states
// are uninitialized, monomorphic (indicated by a JSFunction), and
// megamorphic.
// r0 : number of arguments to the construct function
// r1 : the function to call
// r2 : Feedback vector
// r3 : slot in feedback vector (Smi)
Label initialize, done, miss, megamorphic, not_array_function;
DCHECK_EQ(*TypeFeedbackVector::MegamorphicSentinel(masm->isolate()),
masm->isolate()->heap()->megamorphic_symbol());
DCHECK_EQ(*TypeFeedbackVector::UninitializedSentinel(masm->isolate()),
masm->isolate()->heap()->uninitialized_symbol());
// Load the cache state into r4.
__ add(r4, r2, Operand::PointerOffsetFromSmiKey(r3));
__ ldr(r4, FieldMemOperand(r4, FixedArray::kHeaderSize));
// A monomorphic cache hit or an already megamorphic state: invoke the
// function without changing the state.
__ cmp(r4, r1);
__ b(eq, &done);
if (!FLAG_pretenuring_call_new) {
// If we came here, we need to see if we are the array function.
// If we didn't have a matching function, and we didn't find the megamorph
// sentinel, then we have in the slot either some other function or an
// AllocationSite. Do a map check on the object in ecx.
__ ldr(r5, FieldMemOperand(r4, 0));
__ CompareRoot(r5, Heap::kAllocationSiteMapRootIndex);
__ b(ne, &miss);
// Make sure the function is the Array() function
__ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, r4);
__ cmp(r1, r4);
__ b(ne, &megamorphic);
__ jmp(&done);
}
__ bind(&miss);
// A monomorphic miss (i.e, here the cache is not uninitialized) goes
// megamorphic.
__ CompareRoot(r4, Heap::kUninitializedSymbolRootIndex);
__ b(eq, &initialize);
// MegamorphicSentinel is an immortal immovable object (undefined) so no
// write-barrier is needed.
__ bind(&megamorphic);
__ add(r4, r2, Operand::PointerOffsetFromSmiKey(r3));
__ LoadRoot(ip, Heap::kMegamorphicSymbolRootIndex);
__ str(ip, FieldMemOperand(r4, FixedArray::kHeaderSize));
__ jmp(&done);
// An uninitialized cache is patched with the function
__ bind(&initialize);
if (!FLAG_pretenuring_call_new) {
// Make sure the function is the Array() function
__ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, r4);
__ cmp(r1, r4);
__ b(ne, ¬_array_function);
// The target function is the Array constructor,
// Create an AllocationSite if we don't already have it, store it in the
// slot.
{
FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
// Arguments register must be smi-tagged to call out.
__ SmiTag(r0);
__ Push(r3, r2, r1, r0);
CreateAllocationSiteStub create_stub(masm->isolate());
__ CallStub(&create_stub);
__ Pop(r3, r2, r1, r0);
__ SmiUntag(r0);
}
__ b(&done);
__ bind(¬_array_function);
}
__ add(r4, r2, Operand::PointerOffsetFromSmiKey(r3));
__ add(r4, r4, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
__ str(r1, MemOperand(r4, 0));
__ Push(r4, r2, r1);
__ RecordWrite(r2, r4, r1, kLRHasNotBeenSaved, kDontSaveFPRegs,
EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
__ Pop(r4, r2, r1);
__ bind(&done);
}
static void EmitContinueIfStrictOrNative(MacroAssembler* masm, Label* cont) {
// Do not transform the receiver for strict mode functions.
__ ldr(r3, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
__ ldr(r4, FieldMemOperand(r3, SharedFunctionInfo::kCompilerHintsOffset));
__ tst(r4, Operand(1 << (SharedFunctionInfo::kStrictModeFunction +
kSmiTagSize)));
__ b(ne, cont);
// Do not transform the receiver for native (Compilerhints already in r3).
__ tst(r4, Operand(1 << (SharedFunctionInfo::kNative + kSmiTagSize)));
__ b(ne, cont);
}
static void EmitSlowCase(MacroAssembler* masm,
int argc,
Label* non_function) {
// Check for function proxy.
__ cmp(r4, Operand(JS_FUNCTION_PROXY_TYPE));
__ b(ne, non_function);
__ push(r1); // put proxy as additional argument
__ mov(r0, Operand(argc + 1, RelocInfo::NONE32));
__ mov(r2, Operand::Zero());
__ GetBuiltinFunction(r1, Builtins::CALL_FUNCTION_PROXY);
{
Handle<Code> adaptor =
masm->isolate()->builtins()->ArgumentsAdaptorTrampoline();
__ Jump(adaptor, RelocInfo::CODE_TARGET);
}
// CALL_NON_FUNCTION expects the non-function callee as receiver (instead
// of the original receiver from the call site).
__ bind(non_function);
__ str(r1, MemOperand(sp, argc * kPointerSize));
__ mov(r0, Operand(argc)); // Set up the number of arguments.
__ mov(r2, Operand::Zero());
__ GetBuiltinFunction(r1, Builtins::CALL_NON_FUNCTION);
__ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
RelocInfo::CODE_TARGET);
}
static void EmitWrapCase(MacroAssembler* masm, int argc, Label* cont) {
// Wrap the receiver and patch it back onto the stack.
{ FrameAndConstantPoolScope frame_scope(masm, StackFrame::INTERNAL);
__ Push(r1, r3);
__ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
__ pop(r1);
}
__ str(r0, MemOperand(sp, argc * kPointerSize));
__ jmp(cont);
}
static void CallFunctionNoFeedback(MacroAssembler* masm,
int argc, bool needs_checks,
bool call_as_method) {
// r1 : the function to call
Label slow, non_function, wrap, cont;
if (needs_checks) {
// Check that the function is really a JavaScript function.
// r1: pushed function (to be verified)
__ JumpIfSmi(r1, &non_function);
// Goto slow case if we do not have a function.
__ CompareObjectType(r1, r4, r4, JS_FUNCTION_TYPE);
__ b(ne, &slow);
}
// Fast-case: Invoke the function now.
// r1: pushed function
ParameterCount actual(argc);
if (call_as_method) {
if (needs_checks) {
EmitContinueIfStrictOrNative(masm, &cont);
}
// Compute the receiver in sloppy mode.
__ ldr(r3, MemOperand(sp, argc * kPointerSize));
if (needs_checks) {
__ JumpIfSmi(r3, &wrap);
__ CompareObjectType(r3, r4, r4, FIRST_SPEC_OBJECT_TYPE);
__ b(lt, &wrap);
} else {
__ jmp(&wrap);
}
__ bind(&cont);
}
__ InvokeFunction(r1, actual, JUMP_FUNCTION, NullCallWrapper());
if (needs_checks) {
// Slow-case: Non-function called.
__ bind(&slow);
EmitSlowCase(masm, argc, &non_function);
}
if (call_as_method) {
__ bind(&wrap);
EmitWrapCase(masm, argc, &cont);
}
}
void CallFunctionStub::Generate(MacroAssembler* masm) {
CallFunctionNoFeedback(masm, argc(), NeedsChecks(), CallAsMethod());
}
void CallConstructStub::Generate(MacroAssembler* masm) {
// r0 : number of arguments
// r1 : the function to call
// r2 : feedback vector
// r3 : (only if r2 is not the megamorphic symbol) slot in feedback
// vector (Smi)
Label slow, non_function_call;
// Check that the function is not a smi.
__ JumpIfSmi(r1, &non_function_call);
// Check that the function is a JSFunction.
__ CompareObjectType(r1, r4, r4, JS_FUNCTION_TYPE);
__ b(ne, &slow);
if (RecordCallTarget()) {
GenerateRecordCallTarget(masm);
__ add(r5, r2, Operand::PointerOffsetFromSmiKey(r3));
if (FLAG_pretenuring_call_new) {
// Put the AllocationSite from the feedback vector into r2.
// By adding kPointerSize we encode that we know the AllocationSite
// entry is at the feedback vector slot given by r3 + 1.
__ ldr(r2, FieldMemOperand(r5, FixedArray::kHeaderSize + kPointerSize));
} else {
Label feedback_register_initialized;
// Put the AllocationSite from the feedback vector into r2, or undefined.
__ ldr(r2, FieldMemOperand(r5, FixedArray::kHeaderSize));
__ ldr(r5, FieldMemOperand(r2, AllocationSite::kMapOffset));
__ CompareRoot(r5, Heap::kAllocationSiteMapRootIndex);
__ b(eq, &feedback_register_initialized);
__ LoadRoot(r2, Heap::kUndefinedValueRootIndex);
__ bind(&feedback_register_initialized);
}
__ AssertUndefinedOrAllocationSite(r2, r5);
}
// Jump to the function-specific construct stub.
Register jmp_reg = r4;
__ ldr(jmp_reg, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
__ ldr(jmp_reg, FieldMemOperand(jmp_reg,
SharedFunctionInfo::kConstructStubOffset));
__ add(pc, jmp_reg, Operand(Code::kHeaderSize - kHeapObjectTag));
// r0: number of arguments
// r1: called object
// r4: object type
Label do_call;
__ bind(&slow);
__ cmp(r4, Operand(JS_FUNCTION_PROXY_TYPE));
__ b(ne, &non_function_call);
__ GetBuiltinFunction(r1, Builtins::CALL_FUNCTION_PROXY_AS_CONSTRUCTOR);
__ jmp(&do_call);
__ bind(&non_function_call);
__ GetBuiltinFunction(r1, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR);
__ bind(&do_call);
// Set expected number of arguments to zero (not changing r0).
__ mov(r2, Operand::Zero());
__ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
RelocInfo::CODE_TARGET);
}
static void EmitLoadTypeFeedbackVector(MacroAssembler* masm, Register vector) {
__ ldr(vector, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
__ ldr(vector, FieldMemOperand(vector,
JSFunction::kSharedFunctionInfoOffset));
__ ldr(vector, FieldMemOperand(vector,
SharedFunctionInfo::kFeedbackVectorOffset));
}
void CallIC_ArrayStub::Generate(MacroAssembler* masm) {
// r1 - function
// r3 - slot id
Label miss;
int argc = arg_count();
ParameterCount actual(argc);
EmitLoadTypeFeedbackVector(masm, r2);
__ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, r4);
__ cmp(r1, r4);
__ b(ne, &miss);
__ mov(r0, Operand(arg_count()));
__ add(r4, r2, Operand::PointerOffsetFromSmiKey(r3));
__ ldr(r4, FieldMemOperand(r4, FixedArray::kHeaderSize));
// Verify that r4 contains an AllocationSite
__ ldr(r5, FieldMemOperand(r4, HeapObject::kMapOffset));
__ CompareRoot(r5, Heap::kAllocationSiteMapRootIndex);
__ b(ne, &miss);
__ mov(r2, r4);
ArrayConstructorStub stub(masm->isolate(), arg_count());
__ TailCallStub(&stub);
__ bind(&miss);
GenerateMiss(masm);
// The slow case, we need this no matter what to complete a call after a miss.
CallFunctionNoFeedback(masm,
arg_count(),
true,
CallAsMethod());
// Unreachable.
__ stop("Unexpected code address");
}
void CallICStub::Generate(MacroAssembler* masm) {
// r1 - function
// r3 - slot id (Smi)
Label extra_checks_or_miss, slow_start;
Label slow, non_function, wrap, cont;
Label have_js_function;
int argc = arg_count();
ParameterCount actual(argc);
EmitLoadTypeFeedbackVector(masm, r2);
// The checks. First, does r1 match the recorded monomorphic target?
__ add(r4, r2, Operand::PointerOffsetFromSmiKey(r3));
__ ldr(r4, FieldMemOperand(r4, FixedArray::kHeaderSize));
__ cmp(r1, r4);
__ b(ne, &extra_checks_or_miss);
__ bind(&have_js_function);
if (CallAsMethod()) {
EmitContinueIfStrictOrNative(masm, &cont);
// Compute the receiver in sloppy mode.
__ ldr(r3, MemOperand(sp, argc * kPointerSize));
__ JumpIfSmi(r3, &wrap);
__ CompareObjectType(r3, r4, r4, FIRST_SPEC_OBJECT_TYPE);
__ b(lt, &wrap);
__ bind(&cont);
}
__ InvokeFunction(r1, actual, JUMP_FUNCTION, NullCallWrapper());
__ bind(&slow);
EmitSlowCase(masm, argc, &non_function);
if (CallAsMethod()) {
__ bind(&wrap);
EmitWrapCase(masm, argc, &cont);
}
__ bind(&extra_checks_or_miss);
Label miss;
__ CompareRoot(r4, Heap::kMegamorphicSymbolRootIndex);
__ b(eq, &slow_start);
__ CompareRoot(r4, Heap::kUninitializedSymbolRootIndex);
__ b(eq, &miss);
if (!FLAG_trace_ic) {
// We are going megamorphic. If the feedback is a JSFunction, it is fine
// to handle it here. More complex cases are dealt with in the runtime.
__ AssertNotSmi(r4);
__ CompareObjectType(r4, r5, r5, JS_FUNCTION_TYPE);
__ b(ne, &miss);
__ add(r4, r2, Operand::PointerOffsetFromSmiKey(r3));
__ LoadRoot(ip, Heap::kMegamorphicSymbolRootIndex);
__ str(ip, FieldMemOperand(r4, FixedArray::kHeaderSize));
__ jmp(&slow_start);
}
// We are here because tracing is on or we are going monomorphic.
__ bind(&miss);
GenerateMiss(masm);
// the slow case
__ bind(&slow_start);
// Check that the function is really a JavaScript function.
// r1: pushed function (to be verified)
__ JumpIfSmi(r1, &non_function);
// Goto slow case if we do not have a function.
__ CompareObjectType(r1, r4, r4, JS_FUNCTION_TYPE);
__ b(ne, &slow);
__ jmp(&have_js_function);
}
void CallICStub::GenerateMiss(MacroAssembler* masm) {
// Get the receiver of the function from the stack; 1 ~ return address.
__ ldr(r4, MemOperand(sp, (arg_count() + 1) * kPointerSize));
{
FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
// Push the receiver and the function and feedback info.
__ Push(r4, r1, r2, r3);
// Call the entry.
IC::UtilityId id = GetICState() == DEFAULT ? IC::kCallIC_Miss
: IC::kCallIC_Customization_Miss;
ExternalReference miss = ExternalReference(IC_Utility(id),
masm->isolate());
__ CallExternalReference(miss, 4);
// Move result to edi and exit the internal frame.
__ mov(r1, r0);
}
}
// StringCharCodeAtGenerator
void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
// If the receiver is a smi trigger the non-string case.
__ JumpIfSmi(object_, receiver_not_string_);
// Fetch the instance type of the receiver into result register.
__ ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
__ ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
// If the receiver is not a string trigger the non-string case.
__ tst(result_, Operand(kIsNotStringMask));
__ b(ne, receiver_not_string_);
// If the index is non-smi trigger the non-smi case.
__ JumpIfNotSmi(index_, &index_not_smi_);
__ bind(&got_smi_index_);
// Check for index out of range.
__ ldr(ip, FieldMemOperand(object_, String::kLengthOffset));
__ cmp(ip, Operand(index_));
__ b(ls, index_out_of_range_);
__ SmiUntag(index_);
StringCharLoadGenerator::Generate(masm,
object_,
index_,
result_,
&call_runtime_);
__ SmiTag(result_);
__ bind(&exit_);
}
void StringCharCodeAtGenerator::GenerateSlow(
MacroAssembler* masm,
const RuntimeCallHelper& call_helper) {
__ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase);
// Index is not a smi.
__ bind(&index_not_smi_);
// If index is a heap number, try converting it to an integer.
__ CheckMap(index_,
result_,
Heap::kHeapNumberMapRootIndex,
index_not_number_,
DONT_DO_SMI_CHECK);
call_helper.BeforeCall(masm);
__ push(object_);
__ push(index_); // Consumed by runtime conversion function.
if (index_flags_ == STRING_INDEX_IS_NUMBER) {
__ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1);
} else {
DCHECK(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX);
// NumberToSmi discards numbers that are not exact integers.
__ CallRuntime(Runtime::kNumberToSmi, 1);
}
// Save the conversion result before the pop instructions below
// have a chance to overwrite it.
__ Move(index_, r0);
__ pop(object_);
// Reload the instance type.
__ ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
__ ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
call_helper.AfterCall(masm);
// If index is still not a smi, it must be out of range.
__ JumpIfNotSmi(index_, index_out_of_range_);
// Otherwise, return to the fast path.
__ jmp(&got_smi_index_);
// Call runtime. We get here when the receiver is a string and the
// index is a number, but the code of getting the actual character
// is too complex (e.g., when the string needs to be flattened).
__ bind(&call_runtime_);
call_helper.BeforeCall(masm);
__ SmiTag(index_);
__ Push(object_, index_);
__ CallRuntime(Runtime::kStringCharCodeAtRT, 2);
__ Move(result_, r0);
call_helper.AfterCall(masm);
__ jmp(&exit_);
__ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase);
}
// -------------------------------------------------------------------------
// StringCharFromCodeGenerator
void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
// Fast case of Heap::LookupSingleCharacterStringFromCode.
STATIC_ASSERT(kSmiTag == 0);
STATIC_ASSERT(kSmiShiftSize == 0);
DCHECK(base::bits::IsPowerOfTwo32(String::kMaxOneByteCharCode + 1));
__ tst(code_,
Operand(kSmiTagMask |
((~String::kMaxOneByteCharCode) << kSmiTagSize)));
__ b(ne, &slow_case_);
__ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex);
// At this point code register contains smi tagged one-byte char code.
__ add(result_, result_, Operand::PointerOffsetFromSmiKey(code_));
__ ldr(result_, FieldMemOperand(result_, FixedArray::kHeaderSize));
__ CompareRoot(result_, Heap::kUndefinedValueRootIndex);
__ b(eq, &slow_case_);
__ bind(&exit_);
}
void StringCharFromCodeGenerator::GenerateSlow(
MacroAssembler* masm,
const RuntimeCallHelper& call_helper) {
__ Abort(kUnexpectedFallthroughToCharFromCodeSlowCase);
__ bind(&slow_case_);
call_helper.BeforeCall(masm);
__ push(code_);
__ CallRuntime(Runtime::kCharFromCode, 1);
__ Move(result_, r0);
call_helper.AfterCall(masm);
__ jmp(&exit_);
__ Abort(kUnexpectedFallthroughFromCharFromCodeSlowCase);
}
enum CopyCharactersFlags { COPY_ONE_BYTE = 1, DEST_ALWAYS_ALIGNED = 2 };
void StringHelper::GenerateCopyCharacters(MacroAssembler* masm,
Register dest,
Register src,
Register count,
Register scratch,
String::Encoding encoding) {
if (FLAG_debug_code) {
// Check that destination is word aligned.
__ tst(dest, Operand(kPointerAlignmentMask));
__ Check(eq, kDestinationOfCopyNotAligned);
}
// Assumes word reads and writes are little endian.
// Nothing to do for zero characters.
Label done;
if (encoding == String::TWO_BYTE_ENCODING) {
__ add(count, count, Operand(count), SetCC);
}
Register limit = count; // Read until dest equals this.
__ add(limit, dest, Operand(count));
Label loop_entry, loop;
// Copy bytes from src to dest until dest hits limit.
__ b(&loop_entry);
__ bind(&loop);
__ ldrb(scratch, MemOperand(src, 1, PostIndex), lt);
__ strb(scratch, MemOperand(dest, 1, PostIndex));
__ bind(&loop_entry);
__ cmp(dest, Operand(limit));
__ b(lt, &loop);
__ bind(&done);
}
void SubStringStub::Generate(MacroAssembler* masm) {
Label runtime;
// Stack frame on entry.
// lr: return address
// sp[0]: to
// sp[4]: from
// sp[8]: string
// This stub is called from the native-call %_SubString(...), so
// nothing can be assumed about the arguments. It is tested that:
// "string" is a sequential string,
// both "from" and "to" are smis, and
// 0 <= from <= to <= string.length.
// If any of these assumptions fail, we call the runtime system.
const int kToOffset = 0 * kPointerSize;
const int kFromOffset = 1 * kPointerSize;
const int kStringOffset = 2 * kPointerSize;
__ Ldrd(r2, r3, MemOperand(sp, kToOffset));
STATIC_ASSERT(kFromOffset == kToOffset + 4);
STATIC_ASSERT(kSmiTag == 0);
STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
// Arithmetic shift right by one un-smi-tags. In this case we rotate right
// instead because we bail out on non-smi values: ROR and ASR are equivalent
// for smis but they set the flags in a way that's easier to optimize.
__ mov(r2, Operand(r2, ROR, 1), SetCC);
__ mov(r3, Operand(r3, ROR, 1), SetCC, cc);
// If either to or from had the smi tag bit set, then C is set now, and N
// has the same value: we rotated by 1, so the bottom bit is now the top bit.
// We want to bailout to runtime here if From is negative. In that case, the
// next instruction is not executed and we fall through to bailing out to
// runtime.
// Executed if both r2 and r3 are untagged integers.
__ sub(r2, r2, Operand(r3), SetCC, cc);
// One of the above un-smis or the above SUB could have set N==1.
__ b(mi, &runtime); // Either "from" or "to" is not an smi, or from > to.
// Make sure first argument is a string.
__ ldr(r0, MemOperand(sp, kStringOffset));
__ JumpIfSmi(r0, &runtime);
Condition is_string = masm->IsObjectStringType(r0, r1);
__ b(NegateCondition(is_string), &runtime);
Label single_char;
__ cmp(r2, Operand(1));
__ b(eq, &single_char);
// Short-cut for the case of trivial substring.
Label return_r0;
// r0: original string
// r2: result string length
__ ldr(r4, FieldMemOperand(r0, String::kLengthOffset));
__ cmp(r2, Operand(r4, ASR, 1));
// Return original string.
__ b(eq, &return_r0);
// Longer than original string's length or negative: unsafe arguments.
__ b(hi, &runtime);
// Shorter than original string's length: an actual substring.
// Deal with different string types: update the index if necessary
// and put the underlying string into r5.
// r0: original string
// r1: instance type
// r2: length
// r3: from index (untagged)
Label underlying_unpacked, sliced_string, seq_or_external_string;
// If the string is not indirect, it can only be sequential or external.
STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag));
STATIC_ASSERT(kIsIndirectStringMask != 0);
__ tst(r1, Operand(kIsIndirectStringMask));
__ b(eq, &seq_or_external_string);
__ tst(r1, Operand(kSlicedNotConsMask));
__ b(ne, &sliced_string);
// Cons string. Check whether it is flat, then fetch first part.
__ ldr(r5, FieldMemOperand(r0, ConsString::kSecondOffset));
__ CompareRoot(r5, Heap::kempty_stringRootIndex);
__ b(ne, &runtime);
__ ldr(r5, FieldMemOperand(r0, ConsString::kFirstOffset));
// Update instance type.
__ ldr(r1, FieldMemOperand(r5, HeapObject::kMapOffset));
__ ldrb(r1, FieldMemOperand(r1, Map::kInstanceTypeOffset));
__ jmp(&underlying_unpacked);
__ bind(&sliced_string);
// Sliced string. Fetch parent and correct start index by offset.
__ ldr(r5, FieldMemOperand(r0, SlicedString::kParentOffset));
__ ldr(r4, FieldMemOperand(r0, SlicedString::kOffsetOffset));
__ add(r3, r3, Operand(r4, ASR, 1)); // Add offset to index.
// Update instance type.
__ ldr(r1, FieldMemOperand(r5, HeapObject::kMapOffset));
__ ldrb(r1, FieldMemOperand(r1, Map::kInstanceTypeOffset));
__ jmp(&underlying_unpacked);
__ bind(&seq_or_external_string);
// Sequential or external string. Just move string to the expected register.
__ mov(r5, r0);
__ bind(&underlying_unpacked);
if (FLAG_string_slices) {
Label copy_routine;
// r5: underlying subject string
// r1: instance type of underlying subject string
// r2: length
// r3: adjusted start index (untagged)
__ cmp(r2, Operand(SlicedString::kMinLength));
// Short slice. Copy instead of slicing.
__ b(lt, ©_routine);
// Allocate new sliced string. At this point we do not reload the instance
// type including the string encoding because we simply rely on the info
// provided by the original string. It does not matter if the original
// string's encoding is wrong because we always have to recheck encoding of
// the newly created string's parent anyways due to externalized strings.
Label two_byte_slice, set_slice_header;
STATIC_ASSERT((kStringEncodingMask & kOneByteStringTag) != 0);
STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0);
__ tst(r1, Operand(kStringEncodingMask));
__ b(eq, &two_byte_slice);
__ AllocateOneByteSlicedString(r0, r2, r6, r4, &runtime);
__ jmp(&set_slice_header);
__ bind(&two_byte_slice);
__ AllocateTwoByteSlicedString(r0, r2, r6, r4, &runtime);
__ bind(&set_slice_header);
__ mov(r3, Operand(r3, LSL, 1));
__ str(r5, FieldMemOperand(r0, SlicedString::kParentOffset));
__ str(r3, FieldMemOperand(r0, SlicedString::kOffsetOffset));
__ jmp(&return_r0);
__ bind(©_routine);
}
// r5: underlying subject string
// r1: instance type of underlying subject string
// r2: length
// r3: adjusted start index (untagged)
Label two_byte_sequential, sequential_string, allocate_result;
STATIC_ASSERT(kExternalStringTag != 0);
STATIC_ASSERT(kSeqStringTag == 0);
__ tst(r1, Operand(kExternalStringTag));
__ b(eq, &sequential_string);
// Handle external string.
// Rule out short external strings.
STATIC_ASSERT(kShortExternalStringTag != 0);
__ tst(r1, Operand(kShortExternalStringTag));
__ b(ne, &runtime);
__ ldr(r5, FieldMemOperand(r5, ExternalString::kResourceDataOffset));
// r5 already points to the first character of underlying string.
__ jmp(&allocate_result);
__ bind(&sequential_string);
// Locate first character of underlying subject string.
STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
__ add(r5, r5, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
__ bind(&allocate_result);
// Sequential acii string. Allocate the result.
STATIC_ASSERT((kOneByteStringTag & kStringEncodingMask) != 0);
__ tst(r1, Operand(kStringEncodingMask));
__ b(eq, &two_byte_sequential);
// Allocate and copy the resulting one-byte string.
__ AllocateOneByteString(r0, r2, r4, r6, r1, &runtime);
// Locate first character of substring to copy.
__ add(r5, r5, r3);
// Locate first character of result.
__ add(r1, r0, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
// r0: result string
// r1: first character of result string
// r2: result string length
// r5: first character of substring to copy
STATIC_ASSERT((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0);
StringHelper::GenerateCopyCharacters(
masm, r1, r5, r2, r3, String::ONE_BYTE_ENCODING);
__ jmp(&return_r0);
// Allocate and copy the resulting two-byte string.
__ bind(&two_byte_sequential);
__ AllocateTwoByteString(r0, r2, r4, r6, r1, &runtime);
// Locate first character of substring to copy.
STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
__ add(r5, r5, Operand(r3, LSL, 1));
// Locate first character of result.
__ add(r1, r0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
// r0: result string.
// r1: first character of result.
// r2: result length.
// r5: first character of substring to copy.
STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
StringHelper::GenerateCopyCharacters(
masm, r1, r5, r2, r3, String::TWO_BYTE_ENCODING);
__ bind(&return_r0);
Counters* counters = isolate()->counters();
__ IncrementCounter(counters->sub_string_native(), 1, r3, r4);
__ Drop(3);
__ Ret();
// Just jump to runtime to create the sub string.
__ bind(&runtime);
__ TailCallRuntime(Runtime::kSubString, 3, 1);
__ bind(&single_char);
// r0: original string
// r1: instance type
// r2: length
// r3: from index (untagged)
__ SmiTag(r3, r3);
StringCharAtGenerator generator(
r0, r3, r2, r0, &runtime, &runtime, &runtime, STRING_INDEX_IS_NUMBER);
generator.GenerateFast(masm);
__ Drop(3);
__ Ret();
generator.SkipSlow(masm, &runtime);
}
void StringHelper::GenerateFlatOneByteStringEquals(
MacroAssembler* masm, Register left, Register right, Register scratch1,
Register scratch2, Register scratch3) {
Register length = scratch1;
// Compare lengths.
Label strings_not_equal, check_zero_length;
__ ldr(length, FieldMemOperand(left, String::kLengthOffset));
__ ldr(scratch2, FieldMemOperand(right, String::kLengthOffset));
__ cmp(length, scratch2);
__ b(eq, &check_zero_length);
__ bind(&strings_not_equal);
__ mov(r0, Operand(Smi::FromInt(NOT_EQUAL)));
__ Ret();
// Check if the length is zero.
Label compare_chars;
__ bind(&check_zero_length);
STATIC_ASSERT(kSmiTag == 0);
__ cmp(length, Operand::Zero());
__ b(ne, &compare_chars);
__ mov(r0, Operand(Smi::FromInt(EQUAL)));
__ Ret();
// Compare characters.
__ bind(&compare_chars);
GenerateOneByteCharsCompareLoop(masm, left, right, length, scratch2, scratch3,
&strings_not_equal);
// Characters are equal.
__ mov(r0, Operand(Smi::FromInt(EQUAL)));
__ Ret();
}
void StringHelper::GenerateCompareFlatOneByteStrings(
MacroAssembler* masm, Register left, Register right, Register scratch1,
Register scratch2, Register scratch3, Register scratch4) {
Label result_not_equal, compare_lengths;
// Find minimum length and length difference.
__ ldr(scratch1, FieldMemOperand(left, String::kLengthOffset));
__ ldr(scratch2, FieldMemOperand(right, String::kLengthOffset));
__ sub(scratch3, scratch1, Operand(scratch2), SetCC);
Register length_delta = scratch3;
__ mov(scratch1, scratch2, LeaveCC, gt);
Register min_length = scratch1;
STATIC_ASSERT(kSmiTag == 0);
__ cmp(min_length, Operand::Zero());
__ b(eq, &compare_lengths);
// Compare loop.
GenerateOneByteCharsCompareLoop(masm, left, right, min_length, scratch2,
scratch4, &result_not_equal);
// Compare lengths - strings up to min-length are equal.
__ bind(&compare_lengths);
DCHECK(Smi::FromInt(EQUAL) == static_cast<Smi*>(0));
// Use length_delta as result if it's zero.
__ mov(r0, Operand(length_delta), SetCC);
__ bind(&result_not_equal);
// Conditionally update the result based either on length_delta or
// the last comparion performed in the loop above.
__ mov(r0, Operand(Smi::FromInt(GREATER)), LeaveCC, gt);
__ mov(r0, Operand(Smi::FromInt(LESS)), LeaveCC, lt);
__ Ret();
}
void StringHelper::GenerateOneByteCharsCompareLoop(
MacroAssembler* masm, Register left, Register right, Register length,
Register scratch1, Register scratch2, Label* chars_not_equal) {
// Change index to run from -length to -1 by adding length to string
// start. This means that loop ends when index reaches zero, which
// doesn't need an additional compare.
__ SmiUntag(length);
__ add(scratch1, length,
Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
__ add(left, left, Operand(scratch1));
__ add(right, right, Operand(scratch1));
__ rsb(length, length, Operand::Zero());
Register index = length; // index = -length;
// Compare loop.
Label loop;
__ bind(&loop);
__ ldrb(scratch1, MemOperand(left, index));
__ ldrb(scratch2, MemOperand(right, index));
__ cmp(scratch1, scratch2);
__ b(ne, chars_not_equal);
__ add(index, index, Operand(1), SetCC);
__ b(ne, &loop);
}
void StringCompareStub::Generate(MacroAssembler* masm) {
Label runtime;
Counters* counters = isolate()->counters();
// Stack frame on entry.
// sp[0]: right string
// sp[4]: left string
__ Ldrd(r0 , r1, MemOperand(sp)); // Load right in r0, left in r1.
Label not_same;
__ cmp(r0, r1);
__ b(ne, ¬_same);
STATIC_ASSERT(EQUAL == 0);
STATIC_ASSERT(kSmiTag == 0);
__ mov(r0, Operand(Smi::FromInt(EQUAL)));
__ IncrementCounter(counters->string_compare_native(), 1, r1, r2);
__ add(sp, sp, Operand(2 * kPointerSize));
__ Ret();
__ bind(¬_same);
// Check that both objects are sequential one-byte strings.
__ JumpIfNotBothSequentialOneByteStrings(r1, r0, r2, r3, &runtime);
// Compare flat one-byte strings natively. Remove arguments from stack first.
__ IncrementCounter(counters->string_compare_native(), 1, r2, r3);
__ add(sp, sp, Operand(2 * kPointerSize));
StringHelper::GenerateCompareFlatOneByteStrings(masm, r1, r0, r2, r3, r4, r5);
// Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater)
// tagged as a small integer.
__ bind(&runtime);
__ TailCallRuntime(Runtime::kStringCompare, 2, 1);
}
void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r1 : left
// -- r0 : right
// -- lr : return address
// -----------------------------------
// Load r2 with the allocation site. We stick an undefined dummy value here
// and replace it with the real allocation site later when we instantiate this
// stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate().
__ Move(r2, handle(isolate()->heap()->undefined_value()));
// Make sure that we actually patched the allocation site.
if (FLAG_debug_code) {
__ tst(r2, Operand(kSmiTagMask));
__ Assert(ne, kExpectedAllocationSite);
__ push(r2);
__ ldr(r2, FieldMemOperand(r2, HeapObject::kMapOffset));
__ LoadRoot(ip, Heap::kAllocationSiteMapRootIndex);
__ cmp(r2, ip);
__ pop(r2);
__ Assert(eq, kExpectedAllocationSite);
}
// Tail call into the stub that handles binary operations with allocation
// sites.
BinaryOpWithAllocationSiteStub stub(isolate(), state());
__ TailCallStub(&stub);
}
void CompareICStub::GenerateSmis(MacroAssembler* masm) {
DCHECK(state() == CompareICState::SMI);
Label miss;
__ orr(r2, r1, r0);
__ JumpIfNotSmi(r2, &miss);
if (GetCondition() == eq) {
// For equality we do not care about the sign of the result.
__ sub(r0, r0, r1, SetCC);
} else {
// Untag before subtracting to avoid handling overflow.
__ SmiUntag(r1);
__ sub(r0, r1, Operand::SmiUntag(r0));
}
__ Ret();
__ bind(&miss);
GenerateMiss(masm);
}
void CompareICStub::GenerateNumbers(MacroAssembler* masm) {
DCHECK(state() == CompareICState::NUMBER);
Label generic_stub;
Label unordered, maybe_undefined1, maybe_undefined2;
Label miss;
if (left() == CompareICState::SMI) {
__ JumpIfNotSmi(r1, &miss);
}
if (right() == CompareICState::SMI) {
__ JumpIfNotSmi(r0, &miss);
}
// Inlining the double comparison and falling back to the general compare
// stub if NaN is involved.
// Load left and right operand.
Label done, left, left_smi, right_smi;
__ JumpIfSmi(r0, &right_smi);
__ CheckMap(r0, r2, Heap::kHeapNumberMapRootIndex, &maybe_undefined1,
DONT_DO_SMI_CHECK);
__ sub(r2, r0, Operand(kHeapObjectTag));
__ vldr(d1, r2, HeapNumber::kValueOffset);
__ b(&left);
__ bind(&right_smi);
__ SmiToDouble(d1, r0);
__ bind(&left);
__ JumpIfSmi(r1, &left_smi);
__ CheckMap(r1, r2, Heap::kHeapNumberMapRootIndex, &maybe_undefined2,
DONT_DO_SMI_CHECK);
__ sub(r2, r1, Operand(kHeapObjectTag));
__ vldr(d0, r2, HeapNumber::kValueOffset);
__ b(&done);
__ bind(&left_smi);
__ SmiToDouble(d0, r1);
__ bind(&done);
// Compare operands.
__ VFPCompareAndSetFlags(d0, d1);
// Don't base result on status bits when a NaN is involved.
__ b(vs, &unordered);
// Return a result of -1, 0, or 1, based on status bits.
__ mov(r0, Operand(EQUAL), LeaveCC, eq);
__ mov(r0, Operand(LESS), LeaveCC, lt);
__ mov(r0, Operand(GREATER), LeaveCC, gt);
__ Ret();
__ bind(&unordered);
__ bind(&generic_stub);
CompareICStub stub(isolate(), op(), CompareICState::GENERIC,
CompareICState::GENERIC, CompareICState::GENERIC);
__ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
__ bind(&maybe_undefined1);
if (Token::IsOrderedRelationalCompareOp(op())) {
__ CompareRoot(r0, Heap::kUndefinedValueRootIndex);
__ b(ne, &miss);
__ JumpIfSmi(r1, &unordered);
__ CompareObjectType(r1, r2, r2, HEAP_NUMBER_TYPE);
__ b(ne, &maybe_undefined2);
__ jmp(&unordered);
}
__ bind(&maybe_undefined2);
if (Token::IsOrderedRelationalCompareOp(op())) {
__ CompareRoot(r1, Heap::kUndefinedValueRootIndex);
__ b(eq, &unordered);
}
__ bind(&miss);
GenerateMiss(masm);
}
void CompareICStub::GenerateInternalizedStrings(MacroAssembler* masm) {
DCHECK(state() == CompareICState::INTERNALIZED_STRING);
Label miss;
// Registers containing left and right operands respectively.
Register left = r1;
Register right = r0;
Register tmp1 = r2;
Register tmp2 = r3;
// Check that both operands are heap objects.
__ JumpIfEitherSmi(left, right, &miss);
// Check that both operands are internalized strings.
__ ldr(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
__ ldr(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
__ ldrb(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
__ ldrb(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
__ orr(tmp1, tmp1, Operand(tmp2));
__ tst(tmp1, Operand(kIsNotStringMask | kIsNotInternalizedMask));
__ b(ne, &miss);
// Internalized strings are compared by identity.
__ cmp(left, right);
// Make sure r0 is non-zero. At this point input operands are
// guaranteed to be non-zero.
DCHECK(right.is(r0));
STATIC_ASSERT(EQUAL == 0);
STATIC_ASSERT(kSmiTag == 0);
__ mov(r0, Operand(Smi::FromInt(EQUAL)), LeaveCC, eq);
__ Ret();
__ bind(&miss);
GenerateMiss(masm);
}
void CompareICStub::GenerateUniqueNames(MacroAssembler* masm) {
DCHECK(state() == CompareICState::UNIQUE_NAME);
DCHECK(GetCondition() == eq);
Label miss;
// Registers containing left and right operands respectively.
Register left = r1;
Register right = r0;
Register tmp1 = r2;
Register tmp2 = r3;
// Check that both operands are heap objects.
__ JumpIfEitherSmi(left, right, &miss);
// Check that both operands are unique names. This leaves the instance
// types loaded in tmp1 and tmp2.
__ ldr(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
__ ldr(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
__ ldrb(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
__ ldrb(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
__ JumpIfNotUniqueNameInstanceType(tmp1, &miss);
__ JumpIfNotUniqueNameInstanceType(tmp2, &miss);
// Unique names are compared by identity.
__ cmp(left, right);
// Make sure r0 is non-zero. At this point input operands are
// guaranteed to be non-zero.
DCHECK(right.is(r0));
STATIC_ASSERT(EQUAL == 0);
STATIC_ASSERT(kSmiTag == 0);
__ mov(r0, Operand(Smi::FromInt(EQUAL)), LeaveCC, eq);
__ Ret();
__ bind(&miss);
GenerateMiss(masm);
}
void CompareICStub::GenerateStrings(MacroAssembler* masm) {
DCHECK(state() == CompareICState::STRING);
Label miss;
bool equality = Token::IsEqualityOp(op());
// Registers containing left and right operands respectively.
Register left = r1;
Register right = r0;
Register tmp1 = r2;
Register tmp2 = r3;
Register tmp3 = r4;
Register tmp4 = r5;
// Check that both operands are heap objects.
__ JumpIfEitherSmi(left, right, &miss);
// Check that both operands are strings. This leaves the instance
// types loaded in tmp1 and tmp2.
__ ldr(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
__ ldr(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
__ ldrb(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
__ ldrb(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
STATIC_ASSERT(kNotStringTag != 0);
__ orr(tmp3, tmp1, tmp2);
__ tst(tmp3, Operand(kIsNotStringMask));
__ b(ne, &miss);
// Fast check for identical strings.
__ cmp(left, right);
STATIC_ASSERT(EQUAL == 0);
STATIC_ASSERT(kSmiTag == 0);
__ mov(r0, Operand(Smi::FromInt(EQUAL)), LeaveCC, eq);
__ Ret(eq);
// Handle not identical strings.
// Check that both strings are internalized strings. If they are, we're done
// because we already know they are not identical. We know they are both
// strings.
if (equality) {
DCHECK(GetCondition() == eq);
STATIC_ASSERT(kInternalizedTag == 0);
__ orr(tmp3, tmp1, Operand(tmp2));
__ tst(tmp3, Operand(kIsNotInternalizedMask));
// Make sure r0 is non-zero. At this point input operands are
// guaranteed to be non-zero.
DCHECK(right.is(r0));
__ Ret(eq);
}
// Check that both strings are sequential one-byte.
Label runtime;
__ JumpIfBothInstanceTypesAreNotSequentialOneByte(tmp1, tmp2, tmp3, tmp4,
&runtime);
// Compare flat one-byte strings. Returns when done.
if (equality) {
StringHelper::GenerateFlatOneByteStringEquals(masm, left, right, tmp1, tmp2,
tmp3);
} else {
StringHelper::GenerateCompareFlatOneByteStrings(masm, left, right, tmp1,
tmp2, tmp3, tmp4);
}
// Handle more complex cases in runtime.
__ bind(&runtime);
__ Push(left, right);
if (equality) {
__ TailCallRuntime(Runtime::kStringEquals, 2, 1);
} else {
__ TailCallRuntime(Runtime::kStringCompare, 2, 1);
}
__ bind(&miss);
GenerateMiss(masm);
}
void CompareICStub::GenerateObjects(MacroAssembler* masm) {
DCHECK(state() == CompareICState::OBJECT);
Label miss;
__ and_(r2, r1, Operand(r0));
__ JumpIfSmi(r2, &miss);
__ CompareObjectType(r0, r2, r2, JS_OBJECT_TYPE);
__ b(ne, &miss);
__ CompareObjectType(r1, r2, r2, JS_OBJECT_TYPE);
__ b(ne, &miss);
DCHECK(GetCondition() == eq);
__ sub(r0, r0, Operand(r1));
__ Ret();
__ bind(&miss);
GenerateMiss(masm);
}
void CompareICStub::GenerateKnownObjects(MacroAssembler* masm) {
Label miss;
__ and_(r2, r1, Operand(r0));
__ JumpIfSmi(r2, &miss);
__ ldr(r2, FieldMemOperand(r0, HeapObject::kMapOffset));
__ ldr(r3, FieldMemOperand(r1, HeapObject::kMapOffset));
__ cmp(r2, Operand(known_map_));
__ b(ne, &miss);
__ cmp(r3, Operand(known_map_));
__ b(ne, &miss);
__ sub(r0, r0, Operand(r1));
__ Ret();
__ bind(&miss);
GenerateMiss(masm);
}
void CompareICStub::GenerateMiss(MacroAssembler* masm) {
{
// Call the runtime system in a fresh internal frame.
ExternalReference miss =
ExternalReference(IC_Utility(IC::kCompareIC_Miss), isolate());
FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
__ Push(r1, r0);
__ Push(lr, r1, r0);
__ mov(ip, Operand(Smi::FromInt(op())));
__ push(ip);
__ CallExternalReference(miss, 3);
// Compute the entry point of the rewritten stub.
__ add(r2, r0, Operand(Code::kHeaderSize - kHeapObjectTag));
// Restore registers.
__ pop(lr);
__ Pop(r1, r0);
}
__ Jump(r2);
}
void DirectCEntryStub::Generate(MacroAssembler* masm) {
// Place the return address on the stack, making the call
// GC safe. The RegExp backend also relies on this.
__ str(lr, MemOperand(sp, 0));
__ blx(ip); // Call the C++ function.
__ VFPEnsureFPSCRState(r2);
__ ldr(pc, MemOperand(sp, 0));
}
void DirectCEntryStub::GenerateCall(MacroAssembler* masm,
Register target) {
intptr_t code =
reinterpret_cast<intptr_t>(GetCode().location());
__ Move(ip, target);
__ mov(lr, Operand(code, RelocInfo::CODE_TARGET));
__ blx(lr); // Call the stub.
}
void NameDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm,
Label* miss,
Label* done,
Register receiver,
Register properties,
Handle<Name> name,
Register scratch0) {
DCHECK(name->IsUniqueName());
// If names of slots in range from 1 to kProbes - 1 for the hash value are
// not equal to the name and kProbes-th slot is not used (its name is the
// undefined value), it guarantees the hash table doesn't contain the
// property. It's true even if some slots represent deleted properties
// (their names are the hole value).
for (int i = 0; i < kInlinedProbes; i++) {
// scratch0 points to properties hash.
// Compute the masked index: (hash + i + i * i) & mask.
Register index = scratch0;
// Capacity is smi 2^n.
__ ldr(index, FieldMemOperand(properties, kCapacityOffset));
__ sub(index, index, Operand(1));
__ and_(index, index, Operand(
Smi::FromInt(name->Hash() + NameDictionary::GetProbeOffset(i))));
// Scale the index by multiplying by the entry size.
DCHECK(NameDictionary::kEntrySize == 3);
__ add(index, index, Operand(index, LSL, 1)); // index *= 3.
Register entity_name = scratch0;
// Having undefined at this place means the name is not contained.
DCHECK_EQ(kSmiTagSize, 1);
Register tmp = properties;
__ add(tmp, properties, Operand(index, LSL, 1));
__ ldr(entity_name, FieldMemOperand(tmp, kElementsStartOffset));
DCHECK(!tmp.is(entity_name));
__ LoadRoot(tmp, Heap::kUndefinedValueRootIndex);
__ cmp(entity_name, tmp);
__ b(eq, done);
// Load the hole ready for use below:
__ LoadRoot(tmp, Heap::kTheHoleValueRootIndex);
// Stop if found the property.
__ cmp(entity_name, Operand(Handle<Name>(name)));
__ b(eq, miss);
Label good;
__ cmp(entity_name, tmp);
__ b(eq, &good);
// Check if the entry name is not a unique name.
__ ldr(entity_name, FieldMemOperand(entity_name, HeapObject::kMapOffset));
__ ldrb(entity_name,
FieldMemOperand(entity_name, Map::kInstanceTypeOffset));
__ JumpIfNotUniqueNameInstanceType(entity_name, miss);
__ bind(&good);
// Restore the properties.
__ ldr(properties,
FieldMemOperand(receiver, JSObject::kPropertiesOffset));
}
const int spill_mask =
(lr.bit() | r6.bit() | r5.bit() | r4.bit() | r3.bit() |
r2.bit() | r1.bit() | r0.bit());
__ stm(db_w, sp, spill_mask);
__ ldr(r0, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
__ mov(r1, Operand(Handle<Name>(name)));
NameDictionaryLookupStub stub(masm->isolate(), NEGATIVE_LOOKUP);
__ CallStub(&stub);
__ cmp(r0, Operand::Zero());
__ ldm(ia_w, sp, spill_mask);
__ b(eq, done);
__ b(ne, miss);
}
// Probe the name dictionary in the |elements| register. Jump to the
// |done| label if a property with the given name is found. Jump to
// the |miss| label otherwise.
// If lookup was successful |scratch2| will be equal to elements + 4 * index.
void NameDictionaryLookupStub::GeneratePositiveLookup(MacroAssembler* masm,
Label* miss,
Label* done,
Register elements,
Register name,
Register scratch1,
Register scratch2) {
DCHECK(!elements.is(scratch1));
DCHECK(!elements.is(scratch2));
DCHECK(!name.is(scratch1));
DCHECK(!name.is(scratch2));
__ AssertName(name);
// Compute the capacity mask.
__ ldr(scratch1, FieldMemOperand(elements, kCapacityOffset));
__ SmiUntag(scratch1);
__ sub(scratch1, scratch1, Operand(1));
// Generate an unrolled loop that performs a few probes before
// giving up. Measurements done on Gmail indicate that 2 probes
// cover ~93% of loads from dictionaries.
for (int i = 0; i < kInlinedProbes; i++) {
// Compute the masked index: (hash + i + i * i) & mask.
__ ldr(scratch2, FieldMemOperand(name, Name::kHashFieldOffset));
if (i > 0) {
// Add the probe offset (i + i * i) left shifted to avoid right shifting
// the hash in a separate instruction. The value hash + i + i * i is right
// shifted in the following and instruction.
DCHECK(NameDictionary::GetProbeOffset(i) <
1 << (32 - Name::kHashFieldOffset));
__ add(scratch2, scratch2, Operand(
NameDictionary::GetProbeOffset(i) << Name::kHashShift));
}
__ and_(scratch2, scratch1, Operand(scratch2, LSR, Name::kHashShift));
// Scale the index by multiplying by the element size.
DCHECK(NameDictionary::kEntrySize == 3);
// scratch2 = scratch2 * 3.
__ add(scratch2, scratch2, Operand(scratch2, LSL, 1));
// Check if the key is identical to the name.
__ add(scratch2, elements, Operand(scratch2, LSL, 2));
__ ldr(ip, FieldMemOperand(scratch2, kElementsStartOffset));
__ cmp(name, Operand(ip));
__ b(eq, done);
}
const int spill_mask =
(lr.bit() | r6.bit() | r5.bit() | r4.bit() |
r3.bit() | r2.bit() | r1.bit() | r0.bit()) &
~(scratch1.bit() | scratch2.bit());
__ stm(db_w, sp, spill_mask);
if (name.is(r0)) {
DCHECK(!elements.is(r1));
__ Move(r1, name);
__ Move(r0, elements);
} else {
__ Move(r0, elements);
__ Move(r1, name);
}
NameDictionaryLookupStub stub(masm->isolate(), POSITIVE_LOOKUP);
__ CallStub(&stub);
__ cmp(r0, Operand::Zero());
__ mov(scratch2, Operand(r2));
__ ldm(ia_w, sp, spill_mask);
__ b(ne, done);
__ b(eq, miss);
}
void NameDictionaryLookupStub::Generate(MacroAssembler* masm) {
// This stub overrides SometimesSetsUpAFrame() to return false. That means
// we cannot call anything that could cause a GC from this stub.
// Registers:
// result: NameDictionary to probe
// r1: key
// dictionary: NameDictionary to probe.
// index: will hold an index of entry if lookup is successful.
// might alias with result_.
// Returns:
// result_ is zero if lookup failed, non zero otherwise.
Register result = r0;
Register dictionary = r0;
Register key = r1;
Register index = r2;
Register mask = r3;
Register hash = r4;
Register undefined = r5;
Register entry_key = r6;
Label in_dictionary, maybe_in_dictionary, not_in_dictionary;
__ ldr(mask, FieldMemOperand(dictionary, kCapacityOffset));
__ SmiUntag(mask);
__ sub(mask, mask, Operand(1));
__ ldr(hash, FieldMemOperand(key, Name::kHashFieldOffset));
__ LoadRoot(undefined, Heap::kUndefinedValueRootIndex);
for (int i = kInlinedProbes; i < kTotalProbes; i++) {
// Compute the masked index: (hash + i + i * i) & mask.
// Capacity is smi 2^n.
if (i > 0) {
// Add the probe offset (i + i * i) left shifted to avoid right shifting
// the hash in a separate instruction. The value hash + i + i * i is right
// shifted in the following and instruction.
DCHECK(NameDictionary::GetProbeOffset(i) <
1 << (32 - Name::kHashFieldOffset));
__ add(index, hash, Operand(
NameDictionary::GetProbeOffset(i) << Name::kHashShift));
} else {
__ mov(index, Operand(hash));
}
__ and_(index, mask, Operand(index, LSR, Name::kHashShift));
// Scale the index by multiplying by the entry size.
DCHECK(NameDictionary::kEntrySize == 3);
__ add(index, index, Operand(index, LSL, 1)); // index *= 3.
DCHECK_EQ(kSmiTagSize, 1);
__ add(index, dictionary, Operand(index, LSL, 2));
__ ldr(entry_key, FieldMemOperand(index, kElementsStartOffset));
// Having undefined at this place means the name is not contained.
__ cmp(entry_key, Operand(undefined));
__ b(eq, ¬_in_dictionary);
// Stop if found the property.
__ cmp(entry_key, Operand(key));
__ b(eq, &in_dictionary);
if (i != kTotalProbes - 1 && mode() == NEGATIVE_LOOKUP) {
// Check if the entry name is not a unique name.
__ ldr(entry_key, FieldMemOperand(entry_key, HeapObject::kMapOffset));
__ ldrb(entry_key,
FieldMemOperand(entry_key, Map::kInstanceTypeOffset));
__ JumpIfNotUniqueNameInstanceType(entry_key, &maybe_in_dictionary);
}
}
__ bind(&maybe_in_dictionary);
// If we are doing negative lookup then probing failure should be
// treated as a lookup success. For positive lookup probing failure
// should be treated as lookup failure.
if (mode() == POSITIVE_LOOKUP) {
__ mov(result, Operand::Zero());
__ Ret();
}
__ bind(&in_dictionary);
__ mov(result, Operand(1));
__ Ret();
__ bind(¬_in_dictionary);
__ mov(result, Operand::Zero());
__ Ret();
}
void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(
Isolate* isolate) {
StoreBufferOverflowStub stub1(isolate, kDontSaveFPRegs);
stub1.GetCode();
// Hydrogen code stubs need stub2 at snapshot time.
StoreBufferOverflowStub stub2(isolate, kSaveFPRegs);
stub2.GetCode();
}
// Takes the input in 3 registers: address_ value_ and object_. A pointer to
// the value has just been written into the object, now this stub makes sure
// we keep the GC informed. The word in the object where the value has been
// written is in the address register.
void RecordWriteStub::Generate(MacroAssembler* masm) {
Label skip_to_incremental_noncompacting;
Label skip_to_incremental_compacting;
// The first two instructions are generated with labels so as to get the
// offset fixed up correctly by the bind(Label*) call. We patch it back and
// forth between a compare instructions (a nop in this position) and the
// real branch when we start and stop incremental heap marking.
// See RecordWriteStub::Patch for details.
{
// Block literal pool emission, as the position of these two instructions
// is assumed by the patching code.
Assembler::BlockConstPoolScope block_const_pool(masm);
__ b(&skip_to_incremental_noncompacting);
__ b(&skip_to_incremental_compacting);
}
if (remembered_set_action() == EMIT_REMEMBERED_SET) {
__ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
MacroAssembler::kReturnAtEnd);
}
__ Ret();
__ bind(&skip_to_incremental_noncompacting);
GenerateIncremental(masm, INCREMENTAL);
__ bind(&skip_to_incremental_compacting);
GenerateIncremental(masm, INCREMENTAL_COMPACTION);
// Initial mode of the stub is expected to be STORE_BUFFER_ONLY.
// Will be checked in IncrementalMarking::ActivateGeneratedStub.
DCHECK(Assembler::GetBranchOffset(masm->instr_at(0)) < (1 << 12));
DCHECK(Assembler::GetBranchOffset(masm->instr_at(4)) < (1 << 12));
PatchBranchIntoNop(masm, 0);
PatchBranchIntoNop(masm, Assembler::kInstrSize);
}
void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
regs_.Save(masm);
if (remembered_set_action() == EMIT_REMEMBERED_SET) {
Label dont_need_remembered_set;
__ ldr(regs_.scratch0(), MemOperand(regs_.address(), 0));
__ JumpIfNotInNewSpace(regs_.scratch0(), // Value.
regs_.scratch0(),
&dont_need_remembered_set);
__ CheckPageFlag(regs_.object(),
regs_.scratch0(),
1 << MemoryChunk::SCAN_ON_SCAVENGE,
ne,
&dont_need_remembered_set);
// First notify the incremental marker if necessary, then update the
// remembered set.
CheckNeedsToInformIncrementalMarker(
masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode);
InformIncrementalMarker(masm);
regs_.Restore(masm);
__ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
MacroAssembler::kReturnAtEnd);
__ bind(&dont_need_remembered_set);
}
CheckNeedsToInformIncrementalMarker(
masm, kReturnOnNoNeedToInformIncrementalMarker, mode);
InformIncrementalMarker(masm);
regs_.Restore(masm);
__ Ret();
}
void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) {
regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode());
int argument_count = 3;
__ PrepareCallCFunction(argument_count, regs_.scratch0());
Register address =
r0.is(regs_.address()) ? regs_.scratch0() : regs_.address();
DCHECK(!address.is(regs_.object()));
DCHECK(!address.is(r0));
__ Move(address, regs_.address());
__ Move(r0, regs_.object());
__ Move(r1, address);
__ mov(r2, Operand(ExternalReference::isolate_address(isolate())));
AllowExternalCallThatCantCauseGC scope(masm);
__ CallCFunction(
ExternalReference::incremental_marking_record_write_function(isolate()),
argument_count);
regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode());
}
void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
MacroAssembler* masm,
OnNoNeedToInformIncrementalMarker on_no_need,
Mode mode) {
Label on_black;
Label need_incremental;
Label need_incremental_pop_scratch;
__ and_(regs_.scratch0(), regs_.object(), Operand(~Page::kPageAlignmentMask));
__ ldr(regs_.scratch1(),
MemOperand(regs_.scratch0(),
MemoryChunk::kWriteBarrierCounterOffset));
__ sub(regs_.scratch1(), regs_.scratch1(), Operand(1), SetCC);
__ str(regs_.scratch1(),
MemOperand(regs_.scratch0(),
MemoryChunk::kWriteBarrierCounterOffset));
__ b(mi, &need_incremental);
// Let's look at the color of the object: If it is not black we don't have
// to inform the incremental marker.
__ JumpIfBlack(regs_.object(), regs_.scratch0(), regs_.scratch1(), &on_black);
regs_.Restore(masm);
if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
__ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
MacroAssembler::kReturnAtEnd);
} else {
__ Ret();
}
__ bind(&on_black);
// Get the value from the slot.
__ ldr(regs_.scratch0(), MemOperand(regs_.address(), 0));
if (mode == INCREMENTAL_COMPACTION) {
Label ensure_not_white;
__ CheckPageFlag(regs_.scratch0(), // Contains value.
regs_.scratch1(), // Scratch.
MemoryChunk::kEvacuationCandidateMask,
eq,
&ensure_not_white);
__ CheckPageFlag(regs_.object(),
regs_.scratch1(), // Scratch.
MemoryChunk::kSkipEvacuationSlotsRecordingMask,
eq,
&need_incremental);
__ bind(&ensure_not_white);
}
// We need extra registers for this, so we push the object and the address
// register temporarily.
__ Push(regs_.object(), regs_.address());
__ EnsureNotWhite(regs_.scratch0(), // The value.
regs_.scratch1(), // Scratch.
regs_.object(), // Scratch.
regs_.address(), // Scratch.
&need_incremental_pop_scratch);
__ Pop(regs_.object(), regs_.address());
regs_.Restore(masm);
if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
__ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
MacroAssembler::kReturnAtEnd);
} else {
__ Ret();
}
__ bind(&need_incremental_pop_scratch);
__ Pop(regs_.object(), regs_.address());
__ bind(&need_incremental);
// Fall through when we need to inform the incremental marker.
}
void StoreArrayLiteralElementStub::Generate(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r0 : element value to store
// -- r3 : element index as smi
// -- sp[0] : array literal index in function as smi
// -- sp[4] : array literal
// clobbers r1, r2, r4
// -----------------------------------
Label element_done;
Label double_elements;
Label smi_element;
Label slow_elements;
Label fast_elements;
// Get array literal index, array literal and its map.
__ ldr(r4, MemOperand(sp, 0 * kPointerSize));
__ ldr(r1, MemOperand(sp, 1 * kPointerSize));
__ ldr(r2, FieldMemOperand(r1, JSObject::kMapOffset));
__ CheckFastElements(r2, r5, &double_elements);
// FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS
__ JumpIfSmi(r0, &smi_element);
__ CheckFastSmiElements(r2, r5, &fast_elements);
// Store into the array literal requires a elements transition. Call into
// the runtime.
__ bind(&slow_elements);
// call.
__ Push(r1, r3, r0);
__ ldr(r5, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
__ ldr(r5, FieldMemOperand(r5, JSFunction::kLiteralsOffset));
__ Push(r5, r4);
__ TailCallRuntime(Runtime::kStoreArrayLiteralElement, 5, 1);
// Array literal has ElementsKind of FAST_*_ELEMENTS and value is an object.
__ bind(&fast_elements);
__ ldr(r5, FieldMemOperand(r1, JSObject::kElementsOffset));
__ add(r6, r5, Operand::PointerOffsetFromSmiKey(r3));
__ add(r6, r6, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
__ str(r0, MemOperand(r6, 0));
// Update the write barrier for the array store.
__ RecordWrite(r5, r6, r0, kLRHasNotBeenSaved, kDontSaveFPRegs,
EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
__ Ret();
// Array literal has ElementsKind of FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS,
// and value is Smi.
__ bind(&smi_element);
__ ldr(r5, FieldMemOperand(r1, JSObject::kElementsOffset));
__ add(r6, r5, Operand::PointerOffsetFromSmiKey(r3));
__ str(r0, FieldMemOperand(r6, FixedArray::kHeaderSize));
__ Ret();
// Array literal has ElementsKind of FAST_DOUBLE_ELEMENTS.
__ bind(&double_elements);
__ ldr(r5, FieldMemOperand(r1, JSObject::kElementsOffset));
__ StoreNumberToDoubleElements(r0, r3, r5, r6, d0, &slow_elements);
__ Ret();
}
void StubFailureTrampolineStub::Generate(MacroAssembler* masm) {
CEntryStub ces(isolate(), 1, kSaveFPRegs);
__ Call(ces.GetCode(), RelocInfo::CODE_TARGET);
int parameter_count_offset =
StubFailureTrampolineFrame::kCallerStackParameterCountFrameOffset;
__ ldr(r1, MemOperand(fp, parameter_count_offset));
if (function_mode() == JS_FUNCTION_STUB_MODE) {
__ add(r1, r1, Operand(1));
}
masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE);
__ mov(r1, Operand(r1, LSL, kPointerSizeLog2));
__ add(sp, sp, r1);
__ Ret();
}
void LoadICTrampolineStub::Generate(MacroAssembler* masm) {
EmitLoadTypeFeedbackVector(masm, VectorLoadICDescriptor::VectorRegister());
VectorLoadStub stub(isolate(), state());
__ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
}
void KeyedLoadICTrampolineStub::Generate(MacroAssembler* masm) {
EmitLoadTypeFeedbackVector(masm, VectorLoadICDescriptor::VectorRegister());
VectorKeyedLoadStub stub(isolate());
__ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
}
void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) {
if (masm->isolate()->function_entry_hook() != NULL) {
ProfileEntryHookStub stub(masm->isolate());
int code_size = masm->CallStubSize(&stub) + 2 * Assembler::kInstrSize;
PredictableCodeSizeScope predictable(masm, code_size);
__ push(lr);
__ CallStub(&stub);
__ pop(lr);
}
}
void ProfileEntryHookStub::Generate(MacroAssembler* masm) {
// The entry hook is a "push lr" instruction, followed by a call.
const int32_t kReturnAddressDistanceFromFunctionStart =
3 * Assembler::kInstrSize;
// This should contain all kCallerSaved registers.
const RegList kSavedRegs =
1 << 0 | // r0
1 << 1 | // r1
1 << 2 | // r2
1 << 3 | // r3
1 << 5 | // r5
1 << 9; // r9
// We also save lr, so the count here is one higher than the mask indicates.
const int32_t kNumSavedRegs = 7;
DCHECK((kCallerSaved & kSavedRegs) == kCallerSaved);
// Save all caller-save registers as this may be called from anywhere.
__ stm(db_w, sp, kSavedRegs | lr.bit());
// Compute the function's address for the first argument.
__ sub(r0, lr, Operand(kReturnAddressDistanceFromFunctionStart));
// The caller's return address is above the saved temporaries.
// Grab that for the second argument to the hook.
__ add(r1, sp, Operand(kNumSavedRegs * kPointerSize));
// Align the stack if necessary.
int frame_alignment = masm->ActivationFrameAlignment();
if (frame_alignment > kPointerSize) {
__ mov(r5, sp);
DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
__ and_(sp, sp, Operand(-frame_alignment));
}
#if V8_HOST_ARCH_ARM
int32_t entry_hook =
reinterpret_cast<int32_t>(isolate()->function_entry_hook());
__ mov(ip, Operand(entry_hook));
#else
// Under the simulator we need to indirect the entry hook through a
// trampoline function at a known address.
// It additionally takes an isolate as a third parameter
__ mov(r2, Operand(ExternalReference::isolate_address(isolate())));
ApiFunction dispatcher(FUNCTION_ADDR(EntryHookTrampoline));
__ mov(ip, Operand(ExternalReference(&dispatcher,
ExternalReference::BUILTIN_CALL,
isolate())));
#endif
__ Call(ip);
// Restore the stack pointer if needed.
if (frame_alignment > kPointerSize) {
__ mov(sp, r5);
}
// Also pop pc to get Ret(0).
__ ldm(ia_w, sp, kSavedRegs | pc.bit());
}
template<class T>
static void CreateArrayDispatch(MacroAssembler* masm,
AllocationSiteOverrideMode mode) {
if (mode == DISABLE_ALLOCATION_SITES) {
T stub(masm->isolate(), GetInitialFastElementsKind(), mode);
__ TailCallStub(&stub);
} else if (mode == DONT_OVERRIDE) {
int last_index = GetSequenceIndexFromFastElementsKind(
TERMINAL_FAST_ELEMENTS_KIND);
for (int i = 0; i <= last_index; ++i) {
ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
__ cmp(r3, Operand(kind));
T stub(masm->isolate(), kind);
__ TailCallStub(&stub, eq);
}
// If we reached this point there is a problem.
__ Abort(kUnexpectedElementsKindInArrayConstructor);
} else {
UNREACHABLE();
}
}
static void CreateArrayDispatchOneArgument(MacroAssembler* masm,
AllocationSiteOverrideMode mode) {
// r2 - allocation site (if mode != DISABLE_ALLOCATION_SITES)
// r3 - kind (if mode != DISABLE_ALLOCATION_SITES)
// r0 - number of arguments
// r1 - constructor?
// sp[0] - last argument
Label normal_sequence;
if (mode == DONT_OVERRIDE) {
DCHECK(FAST_SMI_ELEMENTS == 0);
DCHECK(FAST_HOLEY_SMI_ELEMENTS == 1);
DCHECK(FAST_ELEMENTS == 2);
DCHECK(FAST_HOLEY_ELEMENTS == 3);
DCHECK(FAST_DOUBLE_ELEMENTS == 4);
DCHECK(FAST_HOLEY_DOUBLE_ELEMENTS == 5);
// is the low bit set? If so, we are holey and that is good.
__ tst(r3, Operand(1));
__ b(ne, &normal_sequence);
}
// look at the first argument
__ ldr(r5, MemOperand(sp, 0));
__ cmp(r5, Operand::Zero());
__ b(eq, &normal_sequence);
if (mode == DISABLE_ALLOCATION_SITES) {
ElementsKind initial = GetInitialFastElementsKind();
ElementsKind holey_initial = GetHoleyElementsKind(initial);
ArraySingleArgumentConstructorStub stub_holey(masm->isolate(),
holey_initial,
DISABLE_ALLOCATION_SITES);
__ TailCallStub(&stub_holey);
__ bind(&normal_sequence);
ArraySingleArgumentConstructorStub stub(masm->isolate(),
initial,
DISABLE_ALLOCATION_SITES);
__ TailCallStub(&stub);
} else if (mode == DONT_OVERRIDE) {
// We are going to create a holey array, but our kind is non-holey.
// Fix kind and retry (only if we have an allocation site in the slot).
__ add(r3, r3, Operand(1));
if (FLAG_debug_code) {
__ ldr(r5, FieldMemOperand(r2, 0));
__ CompareRoot(r5, Heap::kAllocationSiteMapRootIndex);
__ Assert(eq, kExpectedAllocationSite);
}
// Save the resulting elements kind in type info. We can't just store r3
// in the AllocationSite::transition_info field because elements kind is
// restricted to a portion of the field...upper bits need to be left alone.
STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
__ ldr(r4, FieldMemOperand(r2, AllocationSite::kTransitionInfoOffset));
__ add(r4, r4, Operand(Smi::FromInt(kFastElementsKindPackedToHoley)));
__ str(r4, FieldMemOperand(r2, AllocationSite::kTransitionInfoOffset));
__ bind(&normal_sequence);
int last_index = GetSequenceIndexFromFastElementsKind(
TERMINAL_FAST_ELEMENTS_KIND);
for (int i = 0; i <= last_index; ++i) {
ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
__ cmp(r3, Operand(kind));
ArraySingleArgumentConstructorStub stub(masm->isolate(), kind);
__ TailCallStub(&stub, eq);
}
// If we reached this point there is a problem.
__ Abort(kUnexpectedElementsKindInArrayConstructor);
} else {
UNREACHABLE();
}
}
template<class T>
static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) {
int to_index = GetSequenceIndexFromFastElementsKind(
TERMINAL_FAST_ELEMENTS_KIND);
for (int i = 0; i <= to_index; ++i) {
ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
T stub(isolate, kind);
stub.GetCode();
if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE) {
T stub1(isolate, kind, DISABLE_ALLOCATION_SITES);
stub1.GetCode();
}
}
}
void ArrayConstructorStubBase::GenerateStubsAheadOfTime(Isolate* isolate) {
ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>(
isolate);
ArrayConstructorStubAheadOfTimeHelper<ArraySingleArgumentConstructorStub>(
isolate);
ArrayConstructorStubAheadOfTimeHelper<ArrayNArgumentsConstructorStub>(
isolate);
}
void InternalArrayConstructorStubBase::GenerateStubsAheadOfTime(
Isolate* isolate) {
ElementsKind kinds[2] = { FAST_ELEMENTS, FAST_HOLEY_ELEMENTS };
for (int i = 0; i < 2; i++) {
// For internal arrays we only need a few things
InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]);
stubh1.GetCode();
InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]);
stubh2.GetCode();
InternalArrayNArgumentsConstructorStub stubh3(isolate, kinds[i]);
stubh3.GetCode();
}
}
void ArrayConstructorStub::GenerateDispatchToArrayStub(
MacroAssembler* masm,
AllocationSiteOverrideMode mode) {
if (argument_count() == ANY) {
Label not_zero_case, not_one_case;
__ tst(r0, r0);
__ b(ne, ¬_zero_case);
CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
__ bind(¬_zero_case);
__ cmp(r0, Operand(1));
__ b(gt, ¬_one_case);
CreateArrayDispatchOneArgument(masm, mode);
__ bind(¬_one_case);
CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
} else if (argument_count() == NONE) {
CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
} else if (argument_count() == ONE) {
CreateArrayDispatchOneArgument(masm, mode);
} else if (argument_count() == MORE_THAN_ONE) {
CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
} else {
UNREACHABLE();
}
}
void ArrayConstructorStub::Generate(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r0 : argc (only if argument_count() == ANY)
// -- r1 : constructor
// -- r2 : AllocationSite or undefined
// -- sp[0] : return address
// -- sp[4] : last argument
// -----------------------------------
if (FLAG_debug_code) {
// The array construct code is only set for the global and natives
// builtin Array functions which always have maps.
// Initial map for the builtin Array function should be a map.
__ ldr(r4, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset));
// Will both indicate a NULL and a Smi.
__ tst(r4, Operand(kSmiTagMask));
__ Assert(ne, kUnexpectedInitialMapForArrayFunction);
__ CompareObjectType(r4, r4, r5, MAP_TYPE);
__ Assert(eq, kUnexpectedInitialMapForArrayFunction);
// We should either have undefined in r2 or a valid AllocationSite
__ AssertUndefinedOrAllocationSite(r2, r4);
}
Label no_info;
// Get the elements kind and case on that.
__ CompareRoot(r2, Heap::kUndefinedValueRootIndex);
__ b(eq, &no_info);
__ ldr(r3, FieldMemOperand(r2, AllocationSite::kTransitionInfoOffset));
__ SmiUntag(r3);
STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
__ and_(r3, r3, Operand(AllocationSite::ElementsKindBits::kMask));
GenerateDispatchToArrayStub(masm, DONT_OVERRIDE);
__ bind(&no_info);
GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES);
}
void InternalArrayConstructorStub::GenerateCase(
MacroAssembler* masm, ElementsKind kind) {
__ cmp(r0, Operand(1));
InternalArrayNoArgumentConstructorStub stub0(isolate(), kind);
__ TailCallStub(&stub0, lo);
InternalArrayNArgumentsConstructorStub stubN(isolate(), kind);
__ TailCallStub(&stubN, hi);
if (IsFastPackedElementsKind(kind)) {
// We might need to create a holey array
// look at the first argument
__ ldr(r3, MemOperand(sp, 0));
__ cmp(r3, Operand::Zero());
InternalArraySingleArgumentConstructorStub
stub1_holey(isolate(), GetHoleyElementsKind(kind));
__ TailCallStub(&stub1_holey, ne);
}
InternalArraySingleArgumentConstructorStub stub1(isolate(), kind);
__ TailCallStub(&stub1);
}
void InternalArrayConstructorStub::Generate(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r0 : argc
// -- r1 : constructor
// -- sp[0] : return address
// -- sp[4] : last argument
// -----------------------------------
if (FLAG_debug_code) {
// The array construct code is only set for the global and natives
// builtin Array functions which always have maps.
// Initial map for the builtin Array function should be a map.
__ ldr(r3, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset));
// Will both indicate a NULL and a Smi.
__ tst(r3, Operand(kSmiTagMask));
__ Assert(ne, kUnexpectedInitialMapForArrayFunction);
__ CompareObjectType(r3, r3, r4, MAP_TYPE);
__ Assert(eq, kUnexpectedInitialMapForArrayFunction);
}
// Figure out the right elements kind
__ ldr(r3, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset));
// Load the map's "bit field 2" into |result|. We only need the first byte,
// but the following bit field extraction takes care of that anyway.
__ ldr(r3, FieldMemOperand(r3, Map::kBitField2Offset));
// Retrieve elements_kind from bit field 2.
__ DecodeField<Map::ElementsKindBits>(r3);
if (FLAG_debug_code) {
Label done;
__ cmp(r3, Operand(FAST_ELEMENTS));
__ b(eq, &done);
__ cmp(r3, Operand(FAST_HOLEY_ELEMENTS));
__ Assert(eq,
kInvalidElementsKindForInternalArrayOrInternalPackedArray);
__ bind(&done);
}
Label fast_elements_case;
__ cmp(r3, Operand(FAST_ELEMENTS));
__ b(eq, &fast_elements_case);
GenerateCase(masm, FAST_HOLEY_ELEMENTS);
__ bind(&fast_elements_case);
GenerateCase(masm, FAST_ELEMENTS);
}
void CallApiFunctionStub::Generate(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r0 : callee
// -- r4 : call_data
// -- r2 : holder
// -- r1 : api_function_address
// -- cp : context
// --
// -- sp[0] : last argument
// -- ...
// -- sp[(argc - 1)* 4] : first argument
// -- sp[argc * 4] : receiver
// -----------------------------------
Register callee = r0;
Register call_data = r4;
Register holder = r2;
Register api_function_address = r1;
Register context = cp;
int argc = this->argc();
bool is_store = this->is_store();
bool call_data_undefined = this->call_data_undefined();
typedef FunctionCallbackArguments FCA;
STATIC_ASSERT(FCA::kContextSaveIndex == 6);
STATIC_ASSERT(FCA::kCalleeIndex == 5);
STATIC_ASSERT(FCA::kDataIndex == 4);
STATIC_ASSERT(FCA::kReturnValueOffset == 3);
STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
STATIC_ASSERT(FCA::kIsolateIndex == 1);
STATIC_ASSERT(FCA::kHolderIndex == 0);
STATIC_ASSERT(FCA::kArgsLength == 7);
// context save
__ push(context);
// load context from callee
__ ldr(context, FieldMemOperand(callee, JSFunction::kContextOffset));
// callee
__ push(callee);
// call data
__ push(call_data);
Register scratch = call_data;
if (!call_data_undefined) {
__ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
}
// return value
__ push(scratch);
// return value default
__ push(scratch);
// isolate
__ mov(scratch,
Operand(ExternalReference::isolate_address(isolate())));
__ push(scratch);
// holder
__ push(holder);
// Prepare arguments.
__ mov(scratch, sp);
// Allocate the v8::Arguments structure in the arguments' space since
// it's not controlled by GC.
const int kApiStackSpace = 4;
FrameScope frame_scope(masm, StackFrame::MANUAL);
__ EnterExitFrame(false, kApiStackSpace);
DCHECK(!api_function_address.is(r0) && !scratch.is(r0));
// r0 = FunctionCallbackInfo&
// Arguments is after the return address.
__ add(r0, sp, Operand(1 * kPointerSize));
// FunctionCallbackInfo::implicit_args_
__ str(scratch, MemOperand(r0, 0 * kPointerSize));
// FunctionCallbackInfo::values_
__ add(ip, scratch, Operand((FCA::kArgsLength - 1 + argc) * kPointerSize));
__ str(ip, MemOperand(r0, 1 * kPointerSize));
// FunctionCallbackInfo::length_ = argc
__ mov(ip, Operand(argc));
__ str(ip, MemOperand(r0, 2 * kPointerSize));
// FunctionCallbackInfo::is_construct_call = 0
__ mov(ip, Operand::Zero());
__ str(ip, MemOperand(r0, 3 * kPointerSize));
const int kStackUnwindSpace = argc + FCA::kArgsLength + 1;
ExternalReference thunk_ref =
ExternalReference::invoke_function_callback(isolate());
AllowExternalCallThatCantCauseGC scope(masm);
MemOperand context_restore_operand(
fp, (2 + FCA::kContextSaveIndex) * kPointerSize);
// Stores return the first js argument
int return_value_offset = 0;
if (is_store) {
return_value_offset = 2 + FCA::kArgsLength;
} else {
return_value_offset = 2 + FCA::kReturnValueOffset;
}
MemOperand return_value_operand(fp, return_value_offset * kPointerSize);
__ CallApiFunctionAndReturn(api_function_address,
thunk_ref,
kStackUnwindSpace,
return_value_operand,
&context_restore_operand);
}
void CallApiGetterStub::Generate(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- sp[0] : name
// -- sp[4 - kArgsLength*4] : PropertyCallbackArguments object
// -- ...
// -- r2 : api_function_address
// -----------------------------------
Register api_function_address = ApiGetterDescriptor::function_address();
DCHECK(api_function_address.is(r2));
__ mov(r0, sp); // r0 = Handle<Name>
__ add(r1, r0, Operand(1 * kPointerSize)); // r1 = PCA
const int kApiStackSpace = 1;
FrameScope frame_scope(masm, StackFrame::MANUAL);
__ EnterExitFrame(false, kApiStackSpace);
// Create PropertyAccessorInfo instance on the stack above the exit frame with
// r1 (internal::Object** args_) as the data.
__ str(r1, MemOperand(sp, 1 * kPointerSize));
__ add(r1, sp, Operand(1 * kPointerSize)); // r1 = AccessorInfo&
const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1;
ExternalReference thunk_ref =
ExternalReference::invoke_accessor_getter_callback(isolate());
__ CallApiFunctionAndReturn(api_function_address,
thunk_ref,
kStackUnwindSpace,
MemOperand(fp, 6 * kPointerSize),
NULL);
}
#undef __
} } // namespace v8::internal
#endif // V8_TARGET_ARCH_ARM