// Copyright (c) 1994-2006 Sun Microsystems Inc.
// All Rights Reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistribution in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the
// distribution.
//
// - Neither the name of Sun Microsystems or the names of contributors may
// be used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
// COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
// OF THE POSSIBILITY OF SUCH DAMAGE.
// The original source code covered by the above license above has been
// modified significantly by Google Inc.
// Copyright 2012 the V8 project authors. All rights reserved.
#include "src/v8.h"
#if V8_TARGET_ARCH_ARM
#include "src/arm/assembler-arm-inl.h"
#include "src/base/bits.h"
#include "src/base/cpu.h"
#include "src/macro-assembler.h"
#include "src/serialize.h"
namespace v8 {
namespace internal {
// Get the CPU features enabled by the build. For cross compilation the
// preprocessor symbols CAN_USE_ARMV7_INSTRUCTIONS and CAN_USE_VFP3_INSTRUCTIONS
// can be defined to enable ARMv7 and VFPv3 instructions when building the
// snapshot.
static unsigned CpuFeaturesImpliedByCompiler() {
unsigned answer = 0;
#ifdef CAN_USE_ARMV7_INSTRUCTIONS
if (FLAG_enable_armv7) answer |= 1u << ARMv7;
#endif // CAN_USE_ARMV7_INSTRUCTIONS
#ifdef CAN_USE_VFP3_INSTRUCTIONS
if (FLAG_enable_vfp3) answer |= 1u << VFP3 | 1u << ARMv7;
#endif // CAN_USE_VFP3_INSTRUCTIONS
#ifdef CAN_USE_VFP32DREGS
if (FLAG_enable_32dregs) answer |= 1u << VFP32DREGS;
#endif // CAN_USE_VFP32DREGS
#ifdef CAN_USE_NEON
if (FLAG_enable_neon) answer |= 1u << NEON;
#endif // CAN_USE_VFP32DREGS
if ((answer & (1u << ARMv7)) && FLAG_enable_unaligned_accesses) {
answer |= 1u << UNALIGNED_ACCESSES;
}
return answer;
}
void CpuFeatures::ProbeImpl(bool cross_compile) {
supported_ |= CpuFeaturesImpliedByCompiler();
cache_line_size_ = 64;
// Only use statically determined features for cross compile (snapshot).
if (cross_compile) return;
#ifndef __arm__
// For the simulator build, use whatever the flags specify.
if (FLAG_enable_armv7) {
supported_ |= 1u << ARMv7;
if (FLAG_enable_vfp3) supported_ |= 1u << VFP3;
if (FLAG_enable_neon) supported_ |= 1u << NEON | 1u << VFP32DREGS;
if (FLAG_enable_sudiv) supported_ |= 1u << SUDIV;
if (FLAG_enable_movw_movt) supported_ |= 1u << MOVW_MOVT_IMMEDIATE_LOADS;
if (FLAG_enable_32dregs) supported_ |= 1u << VFP32DREGS;
}
if (FLAG_enable_mls) supported_ |= 1u << MLS;
if (FLAG_enable_unaligned_accesses) supported_ |= 1u << UNALIGNED_ACCESSES;
#else // __arm__
// Probe for additional features at runtime.
base::CPU cpu;
if (FLAG_enable_vfp3 && cpu.has_vfp3()) {
// This implementation also sets the VFP flags if runtime
// detection of VFP returns true. VFPv3 implies ARMv7, see ARM DDI
// 0406B, page A1-6.
supported_ |= 1u << VFP3 | 1u << ARMv7;
}
if (FLAG_enable_neon && cpu.has_neon()) supported_ |= 1u << NEON;
if (FLAG_enable_sudiv && cpu.has_idiva()) supported_ |= 1u << SUDIV;
if (FLAG_enable_mls && cpu.has_thumb2()) supported_ |= 1u << MLS;
if (cpu.architecture() >= 7) {
if (FLAG_enable_armv7) supported_ |= 1u << ARMv7;
if (FLAG_enable_unaligned_accesses) supported_ |= 1u << UNALIGNED_ACCESSES;
// Use movw/movt for QUALCOMM ARMv7 cores.
if (FLAG_enable_movw_movt && cpu.implementer() == base::CPU::QUALCOMM) {
supported_ |= 1u << MOVW_MOVT_IMMEDIATE_LOADS;
}
}
// ARM Cortex-A9 and Cortex-A5 have 32 byte cachelines.
if (cpu.implementer() == base::CPU::ARM &&
(cpu.part() == base::CPU::ARM_CORTEX_A5 ||
cpu.part() == base::CPU::ARM_CORTEX_A9)) {
cache_line_size_ = 32;
}
if (FLAG_enable_32dregs && cpu.has_vfp3_d32()) supported_ |= 1u << VFP32DREGS;
#endif
DCHECK(!IsSupported(VFP3) || IsSupported(ARMv7));
}
void CpuFeatures::PrintTarget() {
const char* arm_arch = NULL;
const char* arm_target_type = "";
const char* arm_no_probe = "";
const char* arm_fpu = "";
const char* arm_thumb = "";
const char* arm_float_abi = NULL;
#if !defined __arm__
arm_target_type = " simulator";
#endif
#if defined ARM_TEST_NO_FEATURE_PROBE
arm_no_probe = " noprobe";
#endif
#if defined CAN_USE_ARMV7_INSTRUCTIONS
arm_arch = "arm v7";
#else
arm_arch = "arm v6";
#endif
#if defined CAN_USE_NEON
arm_fpu = " neon";
#elif defined CAN_USE_VFP3_INSTRUCTIONS
# if defined CAN_USE_VFP32DREGS
arm_fpu = " vfp3";
# else
arm_fpu = " vfp3-d16";
# endif
#else
arm_fpu = " vfp2";
#endif
#ifdef __arm__
arm_float_abi = base::OS::ArmUsingHardFloat() ? "hard" : "softfp";
#elif USE_EABI_HARDFLOAT
arm_float_abi = "hard";
#else
arm_float_abi = "softfp";
#endif
#if defined __arm__ && (defined __thumb__) || (defined __thumb2__)
arm_thumb = " thumb";
#endif
printf("target%s%s %s%s%s %s\n",
arm_target_type, arm_no_probe, arm_arch, arm_fpu, arm_thumb,
arm_float_abi);
}
void CpuFeatures::PrintFeatures() {
printf(
"ARMv7=%d VFP3=%d VFP32DREGS=%d NEON=%d SUDIV=%d UNALIGNED_ACCESSES=%d "
"MOVW_MOVT_IMMEDIATE_LOADS=%d",
CpuFeatures::IsSupported(ARMv7),
CpuFeatures::IsSupported(VFP3),
CpuFeatures::IsSupported(VFP32DREGS),
CpuFeatures::IsSupported(NEON),
CpuFeatures::IsSupported(SUDIV),
CpuFeatures::IsSupported(UNALIGNED_ACCESSES),
CpuFeatures::IsSupported(MOVW_MOVT_IMMEDIATE_LOADS));
#ifdef __arm__
bool eabi_hardfloat = base::OS::ArmUsingHardFloat();
#elif USE_EABI_HARDFLOAT
bool eabi_hardfloat = true;
#else
bool eabi_hardfloat = false;
#endif
printf(" USE_EABI_HARDFLOAT=%d\n", eabi_hardfloat);
}
// -----------------------------------------------------------------------------
// Implementation of DwVfpRegister
const char* DwVfpRegister::AllocationIndexToString(int index) {
DCHECK(index >= 0 && index < NumAllocatableRegisters());
DCHECK(kScratchDoubleReg.code() - kDoubleRegZero.code() ==
kNumReservedRegisters - 1);
if (index >= kDoubleRegZero.code()) index += kNumReservedRegisters;
return VFPRegisters::Name(index, true);
}
// -----------------------------------------------------------------------------
// Implementation of RelocInfo
const int RelocInfo::kApplyMask = 0;
bool RelocInfo::IsCodedSpecially() {
// The deserializer needs to know whether a pointer is specially coded. Being
// specially coded on ARM means that it is a movw/movt instruction, or is an
// out of line constant pool entry. These only occur if
// FLAG_enable_ool_constant_pool is true.
return FLAG_enable_ool_constant_pool;
}
bool RelocInfo::IsInConstantPool() {
return Assembler::is_constant_pool_load(pc_);
}
void RelocInfo::PatchCode(byte* instructions, int instruction_count) {
// Patch the code at the current address with the supplied instructions.
Instr* pc = reinterpret_cast<Instr*>(pc_);
Instr* instr = reinterpret_cast<Instr*>(instructions);
for (int i = 0; i < instruction_count; i++) {
*(pc + i) = *(instr + i);
}
// Indicate that code has changed.
CpuFeatures::FlushICache(pc_, instruction_count * Assembler::kInstrSize);
}
// Patch the code at the current PC with a call to the target address.
// Additional guard instructions can be added if required.
void RelocInfo::PatchCodeWithCall(Address target, int guard_bytes) {
// Patch the code at the current address with a call to the target.
UNIMPLEMENTED();
}
// -----------------------------------------------------------------------------
// Implementation of Operand and MemOperand
// See assembler-arm-inl.h for inlined constructors
Operand::Operand(Handle<Object> handle) {
AllowDeferredHandleDereference using_raw_address;
rm_ = no_reg;
// Verify all Objects referred by code are NOT in new space.
Object* obj = *handle;
if (obj->IsHeapObject()) {
DCHECK(!HeapObject::cast(obj)->GetHeap()->InNewSpace(obj));
imm32_ = reinterpret_cast<intptr_t>(handle.location());
rmode_ = RelocInfo::EMBEDDED_OBJECT;
} else {
// no relocation needed
imm32_ = reinterpret_cast<intptr_t>(obj);
rmode_ = RelocInfo::NONE32;
}
}
Operand::Operand(Register rm, ShiftOp shift_op, int shift_imm) {
DCHECK(is_uint5(shift_imm));
rm_ = rm;
rs_ = no_reg;
shift_op_ = shift_op;
shift_imm_ = shift_imm & 31;
if ((shift_op == ROR) && (shift_imm == 0)) {
// ROR #0 is functionally equivalent to LSL #0 and this allow us to encode
// RRX as ROR #0 (See below).
shift_op = LSL;
} else if (shift_op == RRX) {
// encoded as ROR with shift_imm == 0
DCHECK(shift_imm == 0);
shift_op_ = ROR;
shift_imm_ = 0;
}
}
Operand::Operand(Register rm, ShiftOp shift_op, Register rs) {
DCHECK(shift_op != RRX);
rm_ = rm;
rs_ = no_reg;
shift_op_ = shift_op;
rs_ = rs;
}
MemOperand::MemOperand(Register rn, int32_t offset, AddrMode am) {
rn_ = rn;
rm_ = no_reg;
offset_ = offset;
am_ = am;
}
MemOperand::MemOperand(Register rn, Register rm, AddrMode am) {
rn_ = rn;
rm_ = rm;
shift_op_ = LSL;
shift_imm_ = 0;
am_ = am;
}
MemOperand::MemOperand(Register rn, Register rm,
ShiftOp shift_op, int shift_imm, AddrMode am) {
DCHECK(is_uint5(shift_imm));
rn_ = rn;
rm_ = rm;
shift_op_ = shift_op;
shift_imm_ = shift_imm & 31;
am_ = am;
}
NeonMemOperand::NeonMemOperand(Register rn, AddrMode am, int align) {
DCHECK((am == Offset) || (am == PostIndex));
rn_ = rn;
rm_ = (am == Offset) ? pc : sp;
SetAlignment(align);
}
NeonMemOperand::NeonMemOperand(Register rn, Register rm, int align) {
rn_ = rn;
rm_ = rm;
SetAlignment(align);
}
void NeonMemOperand::SetAlignment(int align) {
switch (align) {
case 0:
align_ = 0;
break;
case 64:
align_ = 1;
break;
case 128:
align_ = 2;
break;
case 256:
align_ = 3;
break;
default:
UNREACHABLE();
align_ = 0;
break;
}
}
NeonListOperand::NeonListOperand(DoubleRegister base, int registers_count) {
base_ = base;
switch (registers_count) {
case 1:
type_ = nlt_1;
break;
case 2:
type_ = nlt_2;
break;
case 3:
type_ = nlt_3;
break;
case 4:
type_ = nlt_4;
break;
default:
UNREACHABLE();
type_ = nlt_1;
break;
}
}
// -----------------------------------------------------------------------------
// Specific instructions, constants, and masks.
// str(r, MemOperand(sp, 4, NegPreIndex), al) instruction (aka push(r))
// register r is not encoded.
const Instr kPushRegPattern =
al | B26 | 4 | NegPreIndex | kRegister_sp_Code * B16;
// ldr(r, MemOperand(sp, 4, PostIndex), al) instruction (aka pop(r))
// register r is not encoded.
const Instr kPopRegPattern =
al | B26 | L | 4 | PostIndex | kRegister_sp_Code * B16;
// ldr rd, [pc, #offset]
const Instr kLdrPCImmedMask = 15 * B24 | 7 * B20 | 15 * B16;
const Instr kLdrPCImmedPattern = 5 * B24 | L | kRegister_pc_Code * B16;
// ldr rd, [pp, #offset]
const Instr kLdrPpImmedMask = 15 * B24 | 7 * B20 | 15 * B16;
const Instr kLdrPpImmedPattern = 5 * B24 | L | kRegister_r8_Code * B16;
// ldr rd, [pp, rn]
const Instr kLdrPpRegMask = 15 * B24 | 7 * B20 | 15 * B16;
const Instr kLdrPpRegPattern = 7 * B24 | L | kRegister_r8_Code * B16;
// vldr dd, [pc, #offset]
const Instr kVldrDPCMask = 15 * B24 | 3 * B20 | 15 * B16 | 15 * B8;
const Instr kVldrDPCPattern = 13 * B24 | L | kRegister_pc_Code * B16 | 11 * B8;
// vldr dd, [pp, #offset]
const Instr kVldrDPpMask = 15 * B24 | 3 * B20 | 15 * B16 | 15 * B8;
const Instr kVldrDPpPattern = 13 * B24 | L | kRegister_r8_Code * B16 | 11 * B8;
// blxcc rm
const Instr kBlxRegMask =
15 * B24 | 15 * B20 | 15 * B16 | 15 * B12 | 15 * B8 | 15 * B4;
const Instr kBlxRegPattern =
B24 | B21 | 15 * B16 | 15 * B12 | 15 * B8 | BLX;
const Instr kBlxIp = al | kBlxRegPattern | ip.code();
const Instr kMovMvnMask = 0x6d * B21 | 0xf * B16;
const Instr kMovMvnPattern = 0xd * B21;
const Instr kMovMvnFlip = B22;
const Instr kMovLeaveCCMask = 0xdff * B16;
const Instr kMovLeaveCCPattern = 0x1a0 * B16;
const Instr kMovwPattern = 0x30 * B20;
const Instr kMovtPattern = 0x34 * B20;
const Instr kMovwLeaveCCFlip = 0x5 * B21;
const Instr kMovImmedMask = 0x7f * B21;
const Instr kMovImmedPattern = 0x1d * B21;
const Instr kOrrImmedMask = 0x7f * B21;
const Instr kOrrImmedPattern = 0x1c * B21;
const Instr kCmpCmnMask = 0xdd * B20 | 0xf * B12;
const Instr kCmpCmnPattern = 0x15 * B20;
const Instr kCmpCmnFlip = B21;
const Instr kAddSubFlip = 0x6 * B21;
const Instr kAndBicFlip = 0xe * B21;
// A mask for the Rd register for push, pop, ldr, str instructions.
const Instr kLdrRegFpOffsetPattern =
al | B26 | L | Offset | kRegister_fp_Code * B16;
const Instr kStrRegFpOffsetPattern =
al | B26 | Offset | kRegister_fp_Code * B16;
const Instr kLdrRegFpNegOffsetPattern =
al | B26 | L | NegOffset | kRegister_fp_Code * B16;
const Instr kStrRegFpNegOffsetPattern =
al | B26 | NegOffset | kRegister_fp_Code * B16;
const Instr kLdrStrInstrTypeMask = 0xffff0000;
Assembler::Assembler(Isolate* isolate, void* buffer, int buffer_size)
: AssemblerBase(isolate, buffer, buffer_size),
recorded_ast_id_(TypeFeedbackId::None()),
constant_pool_builder_(),
positions_recorder_(this) {
reloc_info_writer.Reposition(buffer_ + buffer_size_, pc_);
num_pending_32_bit_reloc_info_ = 0;
num_pending_64_bit_reloc_info_ = 0;
next_buffer_check_ = 0;
const_pool_blocked_nesting_ = 0;
no_const_pool_before_ = 0;
first_const_pool_32_use_ = -1;
first_const_pool_64_use_ = -1;
last_bound_pos_ = 0;
constant_pool_available_ = !FLAG_enable_ool_constant_pool;
ClearRecordedAstId();
}
Assembler::~Assembler() {
DCHECK(const_pool_blocked_nesting_ == 0);
}
void Assembler::GetCode(CodeDesc* desc) {
if (!FLAG_enable_ool_constant_pool) {
// Emit constant pool if necessary.
CheckConstPool(true, false);
DCHECK(num_pending_32_bit_reloc_info_ == 0);
DCHECK(num_pending_64_bit_reloc_info_ == 0);
}
// Set up code descriptor.
desc->buffer = buffer_;
desc->buffer_size = buffer_size_;
desc->instr_size = pc_offset();
desc->reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos();
desc->origin = this;
}
void Assembler::Align(int m) {
DCHECK(m >= 4 && base::bits::IsPowerOfTwo32(m));
while ((pc_offset() & (m - 1)) != 0) {
nop();
}
}
void Assembler::CodeTargetAlign() {
// Preferred alignment of jump targets on some ARM chips.
Align(8);
}
Condition Assembler::GetCondition(Instr instr) {
return Instruction::ConditionField(instr);
}
bool Assembler::IsBranch(Instr instr) {
return (instr & (B27 | B25)) == (B27 | B25);
}
int Assembler::GetBranchOffset(Instr instr) {
DCHECK(IsBranch(instr));
// Take the jump offset in the lower 24 bits, sign extend it and multiply it
// with 4 to get the offset in bytes.
return ((instr & kImm24Mask) << 8) >> 6;
}
bool Assembler::IsLdrRegisterImmediate(Instr instr) {
return (instr & (B27 | B26 | B25 | B22 | B20)) == (B26 | B20);
}
bool Assembler::IsVldrDRegisterImmediate(Instr instr) {
return (instr & (15 * B24 | 3 * B20 | 15 * B8)) == (13 * B24 | B20 | 11 * B8);
}
int Assembler::GetLdrRegisterImmediateOffset(Instr instr) {
DCHECK(IsLdrRegisterImmediate(instr));
bool positive = (instr & B23) == B23;
int offset = instr & kOff12Mask; // Zero extended offset.
return positive ? offset : -offset;
}
int Assembler::GetVldrDRegisterImmediateOffset(Instr instr) {
DCHECK(IsVldrDRegisterImmediate(instr));
bool positive = (instr & B23) == B23;
int offset = instr & kOff8Mask; // Zero extended offset.
offset <<= 2;
return positive ? offset : -offset;
}
Instr Assembler::SetLdrRegisterImmediateOffset(Instr instr, int offset) {
DCHECK(IsLdrRegisterImmediate(instr));
bool positive = offset >= 0;
if (!positive) offset = -offset;
DCHECK(is_uint12(offset));
// Set bit indicating whether the offset should be added.
instr = (instr & ~B23) | (positive ? B23 : 0);
// Set the actual offset.
return (instr & ~kOff12Mask) | offset;
}
Instr Assembler::SetVldrDRegisterImmediateOffset(Instr instr, int offset) {
DCHECK(IsVldrDRegisterImmediate(instr));
DCHECK((offset & ~3) == offset); // Must be 64-bit aligned.
bool positive = offset >= 0;
if (!positive) offset = -offset;
DCHECK(is_uint10(offset));
// Set bit indicating whether the offset should be added.
instr = (instr & ~B23) | (positive ? B23 : 0);
// Set the actual offset. Its bottom 2 bits are zero.
return (instr & ~kOff8Mask) | (offset >> 2);
}
bool Assembler::IsStrRegisterImmediate(Instr instr) {
return (instr & (B27 | B26 | B25 | B22 | B20)) == B26;
}
Instr Assembler::SetStrRegisterImmediateOffset(Instr instr, int offset) {
DCHECK(IsStrRegisterImmediate(instr));
bool positive = offset >= 0;
if (!positive) offset = -offset;
DCHECK(is_uint12(offset));
// Set bit indicating whether the offset should be added.
instr = (instr & ~B23) | (positive ? B23 : 0);
// Set the actual offset.
return (instr & ~kOff12Mask) | offset;
}
bool Assembler::IsAddRegisterImmediate(Instr instr) {
return (instr & (B27 | B26 | B25 | B24 | B23 | B22 | B21)) == (B25 | B23);
}
Instr Assembler::SetAddRegisterImmediateOffset(Instr instr, int offset) {
DCHECK(IsAddRegisterImmediate(instr));
DCHECK(offset >= 0);
DCHECK(is_uint12(offset));
// Set the offset.
return (instr & ~kOff12Mask) | offset;
}
Register Assembler::GetRd(Instr instr) {
Register reg;
reg.code_ = Instruction::RdValue(instr);
return reg;
}
Register Assembler::GetRn(Instr instr) {
Register reg;
reg.code_ = Instruction::RnValue(instr);
return reg;
}
Register Assembler::GetRm(Instr instr) {
Register reg;
reg.code_ = Instruction::RmValue(instr);
return reg;
}
Instr Assembler::GetConsantPoolLoadPattern() {
if (FLAG_enable_ool_constant_pool) {
return kLdrPpImmedPattern;
} else {
return kLdrPCImmedPattern;
}
}
Instr Assembler::GetConsantPoolLoadMask() {
if (FLAG_enable_ool_constant_pool) {
return kLdrPpImmedMask;
} else {
return kLdrPCImmedMask;
}
}
bool Assembler::IsPush(Instr instr) {
return ((instr & ~kRdMask) == kPushRegPattern);
}
bool Assembler::IsPop(Instr instr) {
return ((instr & ~kRdMask) == kPopRegPattern);
}
bool Assembler::IsStrRegFpOffset(Instr instr) {
return ((instr & kLdrStrInstrTypeMask) == kStrRegFpOffsetPattern);
}
bool Assembler::IsLdrRegFpOffset(Instr instr) {
return ((instr & kLdrStrInstrTypeMask) == kLdrRegFpOffsetPattern);
}
bool Assembler::IsStrRegFpNegOffset(Instr instr) {
return ((instr & kLdrStrInstrTypeMask) == kStrRegFpNegOffsetPattern);
}
bool Assembler::IsLdrRegFpNegOffset(Instr instr) {
return ((instr & kLdrStrInstrTypeMask) == kLdrRegFpNegOffsetPattern);
}
bool Assembler::IsLdrPcImmediateOffset(Instr instr) {
// Check the instruction is indeed a
// ldr<cond> <Rd>, [pc +/- offset_12].
return (instr & kLdrPCImmedMask) == kLdrPCImmedPattern;
}
bool Assembler::IsLdrPpImmediateOffset(Instr instr) {
// Check the instruction is indeed a
// ldr<cond> <Rd>, [pp +/- offset_12].
return (instr & kLdrPpImmedMask) == kLdrPpImmedPattern;
}
bool Assembler::IsLdrPpRegOffset(Instr instr) {
// Check the instruction is indeed a
// ldr<cond> <Rd>, [pp, +/- <Rm>].
return (instr & kLdrPpRegMask) == kLdrPpRegPattern;
}
Instr Assembler::GetLdrPpRegOffsetPattern() { return kLdrPpRegPattern; }
bool Assembler::IsVldrDPcImmediateOffset(Instr instr) {
// Check the instruction is indeed a
// vldr<cond> <Dd>, [pc +/- offset_10].
return (instr & kVldrDPCMask) == kVldrDPCPattern;
}
bool Assembler::IsVldrDPpImmediateOffset(Instr instr) {
// Check the instruction is indeed a
// vldr<cond> <Dd>, [pp +/- offset_10].
return (instr & kVldrDPpMask) == kVldrDPpPattern;
}
bool Assembler::IsBlxReg(Instr instr) {
// Check the instruction is indeed a
// blxcc <Rm>
return (instr & kBlxRegMask) == kBlxRegPattern;
}
bool Assembler::IsBlxIp(Instr instr) {
// Check the instruction is indeed a
// blx ip
return instr == kBlxIp;
}
bool Assembler::IsTstImmediate(Instr instr) {
return (instr & (B27 | B26 | I | kOpCodeMask | S | kRdMask)) ==
(I | TST | S);
}
bool Assembler::IsCmpRegister(Instr instr) {
return (instr & (B27 | B26 | I | kOpCodeMask | S | kRdMask | B4)) ==
(CMP | S);
}
bool Assembler::IsCmpImmediate(Instr instr) {
return (instr & (B27 | B26 | I | kOpCodeMask | S | kRdMask)) ==
(I | CMP | S);
}
Register Assembler::GetCmpImmediateRegister(Instr instr) {
DCHECK(IsCmpImmediate(instr));
return GetRn(instr);
}
int Assembler::GetCmpImmediateRawImmediate(Instr instr) {
DCHECK(IsCmpImmediate(instr));
return instr & kOff12Mask;
}
// Labels refer to positions in the (to be) generated code.
// There are bound, linked, and unused labels.
//
// Bound labels refer to known positions in the already
// generated code. pos() is the position the label refers to.
//
// Linked labels refer to unknown positions in the code
// to be generated; pos() is the position of the last
// instruction using the label.
//
// The linked labels form a link chain by making the branch offset
// in the instruction steam to point to the previous branch
// instruction using the same label.
//
// The link chain is terminated by a branch offset pointing to the
// same position.
int Assembler::target_at(int pos) {
Instr instr = instr_at(pos);
if (is_uint24(instr)) {
// Emitted link to a label, not part of a branch.
return instr;
}
DCHECK((instr & 7*B25) == 5*B25); // b, bl, or blx imm24
int imm26 = ((instr & kImm24Mask) << 8) >> 6;
if ((Instruction::ConditionField(instr) == kSpecialCondition) &&
((instr & B24) != 0)) {
// blx uses bit 24 to encode bit 2 of imm26
imm26 += 2;
}
return pos + kPcLoadDelta + imm26;
}
void Assembler::target_at_put(int pos, int target_pos) {
Instr instr = instr_at(pos);
if (is_uint24(instr)) {
DCHECK(target_pos == pos || target_pos >= 0);
// Emitted link to a label, not part of a branch.
// Load the position of the label relative to the generated code object
// pointer in a register.
// Here are the instructions we need to emit:
// For ARMv7: target24 => target16_1:target16_0
// movw dst, #target16_0
// movt dst, #target16_1
// For ARMv6: target24 => target8_2:target8_1:target8_0
// mov dst, #target8_0
// orr dst, dst, #target8_1 << 8
// orr dst, dst, #target8_2 << 16
// We extract the destination register from the emitted nop instruction.
Register dst = Register::from_code(
Instruction::RmValue(instr_at(pos + kInstrSize)));
DCHECK(IsNop(instr_at(pos + kInstrSize), dst.code()));
uint32_t target24 = target_pos + (Code::kHeaderSize - kHeapObjectTag);
DCHECK(is_uint24(target24));
if (is_uint8(target24)) {
// If the target fits in a byte then only patch with a mov
// instruction.
CodePatcher patcher(reinterpret_cast<byte*>(buffer_ + pos),
1,
CodePatcher::DONT_FLUSH);
patcher.masm()->mov(dst, Operand(target24));
} else {
uint16_t target16_0 = target24 & kImm16Mask;
uint16_t target16_1 = target24 >> 16;
if (CpuFeatures::IsSupported(ARMv7)) {
// Patch with movw/movt.
if (target16_1 == 0) {
CodePatcher patcher(reinterpret_cast<byte*>(buffer_ + pos),
1,
CodePatcher::DONT_FLUSH);
patcher.masm()->movw(dst, target16_0);
} else {
CodePatcher patcher(reinterpret_cast<byte*>(buffer_ + pos),
2,
CodePatcher::DONT_FLUSH);
patcher.masm()->movw(dst, target16_0);
patcher.masm()->movt(dst, target16_1);
}
} else {
// Patch with a sequence of mov/orr/orr instructions.
uint8_t target8_0 = target16_0 & kImm8Mask;
uint8_t target8_1 = target16_0 >> 8;
uint8_t target8_2 = target16_1 & kImm8Mask;
if (target8_2 == 0) {
CodePatcher patcher(reinterpret_cast<byte*>(buffer_ + pos),
2,
CodePatcher::DONT_FLUSH);
patcher.masm()->mov(dst, Operand(target8_0));
patcher.masm()->orr(dst, dst, Operand(target8_1 << 8));
} else {
CodePatcher patcher(reinterpret_cast<byte*>(buffer_ + pos),
3,
CodePatcher::DONT_FLUSH);
patcher.masm()->mov(dst, Operand(target8_0));
patcher.masm()->orr(dst, dst, Operand(target8_1 << 8));
patcher.masm()->orr(dst, dst, Operand(target8_2 << 16));
}
}
}
return;
}
int imm26 = target_pos - (pos + kPcLoadDelta);
DCHECK((instr & 7*B25) == 5*B25); // b, bl, or blx imm24
if (Instruction::ConditionField(instr) == kSpecialCondition) {
// blx uses bit 24 to encode bit 2 of imm26
DCHECK((imm26 & 1) == 0);
instr = (instr & ~(B24 | kImm24Mask)) | ((imm26 & 2) >> 1)*B24;
} else {
DCHECK((imm26 & 3) == 0);
instr &= ~kImm24Mask;
}
int imm24 = imm26 >> 2;
DCHECK(is_int24(imm24));
instr_at_put(pos, instr | (imm24 & kImm24Mask));
}
void Assembler::print(Label* L) {
if (L->is_unused()) {
PrintF("unused label\n");
} else if (L->is_bound()) {
PrintF("bound label to %d\n", L->pos());
} else if (L->is_linked()) {
Label l = *L;
PrintF("unbound label");
while (l.is_linked()) {
PrintF("@ %d ", l.pos());
Instr instr = instr_at(l.pos());
if ((instr & ~kImm24Mask) == 0) {
PrintF("value\n");
} else {
DCHECK((instr & 7*B25) == 5*B25); // b, bl, or blx
Condition cond = Instruction::ConditionField(instr);
const char* b;
const char* c;
if (cond == kSpecialCondition) {
b = "blx";
c = "";
} else {
if ((instr & B24) != 0)
b = "bl";
else
b = "b";
switch (cond) {
case eq: c = "eq"; break;
case ne: c = "ne"; break;
case hs: c = "hs"; break;
case lo: c = "lo"; break;
case mi: c = "mi"; break;
case pl: c = "pl"; break;
case vs: c = "vs"; break;
case vc: c = "vc"; break;
case hi: c = "hi"; break;
case ls: c = "ls"; break;
case ge: c = "ge"; break;
case lt: c = "lt"; break;
case gt: c = "gt"; break;
case le: c = "le"; break;
case al: c = ""; break;
default:
c = "";
UNREACHABLE();
}
}
PrintF("%s%s\n", b, c);
}
next(&l);
}
} else {
PrintF("label in inconsistent state (pos = %d)\n", L->pos_);
}
}
void Assembler::bind_to(Label* L, int pos) {
DCHECK(0 <= pos && pos <= pc_offset()); // must have a valid binding position
while (L->is_linked()) {
int fixup_pos = L->pos();
next(L); // call next before overwriting link with target at fixup_pos
target_at_put(fixup_pos, pos);
}
L->bind_to(pos);
// Keep track of the last bound label so we don't eliminate any instructions
// before a bound label.
if (pos > last_bound_pos_)
last_bound_pos_ = pos;
}
void Assembler::bind(Label* L) {
DCHECK(!L->is_bound()); // label can only be bound once
bind_to(L, pc_offset());
}
void Assembler::next(Label* L) {
DCHECK(L->is_linked());
int link = target_at(L->pos());
if (link == L->pos()) {
// Branch target points to the same instuction. This is the end of the link
// chain.
L->Unuse();
} else {
DCHECK(link >= 0);
L->link_to(link);
}
}
// Low-level code emission routines depending on the addressing mode.
// If this returns true then you have to use the rotate_imm and immed_8
// that it returns, because it may have already changed the instruction
// to match them!
static bool fits_shifter(uint32_t imm32,
uint32_t* rotate_imm,
uint32_t* immed_8,
Instr* instr) {
// imm32 must be unsigned.
for (int rot = 0; rot < 16; rot++) {
uint32_t imm8 = (imm32 << 2*rot) | (imm32 >> (32 - 2*rot));
if ((imm8 <= 0xff)) {
*rotate_imm = rot;
*immed_8 = imm8;
return true;
}
}
// If the opcode is one with a complementary version and the complementary
// immediate fits, change the opcode.
if (instr != NULL) {
if ((*instr & kMovMvnMask) == kMovMvnPattern) {
if (fits_shifter(~imm32, rotate_imm, immed_8, NULL)) {
*instr ^= kMovMvnFlip;
return true;
} else if ((*instr & kMovLeaveCCMask) == kMovLeaveCCPattern) {
if (CpuFeatures::IsSupported(ARMv7)) {
if (imm32 < 0x10000) {
*instr ^= kMovwLeaveCCFlip;
*instr |= Assembler::EncodeMovwImmediate(imm32);
*rotate_imm = *immed_8 = 0; // Not used for movw.
return true;
}
}
}
} else if ((*instr & kCmpCmnMask) == kCmpCmnPattern) {
if (fits_shifter(-static_cast<int>(imm32), rotate_imm, immed_8, NULL)) {
*instr ^= kCmpCmnFlip;
return true;
}
} else {
Instr alu_insn = (*instr & kALUMask);
if (alu_insn == ADD ||
alu_insn == SUB) {
if (fits_shifter(-static_cast<int>(imm32), rotate_imm, immed_8, NULL)) {
*instr ^= kAddSubFlip;
return true;
}
} else if (alu_insn == AND ||
alu_insn == BIC) {
if (fits_shifter(~imm32, rotate_imm, immed_8, NULL)) {
*instr ^= kAndBicFlip;
return true;
}
}
}
}
return false;
}
// We have to use the temporary register for things that can be relocated even
// if they can be encoded in the ARM's 12 bits of immediate-offset instruction
// space. There is no guarantee that the relocated location can be similarly
// encoded.
bool Operand::must_output_reloc_info(const Assembler* assembler) const {
if (rmode_ == RelocInfo::EXTERNAL_REFERENCE) {
if (assembler != NULL && assembler->predictable_code_size()) return true;
return assembler->serializer_enabled();
} else if (RelocInfo::IsNone(rmode_)) {
return false;
}
return true;
}
static bool use_mov_immediate_load(const Operand& x,
const Assembler* assembler) {
if (assembler != NULL && !assembler->is_constant_pool_available()) {
return true;
} else if (CpuFeatures::IsSupported(MOVW_MOVT_IMMEDIATE_LOADS) &&
(assembler == NULL || !assembler->predictable_code_size())) {
// Prefer movw / movt to constant pool if it is more efficient on the CPU.
return true;
} else if (x.must_output_reloc_info(assembler)) {
// Prefer constant pool if data is likely to be patched.
return false;
} else {
// Otherwise, use immediate load if movw / movt is available.
return CpuFeatures::IsSupported(ARMv7);
}
}
int Operand::instructions_required(const Assembler* assembler,
Instr instr) const {
if (rm_.is_valid()) return 1;
uint32_t dummy1, dummy2;
if (must_output_reloc_info(assembler) ||
!fits_shifter(imm32_, &dummy1, &dummy2, &instr)) {
// The immediate operand cannot be encoded as a shifter operand, or use of
// constant pool is required. First account for the instructions required
// for the constant pool or immediate load
int instructions;
if (use_mov_immediate_load(*this, assembler)) {
// A movw / movt or mov / orr immediate load.
instructions = CpuFeatures::IsSupported(ARMv7) ? 2 : 4;
} else if (assembler != NULL && assembler->use_extended_constant_pool()) {
// An extended constant pool load.
instructions = CpuFeatures::IsSupported(ARMv7) ? 3 : 5;
} else {
// A small constant pool load.
instructions = 1;
}
if ((instr & ~kCondMask) != 13 * B21) { // mov, S not set
// For a mov or mvn instruction which doesn't set the condition
// code, the constant pool or immediate load is enough, otherwise we need
// to account for the actual instruction being requested.
instructions += 1;
}
return instructions;
} else {
// No use of constant pool and the immediate operand can be encoded as a
// shifter operand.
return 1;
}
}
void Assembler::move_32_bit_immediate(Register rd,
const Operand& x,
Condition cond) {
RelocInfo rinfo(pc_, x.rmode_, x.imm32_, NULL);
uint32_t imm32 = static_cast<uint32_t>(x.imm32_);
if (x.must_output_reloc_info(this)) {
RecordRelocInfo(rinfo);
}
if (use_mov_immediate_load(x, this)) {
Register target = rd.code() == pc.code() ? ip : rd;
if (CpuFeatures::IsSupported(ARMv7)) {
if (!FLAG_enable_ool_constant_pool && x.must_output_reloc_info(this)) {
// Make sure the movw/movt doesn't get separated.
BlockConstPoolFor(2);
}
movw(target, imm32 & 0xffff, cond);
movt(target, imm32 >> 16, cond);
} else {
DCHECK(FLAG_enable_ool_constant_pool);
mov(target, Operand(imm32 & kImm8Mask), LeaveCC, cond);
orr(target, target, Operand(imm32 & (kImm8Mask << 8)), LeaveCC, cond);
orr(target, target, Operand(imm32 & (kImm8Mask << 16)), LeaveCC, cond);
orr(target, target, Operand(imm32 & (kImm8Mask << 24)), LeaveCC, cond);
}
if (target.code() != rd.code()) {
mov(rd, target, LeaveCC, cond);
}
} else {
DCHECK(is_constant_pool_available());
ConstantPoolArray::LayoutSection section = ConstantPoolAddEntry(rinfo);
if (section == ConstantPoolArray::EXTENDED_SECTION) {
DCHECK(FLAG_enable_ool_constant_pool);
Register target = rd.code() == pc.code() ? ip : rd;
// Emit instructions to load constant pool offset.
if (CpuFeatures::IsSupported(ARMv7)) {
movw(target, 0, cond);
movt(target, 0, cond);
} else {
mov(target, Operand(0), LeaveCC, cond);
orr(target, target, Operand(0), LeaveCC, cond);
orr(target, target, Operand(0), LeaveCC, cond);
orr(target, target, Operand(0), LeaveCC, cond);
}
// Load from constant pool at offset.
ldr(rd, MemOperand(pp, target), cond);
} else {
DCHECK(section == ConstantPoolArray::SMALL_SECTION);
ldr(rd, MemOperand(FLAG_enable_ool_constant_pool ? pp : pc, 0), cond);
}
}
}
void Assembler::addrmod1(Instr instr,
Register rn,
Register rd,
const Operand& x) {
CheckBuffer();
DCHECK((instr & ~(kCondMask | kOpCodeMask | S)) == 0);
if (!x.rm_.is_valid()) {
// Immediate.
uint32_t rotate_imm;
uint32_t immed_8;
if (x.must_output_reloc_info(this) ||
!fits_shifter(x.imm32_, &rotate_imm, &immed_8, &instr)) {
// The immediate operand cannot be encoded as a shifter operand, so load
// it first to register ip and change the original instruction to use ip.
// However, if the original instruction is a 'mov rd, x' (not setting the
// condition code), then replace it with a 'ldr rd, [pc]'.
CHECK(!rn.is(ip)); // rn should never be ip, or will be trashed
Condition cond = Instruction::ConditionField(instr);
if ((instr & ~kCondMask) == 13*B21) { // mov, S not set
move_32_bit_immediate(rd, x, cond);
} else {
mov(ip, x, LeaveCC, cond);
addrmod1(instr, rn, rd, Operand(ip));
}
return;
}
instr |= I | rotate_imm*B8 | immed_8;
} else if (!x.rs_.is_valid()) {
// Immediate shift.
instr |= x.shift_imm_*B7 | x.shift_op_ | x.rm_.code();
} else {
// Register shift.
DCHECK(!rn.is(pc) && !rd.is(pc) && !x.rm_.is(pc) && !x.rs_.is(pc));
instr |= x.rs_.code()*B8 | x.shift_op_ | B4 | x.rm_.code();
}
emit(instr | rn.code()*B16 | rd.code()*B12);
if (rn.is(pc) || x.rm_.is(pc)) {
// Block constant pool emission for one instruction after reading pc.
BlockConstPoolFor(1);
}
}
void Assembler::addrmod2(Instr instr, Register rd, const MemOperand& x) {
DCHECK((instr & ~(kCondMask | B | L)) == B26);
int am = x.am_;
if (!x.rm_.is_valid()) {
// Immediate offset.
int offset_12 = x.offset_;
if (offset_12 < 0) {
offset_12 = -offset_12;
am ^= U;
}
if (!is_uint12(offset_12)) {
// Immediate offset cannot be encoded, load it first to register ip
// rn (and rd in a load) should never be ip, or will be trashed.
DCHECK(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip)));
mov(ip, Operand(x.offset_), LeaveCC, Instruction::ConditionField(instr));
addrmod2(instr, rd, MemOperand(x.rn_, ip, x.am_));
return;
}
DCHECK(offset_12 >= 0); // no masking needed
instr |= offset_12;
} else {
// Register offset (shift_imm_ and shift_op_ are 0) or scaled
// register offset the constructors make sure than both shift_imm_
// and shift_op_ are initialized.
DCHECK(!x.rm_.is(pc));
instr |= B25 | x.shift_imm_*B7 | x.shift_op_ | x.rm_.code();
}
DCHECK((am & (P|W)) == P || !x.rn_.is(pc)); // no pc base with writeback
emit(instr | am | x.rn_.code()*B16 | rd.code()*B12);
}
void Assembler::addrmod3(Instr instr, Register rd, const MemOperand& x) {
DCHECK((instr & ~(kCondMask | L | S6 | H)) == (B4 | B7));
DCHECK(x.rn_.is_valid());
int am = x.am_;
if (!x.rm_.is_valid()) {
// Immediate offset.
int offset_8 = x.offset_;
if (offset_8 < 0) {
offset_8 = -offset_8;
am ^= U;
}
if (!is_uint8(offset_8)) {
// Immediate offset cannot be encoded, load it first to register ip
// rn (and rd in a load) should never be ip, or will be trashed.
DCHECK(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip)));
mov(ip, Operand(x.offset_), LeaveCC, Instruction::ConditionField(instr));
addrmod3(instr, rd, MemOperand(x.rn_, ip, x.am_));
return;
}
DCHECK(offset_8 >= 0); // no masking needed
instr |= B | (offset_8 >> 4)*B8 | (offset_8 & 0xf);
} else if (x.shift_imm_ != 0) {
// Scaled register offset not supported, load index first
// rn (and rd in a load) should never be ip, or will be trashed.
DCHECK(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip)));
mov(ip, Operand(x.rm_, x.shift_op_, x.shift_imm_), LeaveCC,
Instruction::ConditionField(instr));
addrmod3(instr, rd, MemOperand(x.rn_, ip, x.am_));
return;
} else {
// Register offset.
DCHECK((am & (P|W)) == P || !x.rm_.is(pc)); // no pc index with writeback
instr |= x.rm_.code();
}
DCHECK((am & (P|W)) == P || !x.rn_.is(pc)); // no pc base with writeback
emit(instr | am | x.rn_.code()*B16 | rd.code()*B12);
}
void Assembler::addrmod4(Instr instr, Register rn, RegList rl) {
DCHECK((instr & ~(kCondMask | P | U | W | L)) == B27);
DCHECK(rl != 0);
DCHECK(!rn.is(pc));
emit(instr | rn.code()*B16 | rl);
}
void Assembler::addrmod5(Instr instr, CRegister crd, const MemOperand& x) {
// Unindexed addressing is not encoded by this function.
DCHECK_EQ((B27 | B26),
(instr & ~(kCondMask | kCoprocessorMask | P | U | N | W | L)));
DCHECK(x.rn_.is_valid() && !x.rm_.is_valid());
int am = x.am_;
int offset_8 = x.offset_;
DCHECK((offset_8 & 3) == 0); // offset must be an aligned word offset
offset_8 >>= 2;
if (offset_8 < 0) {
offset_8 = -offset_8;
am ^= U;
}
DCHECK(is_uint8(offset_8)); // unsigned word offset must fit in a byte
DCHECK((am & (P|W)) == P || !x.rn_.is(pc)); // no pc base with writeback
// Post-indexed addressing requires W == 1; different than in addrmod2/3.
if ((am & P) == 0)
am |= W;
DCHECK(offset_8 >= 0); // no masking needed
emit(instr | am | x.rn_.code()*B16 | crd.code()*B12 | offset_8);
}
int Assembler::branch_offset(Label* L, bool jump_elimination_allowed) {
int target_pos;
if (L->is_bound()) {
target_pos = L->pos();
} else {
if (L->is_linked()) {
// Point to previous instruction that uses the link.
target_pos = L->pos();
} else {
// First entry of the link chain points to itself.
target_pos = pc_offset();
}
L->link_to(pc_offset());
}
// Block the emission of the constant pool, since the branch instruction must
// be emitted at the pc offset recorded by the label.
BlockConstPoolFor(1);
return target_pos - (pc_offset() + kPcLoadDelta);
}
// Branch instructions.
void Assembler::b(int branch_offset, Condition cond) {
DCHECK((branch_offset & 3) == 0);
int imm24 = branch_offset >> 2;
DCHECK(is_int24(imm24));
emit(cond | B27 | B25 | (imm24 & kImm24Mask));
if (cond == al) {
// Dead code is a good location to emit the constant pool.
CheckConstPool(false, false);
}
}
void Assembler::bl(int branch_offset, Condition cond) {
positions_recorder()->WriteRecordedPositions();
DCHECK((branch_offset & 3) == 0);
int imm24 = branch_offset >> 2;
DCHECK(is_int24(imm24));
emit(cond | B27 | B25 | B24 | (imm24 & kImm24Mask));
}
void Assembler::blx(int branch_offset) { // v5 and above
positions_recorder()->WriteRecordedPositions();
DCHECK((branch_offset & 1) == 0);
int h = ((branch_offset & 2) >> 1)*B24;
int imm24 = branch_offset >> 2;
DCHECK(is_int24(imm24));
emit(kSpecialCondition | B27 | B25 | h | (imm24 & kImm24Mask));
}
void Assembler::blx(Register target, Condition cond) { // v5 and above
positions_recorder()->WriteRecordedPositions();
DCHECK(!target.is(pc));
emit(cond | B24 | B21 | 15*B16 | 15*B12 | 15*B8 | BLX | target.code());
}
void Assembler::bx(Register target, Condition cond) { // v5 and above, plus v4t
positions_recorder()->WriteRecordedPositions();
DCHECK(!target.is(pc)); // use of pc is actually allowed, but discouraged
emit(cond | B24 | B21 | 15*B16 | 15*B12 | 15*B8 | BX | target.code());
}
// Data-processing instructions.
void Assembler::and_(Register dst, Register src1, const Operand& src2,
SBit s, Condition cond) {
addrmod1(cond | AND | s, src1, dst, src2);
}
void Assembler::eor(Register dst, Register src1, const Operand& src2,
SBit s, Condition cond) {
addrmod1(cond | EOR | s, src1, dst, src2);
}
void Assembler::sub(Register dst, Register src1, const Operand& src2,
SBit s, Condition cond) {
addrmod1(cond | SUB | s, src1, dst, src2);
}
void Assembler::rsb(Register dst, Register src1, const Operand& src2,
SBit s, Condition cond) {
addrmod1(cond | RSB | s, src1, dst, src2);
}
void Assembler::add(Register dst, Register src1, const Operand& src2,
SBit s, Condition cond) {
addrmod1(cond | ADD | s, src1, dst, src2);
}
void Assembler::adc(Register dst, Register src1, const Operand& src2,
SBit s, Condition cond) {
addrmod1(cond | ADC | s, src1, dst, src2);
}
void Assembler::sbc(Register dst, Register src1, const Operand& src2,
SBit s, Condition cond) {
addrmod1(cond | SBC | s, src1, dst, src2);
}
void Assembler::rsc(Register dst, Register src1, const Operand& src2,
SBit s, Condition cond) {
addrmod1(cond | RSC | s, src1, dst, src2);
}
void Assembler::tst(Register src1, const Operand& src2, Condition cond) {
addrmod1(cond | TST | S, src1, r0, src2);
}
void Assembler::teq(Register src1, const Operand& src2, Condition cond) {
addrmod1(cond | TEQ | S, src1, r0, src2);
}
void Assembler::cmp(Register src1, const Operand& src2, Condition cond) {
addrmod1(cond | CMP | S, src1, r0, src2);
}
void Assembler::cmp_raw_immediate(
Register src, int raw_immediate, Condition cond) {
DCHECK(is_uint12(raw_immediate));
emit(cond | I | CMP | S | src.code() << 16 | raw_immediate);
}
void Assembler::cmn(Register src1, const Operand& src2, Condition cond) {
addrmod1(cond | CMN | S, src1, r0, src2);
}
void Assembler::orr(Register dst, Register src1, const Operand& src2,
SBit s, Condition cond) {
addrmod1(cond | ORR | s, src1, dst, src2);
}
void Assembler::mov(Register dst, const Operand& src, SBit s, Condition cond) {
if (dst.is(pc)) {
positions_recorder()->WriteRecordedPositions();
}
// Don't allow nop instructions in the form mov rn, rn to be generated using
// the mov instruction. They must be generated using nop(int/NopMarkerTypes)
// or MarkCode(int/NopMarkerTypes) pseudo instructions.
DCHECK(!(src.is_reg() && src.rm().is(dst) && s == LeaveCC && cond == al));
addrmod1(cond | MOV | s, r0, dst, src);
}
void Assembler::mov_label_offset(Register dst, Label* label) {
if (label->is_bound()) {
mov(dst, Operand(label->pos() + (Code::kHeaderSize - kHeapObjectTag)));
} else {
// Emit the link to the label in the code stream followed by extra nop
// instructions.
// If the label is not linked, then start a new link chain by linking it to
// itself, emitting pc_offset().
int link = label->is_linked() ? label->pos() : pc_offset();
label->link_to(pc_offset());
// When the label is bound, these instructions will be patched with a
// sequence of movw/movt or mov/orr/orr instructions. They will load the
// destination register with the position of the label from the beginning
// of the code.
//
// The link will be extracted from the first instruction and the destination
// register from the second.
// For ARMv7:
// link
// mov dst, dst
// For ARMv6:
// link
// mov dst, dst
// mov dst, dst
//
// When the label gets bound: target_at extracts the link and target_at_put
// patches the instructions.
DCHECK(is_uint24(link));
BlockConstPoolScope block_const_pool(this);
emit(link);
nop(dst.code());
if (!CpuFeatures::IsSupported(ARMv7)) {
nop(dst.code());
}
}
}
void Assembler::movw(Register reg, uint32_t immediate, Condition cond) {
DCHECK(CpuFeatures::IsSupported(ARMv7));
emit(cond | 0x30*B20 | reg.code()*B12 | EncodeMovwImmediate(immediate));
}
void Assembler::movt(Register reg, uint32_t immediate, Condition cond) {
DCHECK(CpuFeatures::IsSupported(ARMv7));
emit(cond | 0x34*B20 | reg.code()*B12 | EncodeMovwImmediate(immediate));
}
void Assembler::bic(Register dst, Register src1, const Operand& src2,
SBit s, Condition cond) {
addrmod1(cond | BIC | s, src1, dst, src2);
}
void Assembler::mvn(Register dst, const Operand& src, SBit s, Condition cond) {
addrmod1(cond | MVN | s, r0, dst, src);
}
// Multiply instructions.
void Assembler::mla(Register dst, Register src1, Register src2, Register srcA,
SBit s, Condition cond) {
DCHECK(!dst.is(pc) && !src1.is(pc) && !src2.is(pc) && !srcA.is(pc));
emit(cond | A | s | dst.code()*B16 | srcA.code()*B12 |
src2.code()*B8 | B7 | B4 | src1.code());
}
void Assembler::mls(Register dst, Register src1, Register src2, Register srcA,
Condition cond) {
DCHECK(!dst.is(pc) && !src1.is(pc) && !src2.is(pc) && !srcA.is(pc));
DCHECK(IsEnabled(MLS));
emit(cond | B22 | B21 | dst.code()*B16 | srcA.code()*B12 |
src2.code()*B8 | B7 | B4 | src1.code());
}
void Assembler::sdiv(Register dst, Register src1, Register src2,
Condition cond) {
DCHECK(!dst.is(pc) && !src1.is(pc) && !src2.is(pc));
DCHECK(IsEnabled(SUDIV));
emit(cond | B26 | B25| B24 | B20 | dst.code()*B16 | 0xf * B12 |
src2.code()*B8 | B4 | src1.code());
}
void Assembler::udiv(Register dst, Register src1, Register src2,
Condition cond) {
DCHECK(!dst.is(pc) && !src1.is(pc) && !src2.is(pc));
DCHECK(IsEnabled(SUDIV));
emit(cond | B26 | B25 | B24 | B21 | B20 | dst.code() * B16 | 0xf * B12 |
src2.code() * B8 | B4 | src1.code());
}
void Assembler::mul(Register dst, Register src1, Register src2,
SBit s, Condition cond) {
DCHECK(!dst.is(pc) && !src1.is(pc) && !src2.is(pc));
// dst goes in bits 16-19 for this instruction!
emit(cond | s | dst.code()*B16 | src2.code()*B8 | B7 | B4 | src1.code());
}
void Assembler::smlal(Register dstL,
Register dstH,
Register src1,
Register src2,
SBit s,
Condition cond) {
DCHECK(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc));
DCHECK(!dstL.is(dstH));
emit(cond | B23 | B22 | A | s | dstH.code()*B16 | dstL.code()*B12 |
src2.code()*B8 | B7 | B4 | src1.code());
}
void Assembler::smull(Register dstL,
Register dstH,
Register src1,
Register src2,
SBit s,
Condition cond) {
DCHECK(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc));
DCHECK(!dstL.is(dstH));
emit(cond | B23 | B22 | s | dstH.code()*B16 | dstL.code()*B12 |
src2.code()*B8 | B7 | B4 | src1.code());
}
void Assembler::umlal(Register dstL,
Register dstH,
Register src1,
Register src2,
SBit s,
Condition cond) {
DCHECK(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc));
DCHECK(!dstL.is(dstH));
emit(cond | B23 | A | s | dstH.code()*B16 | dstL.code()*B12 |
src2.code()*B8 | B7 | B4 | src1.code());
}
void Assembler::umull(Register dstL,
Register dstH,
Register src1,
Register src2,
SBit s,
Condition cond) {
DCHECK(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc));
DCHECK(!dstL.is(dstH));
emit(cond | B23 | s | dstH.code()*B16 | dstL.code()*B12 |
src2.code()*B8 | B7 | B4 | src1.code());
}
// Miscellaneous arithmetic instructions.
void Assembler::clz(Register dst, Register src, Condition cond) {
// v5 and above.
DCHECK(!dst.is(pc) && !src.is(pc));
emit(cond | B24 | B22 | B21 | 15*B16 | dst.code()*B12 |
15*B8 | CLZ | src.code());
}
// Saturating instructions.
// Unsigned saturate.
void Assembler::usat(Register dst,
int satpos,
const Operand& src,
Condition cond) {
// v6 and above.
DCHECK(CpuFeatures::IsSupported(ARMv7));
DCHECK(!dst.is(pc) && !src.rm_.is(pc));
DCHECK((satpos >= 0) && (satpos <= 31));
DCHECK((src.shift_op_ == ASR) || (src.shift_op_ == LSL));
DCHECK(src.rs_.is(no_reg));
int sh = 0;
if (src.shift_op_ == ASR) {
sh = 1;
}
emit(cond | 0x6*B24 | 0xe*B20 | satpos*B16 | dst.code()*B12 |
src.shift_imm_*B7 | sh*B6 | 0x1*B4 | src.rm_.code());
}
// Bitfield manipulation instructions.
// Unsigned bit field extract.
// Extracts #width adjacent bits from position #lsb in a register, and
// writes them to the low bits of a destination register.
// ubfx dst, src, #lsb, #width
void Assembler::ubfx(Register dst,
Register src,
int lsb,
int width,
Condition cond) {
// v7 and above.
DCHECK(CpuFeatures::IsSupported(ARMv7));
DCHECK(!dst.is(pc) && !src.is(pc));
DCHECK((lsb >= 0) && (lsb <= 31));
DCHECK((width >= 1) && (width <= (32 - lsb)));
emit(cond | 0xf*B23 | B22 | B21 | (width - 1)*B16 | dst.code()*B12 |
lsb*B7 | B6 | B4 | src.code());
}
// Signed bit field extract.
// Extracts #width adjacent bits from position #lsb in a register, and
// writes them to the low bits of a destination register. The extracted
// value is sign extended to fill the destination register.
// sbfx dst, src, #lsb, #width
void Assembler::sbfx(Register dst,
Register src,
int lsb,
int width,
Condition cond) {
// v7 and above.
DCHECK(CpuFeatures::IsSupported(ARMv7));
DCHECK(!dst.is(pc) && !src.is(pc));
DCHECK((lsb >= 0) && (lsb <= 31));
DCHECK((width >= 1) && (width <= (32 - lsb)));
emit(cond | 0xf*B23 | B21 | (width - 1)*B16 | dst.code()*B12 |
lsb*B7 | B6 | B4 | src.code());
}
// Bit field clear.
// Sets #width adjacent bits at position #lsb in the destination register
// to zero, preserving the value of the other bits.
// bfc dst, #lsb, #width
void Assembler::bfc(Register dst, int lsb, int width, Condition cond) {
// v7 and above.
DCHECK(CpuFeatures::IsSupported(ARMv7));
DCHECK(!dst.is(pc));
DCHECK((lsb >= 0) && (lsb <= 31));
DCHECK((width >= 1) && (width <= (32 - lsb)));
int msb = lsb + width - 1;
emit(cond | 0x1f*B22 | msb*B16 | dst.code()*B12 | lsb*B7 | B4 | 0xf);
}
// Bit field insert.
// Inserts #width adjacent bits from the low bits of the source register
// into position #lsb of the destination register.
// bfi dst, src, #lsb, #width
void Assembler::bfi(Register dst,
Register src,
int lsb,
int width,
Condition cond) {
// v7 and above.
DCHECK(CpuFeatures::IsSupported(ARMv7));
DCHECK(!dst.is(pc) && !src.is(pc));
DCHECK((lsb >= 0) && (lsb <= 31));
DCHECK((width >= 1) && (width <= (32 - lsb)));
int msb = lsb + width - 1;
emit(cond | 0x1f*B22 | msb*B16 | dst.code()*B12 | lsb*B7 | B4 |
src.code());
}
void Assembler::pkhbt(Register dst,
Register src1,
const Operand& src2,
Condition cond ) {
// Instruction details available in ARM DDI 0406C.b, A8.8.125.
// cond(31-28) | 01101000(27-20) | Rn(19-16) |
// Rd(15-12) | imm5(11-7) | 0(6) | 01(5-4) | Rm(3-0)
DCHECK(!dst.is(pc));
DCHECK(!src1.is(pc));
DCHECK(!src2.rm().is(pc));
DCHECK(!src2.rm().is(no_reg));
DCHECK(src2.rs().is(no_reg));
DCHECK((src2.shift_imm_ >= 0) && (src2.shift_imm_ <= 31));
DCHECK(src2.shift_op() == LSL);
emit(cond | 0x68*B20 | src1.code()*B16 | dst.code()*B12 |
src2.shift_imm_*B7 | B4 | src2.rm().code());
}
void Assembler::pkhtb(Register dst,
Register src1,
const Operand& src2,
Condition cond) {
// Instruction details available in ARM DDI 0406C.b, A8.8.125.
// cond(31-28) | 01101000(27-20) | Rn(19-16) |
// Rd(15-12) | imm5(11-7) | 1(6) | 01(5-4) | Rm(3-0)
DCHECK(!dst.is(pc));
DCHECK(!src1.is(pc));
DCHECK(!src2.rm().is(pc));
DCHECK(!src2.rm().is(no_reg));
DCHECK(src2.rs().is(no_reg));
DCHECK((src2.shift_imm_ >= 1) && (src2.shift_imm_ <= 32));
DCHECK(src2.shift_op() == ASR);
int asr = (src2.shift_imm_ == 32) ? 0 : src2.shift_imm_;
emit(cond | 0x68*B20 | src1.code()*B16 | dst.code()*B12 |
asr*B7 | B6 | B4 | src2.rm().code());
}
void Assembler::uxtb(Register dst,
const Operand& src,
Condition cond) {
// Instruction details available in ARM DDI 0406C.b, A8.8.274.
// cond(31-28) | 01101110(27-20) | 1111(19-16) |
// Rd(15-12) | rotate(11-10) | 00(9-8)| 0111(7-4) | Rm(3-0)
DCHECK(!dst.is(pc));
DCHECK(!src.rm().is(pc));
DCHECK(!src.rm().is(no_reg));
DCHECK(src.rs().is(no_reg));
DCHECK((src.shift_imm_ == 0) ||
(src.shift_imm_ == 8) ||
(src.shift_imm_ == 16) ||
(src.shift_imm_ == 24));
// Operand maps ROR #0 to LSL #0.
DCHECK((src.shift_op() == ROR) ||
((src.shift_op() == LSL) && (src.shift_imm_ == 0)));
emit(cond | 0x6E*B20 | 0xF*B16 | dst.code()*B12 |
((src.shift_imm_ >> 1)&0xC)*B8 | 7*B4 | src.rm().code());
}
void Assembler::uxtab(Register dst,
Register src1,
const Operand& src2,
Condition cond) {
// Instruction details available in ARM DDI 0406C.b, A8.8.271.
// cond(31-28) | 01101110(27-20) | Rn(19-16) |
// Rd(15-12) | rotate(11-10) | 00(9-8)| 0111(7-4) | Rm(3-0)
DCHECK(!dst.is(pc));
DCHECK(!src1.is(pc));
DCHECK(!src2.rm().is(pc));
DCHECK(!src2.rm().is(no_reg));
DCHECK(src2.rs().is(no_reg));
DCHECK((src2.shift_imm_ == 0) ||
(src2.shift_imm_ == 8) ||
(src2.shift_imm_ == 16) ||
(src2.shift_imm_ == 24));
// Operand maps ROR #0 to LSL #0.
DCHECK((src2.shift_op() == ROR) ||
((src2.shift_op() == LSL) && (src2.shift_imm_ == 0)));
emit(cond | 0x6E*B20 | src1.code()*B16 | dst.code()*B12 |
((src2.shift_imm_ >> 1) &0xC)*B8 | 7*B4 | src2.rm().code());
}
void Assembler::uxtb16(Register dst,
const Operand& src,
Condition cond) {
// Instruction details available in ARM DDI 0406C.b, A8.8.275.
// cond(31-28) | 01101100(27-20) | 1111(19-16) |
// Rd(15-12) | rotate(11-10) | 00(9-8)| 0111(7-4) | Rm(3-0)
DCHECK(!dst.is(pc));
DCHECK(!src.rm().is(pc));
DCHECK(!src.rm().is(no_reg));
DCHECK(src.rs().is(no_reg));
DCHECK((src.shift_imm_ == 0) ||
(src.shift_imm_ == 8) ||
(src.shift_imm_ == 16) ||
(src.shift_imm_ == 24));
// Operand maps ROR #0 to LSL #0.
DCHECK((src.shift_op() == ROR) ||
((src.shift_op() == LSL) && (src.shift_imm_ == 0)));
emit(cond | 0x6C*B20 | 0xF*B16 | dst.code()*B12 |
((src.shift_imm_ >> 1)&0xC)*B8 | 7*B4 | src.rm().code());
}
// Status register access instructions.
void Assembler::mrs(Register dst, SRegister s, Condition cond) {
DCHECK(!dst.is(pc));
emit(cond | B24 | s | 15*B16 | dst.code()*B12);
}
void Assembler::msr(SRegisterFieldMask fields, const Operand& src,
Condition cond) {
DCHECK(fields >= B16 && fields < B20); // at least one field set
Instr instr;
if (!src.rm_.is_valid()) {
// Immediate.
uint32_t rotate_imm;
uint32_t immed_8;
if (src.must_output_reloc_info(this) ||
!fits_shifter(src.imm32_, &rotate_imm, &immed_8, NULL)) {
// Immediate operand cannot be encoded, load it first to register ip.
move_32_bit_immediate(ip, src);
msr(fields, Operand(ip), cond);
return;
}
instr = I | rotate_imm*B8 | immed_8;
} else {
DCHECK(!src.rs_.is_valid() && src.shift_imm_ == 0); // only rm allowed
instr = src.rm_.code();
}
emit(cond | instr | B24 | B21 | fields | 15*B12);
}
// Load/Store instructions.
void Assembler::ldr(Register dst, const MemOperand& src, Condition cond) {
if (dst.is(pc)) {
positions_recorder()->WriteRecordedPositions();
}
addrmod2(cond | B26 | L, dst, src);
}
void Assembler::str(Register src, const MemOperand& dst, Condition cond) {
addrmod2(cond | B26, src, dst);
}
void Assembler::ldrb(Register dst, const MemOperand& src, Condition cond) {
addrmod2(cond | B26 | B | L, dst, src);
}
void Assembler::strb(Register src, const MemOperand& dst, Condition cond) {
addrmod2(cond | B26 | B, src, dst);
}
void Assembler::ldrh(Register dst, const MemOperand& src, Condition cond) {
addrmod3(cond | L | B7 | H | B4, dst, src);
}
void Assembler::strh(Register src, const MemOperand& dst, Condition cond) {
addrmod3(cond | B7 | H | B4, src, dst);
}
void Assembler::ldrsb(Register dst, const MemOperand& src, Condition cond) {
addrmod3(cond | L | B7 | S6 | B4, dst, src);
}
void Assembler::ldrsh(Register dst, const MemOperand& src, Condition cond) {
addrmod3(cond | L | B7 | S6 | H | B4, dst, src);
}
void Assembler::ldrd(Register dst1, Register dst2,
const MemOperand& src, Condition cond) {
DCHECK(IsEnabled(ARMv7));
DCHECK(src.rm().is(no_reg));
DCHECK(!dst1.is(lr)); // r14.
DCHECK_EQ(0, dst1.code() % 2);
DCHECK_EQ(dst1.code() + 1, dst2.code());
addrmod3(cond | B7 | B6 | B4, dst1, src);
}
void Assembler::strd(Register src1, Register src2,
const MemOperand& dst, Condition cond) {
DCHECK(dst.rm().is(no_reg));
DCHECK(!src1.is(lr)); // r14.
DCHECK_EQ(0, src1.code() % 2);
DCHECK_EQ(src1.code() + 1, src2.code());
DCHECK(IsEnabled(ARMv7));
addrmod3(cond | B7 | B6 | B5 | B4, src1, dst);
}
// Preload instructions.
void Assembler::pld(const MemOperand& address) {
// Instruction details available in ARM DDI 0406C.b, A8.8.128.
// 1111(31-28) | 0111(27-24) | U(23) | R(22) | 01(21-20) | Rn(19-16) |
// 1111(15-12) | imm5(11-07) | type(6-5) | 0(4)| Rm(3-0) |
DCHECK(address.rm().is(no_reg));
DCHECK(address.am() == Offset);
int U = B23;
int offset = address.offset();
if (offset < 0) {
offset = -offset;
U = 0;
}
DCHECK(offset < 4096);
emit(kSpecialCondition | B26 | B24 | U | B22 | B20 | address.rn().code()*B16 |
0xf*B12 | offset);
}
// Load/Store multiple instructions.
void Assembler::ldm(BlockAddrMode am,
Register base,
RegList dst,
Condition cond) {
// ABI stack constraint: ldmxx base, {..sp..} base != sp is not restartable.
DCHECK(base.is(sp) || (dst & sp.bit()) == 0);
addrmod4(cond | B27 | am | L, base, dst);
// Emit the constant pool after a function return implemented by ldm ..{..pc}.
if (cond == al && (dst & pc.bit()) != 0) {
// There is a slight chance that the ldm instruction was actually a call,
// in which case it would be wrong to return into the constant pool; we
// recognize this case by checking if the emission of the pool was blocked
// at the pc of the ldm instruction by a mov lr, pc instruction; if this is
// the case, we emit a jump over the pool.
CheckConstPool(true, no_const_pool_before_ == pc_offset() - kInstrSize);
}
}
void Assembler::stm(BlockAddrMode am,
Register base,
RegList src,
Condition cond) {
addrmod4(cond | B27 | am, base, src);
}
// Exception-generating instructions and debugging support.
// Stops with a non-negative code less than kNumOfWatchedStops support
// enabling/disabling and a counter feature. See simulator-arm.h .
void Assembler::stop(const char* msg, Condition cond, int32_t code) {
#ifndef __arm__
DCHECK(code >= kDefaultStopCode);
{
// The Simulator will handle the stop instruction and get the message
// address. It expects to find the address just after the svc instruction.
BlockConstPoolScope block_const_pool(this);
if (code >= 0) {
svc(kStopCode + code, cond);
} else {
svc(kStopCode + kMaxStopCode, cond);
}
emit(reinterpret_cast<Instr>(msg));
}
#else // def __arm__
if (cond != al) {
Label skip;
b(&skip, NegateCondition(cond));
bkpt(0);
bind(&skip);
} else {
bkpt(0);
}
#endif // def __arm__
}
void Assembler::bkpt(uint32_t imm16) { // v5 and above
DCHECK(is_uint16(imm16));
emit(al | B24 | B21 | (imm16 >> 4)*B8 | BKPT | (imm16 & 0xf));
}
void Assembler::svc(uint32_t imm24, Condition cond) {
DCHECK(is_uint24(imm24));
emit(cond | 15*B24 | imm24);
}
// Coprocessor instructions.
void Assembler::cdp(Coprocessor coproc,
int opcode_1,
CRegister crd,
CRegister crn,
CRegister crm,
int opcode_2,
Condition cond) {
DCHECK(is_uint4(opcode_1) && is_uint3(opcode_2));
emit(cond | B27 | B26 | B25 | (opcode_1 & 15)*B20 | crn.code()*B16 |
crd.code()*B12 | coproc*B8 | (opcode_2 & 7)*B5 | crm.code());
}
void Assembler::cdp2(Coprocessor coproc,
int opcode_1,
CRegister crd,
CRegister crn,
CRegister crm,
int opcode_2) { // v5 and above
cdp(coproc, opcode_1, crd, crn, crm, opcode_2, kSpecialCondition);
}
void Assembler::mcr(Coprocessor coproc,
int opcode_1,
Register rd,
CRegister crn,
CRegister crm,
int opcode_2,
Condition cond) {
DCHECK(is_uint3(opcode_1) && is_uint3(opcode_2));
emit(cond | B27 | B26 | B25 | (opcode_1 & 7)*B21 | crn.code()*B16 |
rd.code()*B12 | coproc*B8 | (opcode_2 & 7)*B5 | B4 | crm.code());
}
void Assembler::mcr2(Coprocessor coproc,
int opcode_1,
Register rd,
CRegister crn,
CRegister crm,
int opcode_2) { // v5 and above
mcr(coproc, opcode_1, rd, crn, crm, opcode_2, kSpecialCondition);
}
void Assembler::mrc(Coprocessor coproc,
int opcode_1,
Register rd,
CRegister crn,
CRegister crm,
int opcode_2,
Condition cond) {
DCHECK(is_uint3(opcode_1) && is_uint3(opcode_2));
emit(cond | B27 | B26 | B25 | (opcode_1 & 7)*B21 | L | crn.code()*B16 |
rd.code()*B12 | coproc*B8 | (opcode_2 & 7)*B5 | B4 | crm.code());
}
void Assembler::mrc2(Coprocessor coproc,
int opcode_1,
Register rd,
CRegister crn,
CRegister crm,
int opcode_2) { // v5 and above
mrc(coproc, opcode_1, rd, crn, crm, opcode_2, kSpecialCondition);
}
void Assembler::ldc(Coprocessor coproc,
CRegister crd,
const MemOperand& src,
LFlag l,
Condition cond) {
addrmod5(cond | B27 | B26 | l | L | coproc*B8, crd, src);
}
void Assembler::ldc(Coprocessor coproc,
CRegister crd,
Register rn,
int option,
LFlag l,
Condition cond) {
// Unindexed addressing.
DCHECK(is_uint8(option));
emit(cond | B27 | B26 | U | l | L | rn.code()*B16 | crd.code()*B12 |
coproc*B8 | (option & 255));
}
void Assembler::ldc2(Coprocessor coproc,
CRegister crd,
const MemOperand& src,
LFlag l) { // v5 and above
ldc(coproc, crd, src, l, kSpecialCondition);
}
void Assembler::ldc2(Coprocessor coproc,
CRegister crd,
Register rn,
int option,
LFlag l) { // v5 and above
ldc(coproc, crd, rn, option, l, kSpecialCondition);
}
// Support for VFP.
void Assembler::vldr(const DwVfpRegister dst,
const Register base,
int offset,
const Condition cond) {
// Ddst = MEM(Rbase + offset).
// Instruction details available in ARM DDI 0406C.b, A8-924.
// cond(31-28) | 1101(27-24)| U(23) | D(22) | 01(21-20) | Rbase(19-16) |
// Vd(15-12) | 1011(11-8) | offset
int u = 1;
if (offset < 0) {
offset = -offset;
u = 0;
}
int vd, d;
dst.split_code(&vd, &d);
DCHECK(offset >= 0);
if ((offset % 4) == 0 && (offset / 4) < 256) {
emit(cond | 0xD*B24 | u*B23 | d*B22 | B20 | base.code()*B16 | vd*B12 |
0xB*B8 | ((offset / 4) & 255));
} else {
// Larger offsets must be handled by computing the correct address
// in the ip register.
DCHECK(!base.is(ip));
if (u == 1) {
add(ip, base, Operand(offset));
} else {
sub(ip, base, Operand(offset));
}
emit(cond | 0xD*B24 | d*B22 | B20 | ip.code()*B16 | vd*B12 | 0xB*B8);
}
}
void Assembler::vldr(const DwVfpRegister dst,
const MemOperand& operand,
const Condition cond) {
DCHECK(operand.am_ == Offset);
if (operand.rm().is_valid()) {
add(ip, operand.rn(),
Operand(operand.rm(), operand.shift_op_, operand.shift_imm_));
vldr(dst, ip, 0, cond);
} else {
vldr(dst, operand.rn(), operand.offset(), cond);
}
}
void Assembler::vldr(const SwVfpRegister dst,
const Register base,
int offset,
const Condition cond) {
// Sdst = MEM(Rbase + offset).
// Instruction details available in ARM DDI 0406A, A8-628.
// cond(31-28) | 1101(27-24)| U001(23-20) | Rbase(19-16) |
// Vdst(15-12) | 1010(11-8) | offset
int u = 1;
if (offset < 0) {
offset = -offset;
u = 0;
}
int sd, d;
dst.split_code(&sd, &d);
DCHECK(offset >= 0);
if ((offset % 4) == 0 && (offset / 4) < 256) {
emit(cond | u*B23 | d*B22 | 0xD1*B20 | base.code()*B16 | sd*B12 |
0xA*B8 | ((offset / 4) & 255));
} else {
// Larger offsets must be handled by computing the correct address
// in the ip register.
DCHECK(!base.is(ip));
if (u == 1) {
add(ip, base, Operand(offset));
} else {
sub(ip, base, Operand(offset));
}
emit(cond | d*B22 | 0xD1*B20 | ip.code()*B16 | sd*B12 | 0xA*B8);
}
}
void Assembler::vldr(const SwVfpRegister dst,
const MemOperand& operand,
const Condition cond) {
DCHECK(operand.am_ == Offset);
if (operand.rm().is_valid()) {
add(ip, operand.rn(),
Operand(operand.rm(), operand.shift_op_, operand.shift_imm_));
vldr(dst, ip, 0, cond);
} else {
vldr(dst, operand.rn(), operand.offset(), cond);
}
}
void Assembler::vstr(const DwVfpRegister src,
const Register base,
int offset,
const Condition cond) {
// MEM(Rbase + offset) = Dsrc.
// Instruction details available in ARM DDI 0406C.b, A8-1082.
// cond(31-28) | 1101(27-24)| U(23) | D(22) | 00(21-20) | Rbase(19-16) |
// Vd(15-12) | 1011(11-8) | (offset/4)
int u = 1;
if (offset < 0) {
offset = -offset;
u = 0;
}
DCHECK(offset >= 0);
int vd, d;
src.split_code(&vd, &d);
if ((offset % 4) == 0 && (offset / 4) < 256) {
emit(cond | 0xD*B24 | u*B23 | d*B22 | base.code()*B16 | vd*B12 | 0xB*B8 |
((offset / 4) & 255));
} else {
// Larger offsets must be handled by computing the correct address
// in the ip register.
DCHECK(!base.is(ip));
if (u == 1) {
add(ip, base, Operand(offset));
} else {
sub(ip, base, Operand(offset));
}
emit(cond | 0xD*B24 | d*B22 | ip.code()*B16 | vd*B12 | 0xB*B8);
}
}
void Assembler::vstr(const DwVfpRegister src,
const MemOperand& operand,
const Condition cond) {
DCHECK(operand.am_ == Offset);
if (operand.rm().is_valid()) {
add(ip, operand.rn(),
Operand(operand.rm(), operand.shift_op_, operand.shift_imm_));
vstr(src, ip, 0, cond);
} else {
vstr(src, operand.rn(), operand.offset(), cond);
}
}
void Assembler::vstr(const SwVfpRegister src,
const Register base,
int offset,
const Condition cond) {
// MEM(Rbase + offset) = SSrc.
// Instruction details available in ARM DDI 0406A, A8-786.
// cond(31-28) | 1101(27-24)| U000(23-20) | Rbase(19-16) |
// Vdst(15-12) | 1010(11-8) | (offset/4)
int u = 1;
if (offset < 0) {
offset = -offset;
u = 0;
}
int sd, d;
src.split_code(&sd, &d);
DCHECK(offset >= 0);
if ((offset % 4) == 0 && (offset / 4) < 256) {
emit(cond | u*B23 | d*B22 | 0xD0*B20 | base.code()*B16 | sd*B12 |
0xA*B8 | ((offset / 4) & 255));
} else {
// Larger offsets must be handled by computing the correct address
// in the ip register.
DCHECK(!base.is(ip));
if (u == 1) {
add(ip, base, Operand(offset));
} else {
sub(ip, base, Operand(offset));
}
emit(cond | d*B22 | 0xD0*B20 | ip.code()*B16 | sd*B12 | 0xA*B8);
}
}
void Assembler::vstr(const SwVfpRegister src,
const MemOperand& operand,
const Condition cond) {
DCHECK(operand.am_ == Offset);
if (operand.rm().is_valid()) {
add(ip, operand.rn(),
Operand(operand.rm(), operand.shift_op_, operand.shift_imm_));
vstr(src, ip, 0, cond);
} else {
vstr(src, operand.rn(), operand.offset(), cond);
}
}
void Assembler::vldm(BlockAddrMode am,
Register base,
DwVfpRegister first,
DwVfpRegister last,
Condition cond) {
// Instruction details available in ARM DDI 0406C.b, A8-922.
// cond(31-28) | 110(27-25)| PUDW1(24-20) | Rbase(19-16) |
// first(15-12) | 1011(11-8) | (count * 2)
DCHECK_LE(first.code(), last.code());
DCHECK(am == ia || am == ia_w || am == db_w);
DCHECK(!base.is(pc));
int sd, d;
first.split_code(&sd, &d);
int count = last.code() - first.code() + 1;
DCHECK(count <= 16);
emit(cond | B27 | B26 | am | d*B22 | B20 | base.code()*B16 | sd*B12 |
0xB*B8 | count*2);
}
void Assembler::vstm(BlockAddrMode am,
Register base,
DwVfpRegister first,
DwVfpRegister last,
Condition cond) {
// Instruction details available in ARM DDI 0406C.b, A8-1080.
// cond(31-28) | 110(27-25)| PUDW0(24-20) | Rbase(19-16) |
// first(15-12) | 1011(11-8) | (count * 2)
DCHECK_LE(first.code(), last.code());
DCHECK(am == ia || am == ia_w || am == db_w);
DCHECK(!base.is(pc));
int sd, d;
first.split_code(&sd, &d);
int count = last.code() - first.code() + 1;
DCHECK(count <= 16);
emit(cond | B27 | B26 | am | d*B22 | base.code()*B16 | sd*B12 |
0xB*B8 | count*2);
}
void Assembler::vldm(BlockAddrMode am,
Register base,
SwVfpRegister first,
SwVfpRegister last,
Condition cond) {
// Instruction details available in ARM DDI 0406A, A8-626.
// cond(31-28) | 110(27-25)| PUDW1(24-20) | Rbase(19-16) |
// first(15-12) | 1010(11-8) | (count/2)
DCHECK_LE(first.code(), last.code());
DCHECK(am == ia || am == ia_w || am == db_w);
DCHECK(!base.is(pc));
int sd, d;
first.split_code(&sd, &d);
int count = last.code() - first.code() + 1;
emit(cond | B27 | B26 | am | d*B22 | B20 | base.code()*B16 | sd*B12 |
0xA*B8 | count);
}
void Assembler::vstm(BlockAddrMode am,
Register base,
SwVfpRegister first,
SwVfpRegister last,
Condition cond) {
// Instruction details available in ARM DDI 0406A, A8-784.
// cond(31-28) | 110(27-25)| PUDW0(24-20) | Rbase(19-16) |
// first(15-12) | 1011(11-8) | (count/2)
DCHECK_LE(first.code(), last.code());
DCHECK(am == ia || am == ia_w || am == db_w);
DCHECK(!base.is(pc));
int sd, d;
first.split_code(&sd, &d);
int count = last.code() - first.code() + 1;
emit(cond | B27 | B26 | am | d*B22 | base.code()*B16 | sd*B12 |
0xA*B8 | count);
}
static void DoubleAsTwoUInt32(double d, uint32_t* lo, uint32_t* hi) {
uint64_t i;
memcpy(&i, &d, 8);
*lo = i & 0xffffffff;
*hi = i >> 32;
}
// Only works for little endian floating point formats.
// We don't support VFP on the mixed endian floating point platform.
static bool FitsVMOVDoubleImmediate(double d, uint32_t *encoding) {
DCHECK(CpuFeatures::IsSupported(VFP3));
// VMOV can accept an immediate of the form:
//
// +/- m * 2^(-n) where 16 <= m <= 31 and 0 <= n <= 7
//
// The immediate is encoded using an 8-bit quantity, comprised of two
// 4-bit fields. For an 8-bit immediate of the form:
//
// [abcdefgh]
//
// where a is the MSB and h is the LSB, an immediate 64-bit double can be
// created of the form:
//
// [aBbbbbbb,bbcdefgh,00000000,00000000,
// 00000000,00000000,00000000,00000000]
//
// where B = ~b.
//
uint32_t lo, hi;
DoubleAsTwoUInt32(d, &lo, &hi);
// The most obvious constraint is the long block of zeroes.
if ((lo != 0) || ((hi & 0xffff) != 0)) {
return false;
}
// Bits 62:55 must be all clear or all set.
if (((hi & 0x3fc00000) != 0) && ((hi & 0x3fc00000) != 0x3fc00000)) {
return false;
}
// Bit 63 must be NOT bit 62.
if (((hi ^ (hi << 1)) & (0x40000000)) == 0) {
return false;
}
// Create the encoded immediate in the form:
// [00000000,0000abcd,00000000,0000efgh]
*encoding = (hi >> 16) & 0xf; // Low nybble.
*encoding |= (hi >> 4) & 0x70000; // Low three bits of the high nybble.
*encoding |= (hi >> 12) & 0x80000; // Top bit of the high nybble.
return true;
}
void Assembler::vmov(const DwVfpRegister dst,
double imm,
const Register scratch) {
uint32_t enc;
if (CpuFeatures::IsSupported(VFP3) && FitsVMOVDoubleImmediate(imm, &enc)) {
// The double can be encoded in the instruction.
//
// Dd = immediate
// Instruction details available in ARM DDI 0406C.b, A8-936.
// cond(31-28) | 11101(27-23) | D(22) | 11(21-20) | imm4H(19-16) |
// Vd(15-12) | 101(11-9) | sz=1(8) | imm4L(3-0)
int vd, d;
dst.split_code(&vd, &d);
emit(al | 0x1D*B23 | d*B22 | 0x3*B20 | vd*B12 | 0x5*B9 | B8 | enc);
} else if (FLAG_enable_vldr_imm && is_constant_pool_available()) {
// TODO(jfb) Temporarily turned off until we have constant blinding or
// some equivalent mitigation: an attacker can otherwise control
// generated data which also happens to be executable, a Very Bad
// Thing indeed.
// Blinding gets tricky because we don't have xor, we probably
// need to add/subtract without losing precision, which requires a
// cookie value that Lithium is probably better positioned to
// choose.
// We could also add a few peepholes here like detecting 0.0 and
// -0.0 and doing a vmov from the sequestered d14, forcing denorms
// to zero (we set flush-to-zero), and normalizing NaN values.
// We could also detect redundant values.
// The code could also randomize the order of values, though
// that's tricky because vldr has a limited reach. Furthermore
// it breaks load locality.
RelocInfo rinfo(pc_, imm);
ConstantPoolArray::LayoutSection section = ConstantPoolAddEntry(rinfo);
if (section == ConstantPoolArray::EXTENDED_SECTION) {
DCHECK(FLAG_enable_ool_constant_pool);
// Emit instructions to load constant pool offset.
movw(ip, 0);
movt(ip, 0);
// Load from constant pool at offset.
vldr(dst, MemOperand(pp, ip));
} else {
DCHECK(section == ConstantPoolArray::SMALL_SECTION);
vldr(dst, MemOperand(FLAG_enable_ool_constant_pool ? pp : pc, 0));
}
} else {
// Synthesise the double from ARM immediates.
uint32_t lo, hi;
DoubleAsTwoUInt32(imm, &lo, &hi);
if (scratch.is(no_reg)) {
if (dst.code() < 16) {
const LowDwVfpRegister loc = LowDwVfpRegister::from_code(dst.code());
// Move the low part of the double into the lower of the corresponsing S
// registers of D register dst.
mov(ip, Operand(lo));
vmov(loc.low(), ip);
// Move the high part of the double into the higher of the
// corresponsing S registers of D register dst.
mov(ip, Operand(hi));
vmov(loc.high(), ip);
} else {
// D16-D31 does not have S registers, so move the low and high parts
// directly to the D register using vmov.32.
// Note: This may be slower, so we only do this when we have to.
mov(ip, Operand(lo));
vmov(dst, VmovIndexLo, ip);
mov(ip, Operand(hi));
vmov(dst, VmovIndexHi, ip);
}
} else {
// Move the low and high parts of the double to a D register in one
// instruction.
mov(ip, Operand(lo));
mov(scratch, Operand(hi));
vmov(dst, ip, scratch);
}
}
}
void Assembler::vmov(const SwVfpRegister dst,
const SwVfpRegister src,
const Condition cond) {
// Sd = Sm
// Instruction details available in ARM DDI 0406B, A8-642.
int sd, d, sm, m;
dst.split_code(&sd, &d);
src.split_code(&sm, &m);
emit(cond | 0xE*B24 | d*B22 | 0xB*B20 | sd*B12 | 0xA*B8 | B6 | m*B5 | sm);
}
void Assembler::vmov(const DwVfpRegister dst,
const DwVfpRegister src,
const Condition cond) {
// Dd = Dm
// Instruction details available in ARM DDI 0406C.b, A8-938.
// cond(31-28) | 11101(27-23) | D(22) | 11(21-20) | 0000(19-16) | Vd(15-12) |
// 101(11-9) | sz=1(8) | 0(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
int vd, d;
dst.split_code(&vd, &d);
int vm, m;
src.split_code(&vm, &m);
emit(cond | 0x1D*B23 | d*B22 | 0x3*B20 | vd*B12 | 0x5*B9 | B8 | B6 | m*B5 |
vm);
}
void Assembler::vmov(const DwVfpRegister dst,
const VmovIndex index,
const Register src,
const Condition cond) {
// Dd[index] = Rt
// Instruction details available in ARM DDI 0406C.b, A8-940.
// cond(31-28) | 1110(27-24) | 0(23) | opc1=0index(22-21) | 0(20) |
// Vd(19-16) | Rt(15-12) | 1011(11-8) | D(7) | opc2=00(6-5) | 1(4) | 0000(3-0)
DCHECK(index.index == 0 || index.index == 1);
int vd, d;
dst.split_code(&vd, &d);
emit(cond | 0xE*B24 | index.index*B21 | vd*B16 | src.code()*B12 | 0xB*B8 |
d*B7 | B4);
}
void Assembler::vmov(const Register dst,
const VmovIndex index,
const DwVfpRegister src,
const Condition cond) {
// Dd[index] = Rt
// Instruction details available in ARM DDI 0406C.b, A8.8.342.
// cond(31-28) | 1110(27-24) | U=0(23) | opc1=0index(22-21) | 1(20) |
// Vn(19-16) | Rt(15-12) | 1011(11-8) | N(7) | opc2=00(6-5) | 1(4) | 0000(3-0)
DCHECK(index.index == 0 || index.index == 1);
int vn, n;
src.split_code(&vn, &n);
emit(cond | 0xE*B24 | index.index*B21 | B20 | vn*B16 | dst.code()*B12 |
0xB*B8 | n*B7 | B4);
}
void Assembler::vmov(const DwVfpRegister dst,
const Register src1,
const Register src2,
const Condition cond) {
// Dm = <Rt,Rt2>.
// Instruction details available in ARM DDI 0406C.b, A8-948.
// cond(31-28) | 1100(27-24)| 010(23-21) | op=0(20) | Rt2(19-16) |
// Rt(15-12) | 1011(11-8) | 00(7-6) | M(5) | 1(4) | Vm
DCHECK(!src1.is(pc) && !src2.is(pc));
int vm, m;
dst.split_code(&vm, &m);
emit(cond | 0xC*B24 | B22 | src2.code()*B16 |
src1.code()*B12 | 0xB*B8 | m*B5 | B4 | vm);
}
void Assembler::vmov(const Register dst1,
const Register dst2,
const DwVfpRegister src,
const Condition cond) {
// <Rt,Rt2> = Dm.
// Instruction details available in ARM DDI 0406C.b, A8-948.
// cond(31-28) | 1100(27-24)| 010(23-21) | op=1(20) | Rt2(19-16) |
// Rt(15-12) | 1011(11-8) | 00(7-6) | M(5) | 1(4) | Vm
DCHECK(!dst1.is(pc) && !dst2.is(pc));
int vm, m;
src.split_code(&vm, &m);
emit(cond | 0xC*B24 | B22 | B20 | dst2.code()*B16 |
dst1.code()*B12 | 0xB*B8 | m*B5 | B4 | vm);
}
void Assembler::vmov(const SwVfpRegister dst,
const Register src,
const Condition cond) {
// Sn = Rt.
// Instruction details available in ARM DDI 0406A, A8-642.
// cond(31-28) | 1110(27-24)| 000(23-21) | op=0(20) | Vn(19-16) |
// Rt(15-12) | 1010(11-8) | N(7)=0 | 00(6-5) | 1(4) | 0000(3-0)
DCHECK(!src.is(pc));
int sn, n;
dst.split_code(&sn, &n);
emit(cond | 0xE*B24 | sn*B16 | src.code()*B12 | 0xA*B8 | n*B7 | B4);
}
void Assembler::vmov(const Register dst,
const SwVfpRegister src,
const Condition cond) {
// Rt = Sn.
// Instruction details available in ARM DDI 0406A, A8-642.
// cond(31-28) | 1110(27-24)| 000(23-21) | op=1(20) | Vn(19-16) |
// Rt(15-12) | 1010(11-8) | N(7)=0 | 00(6-5) | 1(4) | 0000(3-0)
DCHECK(!dst.is(pc));
int sn, n;
src.split_code(&sn, &n);
emit(cond | 0xE*B24 | B20 | sn*B16 | dst.code()*B12 | 0xA*B8 | n*B7 | B4);
}
// Type of data to read from or write to VFP register.
// Used as specifier in generic vcvt instruction.
enum VFPType { S32, U32, F32, F64 };
static bool IsSignedVFPType(VFPType type) {
switch (type) {
case S32:
return true;
case U32:
return false;
default:
UNREACHABLE();
return false;
}
}
static bool IsIntegerVFPType(VFPType type) {
switch (type) {
case S32:
case U32:
return true;
case F32:
case F64:
return false;
default:
UNREACHABLE();
return false;
}
}
static bool IsDoubleVFPType(VFPType type) {
switch (type) {
case F32:
return false;
case F64:
return true;
default:
UNREACHABLE();
return false;
}
}
// Split five bit reg_code based on size of reg_type.
// 32-bit register codes are Vm:M
// 64-bit register codes are M:Vm
// where Vm is four bits, and M is a single bit.
static void SplitRegCode(VFPType reg_type,
int reg_code,
int* vm,
int* m) {
DCHECK((reg_code >= 0) && (reg_code <= 31));
if (IsIntegerVFPType(reg_type) || !IsDoubleVFPType(reg_type)) {
// 32 bit type.
*m = reg_code & 0x1;
*vm = reg_code >> 1;
} else {
// 64 bit type.
*m = (reg_code & 0x10) >> 4;
*vm = reg_code & 0x0F;
}
}
// Encode vcvt.src_type.dst_type instruction.
static Instr EncodeVCVT(const VFPType dst_type,
const int dst_code,
const VFPType src_type,
const int src_code,
VFPConversionMode mode,
const Condition cond) {
DCHECK(src_type != dst_type);
int D, Vd, M, Vm;
SplitRegCode(src_type, src_code, &Vm, &M);
SplitRegCode(dst_type, dst_code, &Vd, &D);
if (IsIntegerVFPType(dst_type) || IsIntegerVFPType(src_type)) {
// Conversion between IEEE floating point and 32-bit integer.
// Instruction details available in ARM DDI 0406B, A8.6.295.
// cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 1(19) | opc2(18-16) |
// Vd(15-12) | 101(11-9) | sz(8) | op(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
DCHECK(!IsIntegerVFPType(dst_type) || !IsIntegerVFPType(src_type));
int sz, opc2, op;
if (IsIntegerVFPType(dst_type)) {
opc2 = IsSignedVFPType(dst_type) ? 0x5 : 0x4;
sz = IsDoubleVFPType(src_type) ? 0x1 : 0x0;
op = mode;
} else {
DCHECK(IsIntegerVFPType(src_type));
opc2 = 0x0;
sz = IsDoubleVFPType(dst_type) ? 0x1 : 0x0;
op = IsSignedVFPType(src_type) ? 0x1 : 0x0;
}
return (cond | 0xE*B24 | B23 | D*B22 | 0x3*B20 | B19 | opc2*B16 |
Vd*B12 | 0x5*B9 | sz*B8 | op*B7 | B6 | M*B5 | Vm);
} else {
// Conversion between IEEE double and single precision.
// Instruction details available in ARM DDI 0406B, A8.6.298.
// cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 0111(19-16) |
// Vd(15-12) | 101(11-9) | sz(8) | 1(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
int sz = IsDoubleVFPType(src_type) ? 0x1 : 0x0;
return (cond | 0xE*B24 | B23 | D*B22 | 0x3*B20 | 0x7*B16 |
Vd*B12 | 0x5*B9 | sz*B8 | B7 | B6 | M*B5 | Vm);
}
}
void Assembler::vcvt_f64_s32(const DwVfpRegister dst,
const SwVfpRegister src,
VFPConversionMode mode,
const Condition cond) {
emit(EncodeVCVT(F64, dst.code(), S32, src.code(), mode, cond));
}
void Assembler::vcvt_f32_s32(const SwVfpRegister dst,
const SwVfpRegister src,
VFPConversionMode mode,
const Condition cond) {
emit(EncodeVCVT(F32, dst.code(), S32, src.code(), mode, cond));
}
void Assembler::vcvt_f64_u32(const DwVfpRegister dst,
const SwVfpRegister src,
VFPConversionMode mode,
const Condition cond) {
emit(EncodeVCVT(F64, dst.code(), U32, src.code(), mode, cond));
}
void Assembler::vcvt_s32_f64(const SwVfpRegister dst,
const DwVfpRegister src,
VFPConversionMode mode,
const Condition cond) {
emit(EncodeVCVT(S32, dst.code(), F64, src.code(), mode, cond));
}
void Assembler::vcvt_u32_f64(const SwVfpRegister dst,
const DwVfpRegister src,
VFPConversionMode mode,
const Condition cond) {
emit(EncodeVCVT(U32, dst.code(), F64, src.code(), mode, cond));
}
void Assembler::vcvt_f64_f32(const DwVfpRegister dst,
const SwVfpRegister src,
VFPConversionMode mode,
const Condition cond) {
emit(EncodeVCVT(F64, dst.code(), F32, src.code(), mode, cond));
}
void Assembler::vcvt_f32_f64(const SwVfpRegister dst,
const DwVfpRegister src,
VFPConversionMode mode,
const Condition cond) {
emit(EncodeVCVT(F32, dst.code(), F64, src.code(), mode, cond));
}
void Assembler::vcvt_f64_s32(const DwVfpRegister dst,
int fraction_bits,
const Condition cond) {
// Instruction details available in ARM DDI 0406C.b, A8-874.
// cond(31-28) | 11101(27-23) | D(22) | 11(21-20) | 1010(19-16) | Vd(15-12) |
// 101(11-9) | sf=1(8) | sx=1(7) | 1(6) | i(5) | 0(4) | imm4(3-0)
DCHECK(fraction_bits > 0 && fraction_bits <= 32);
DCHECK(CpuFeatures::IsSupported(VFP3));
int vd, d;
dst.split_code(&vd, &d);
int imm5 = 32 - fraction_bits;
int i = imm5 & 1;
int imm4 = (imm5 >> 1) & 0xf;
emit(cond | 0xE*B24 | B23 | d*B22 | 0x3*B20 | B19 | 0x2*B16 |
vd*B12 | 0x5*B9 | B8 | B7 | B6 | i*B5 | imm4);
}
void Assembler::vneg(const DwVfpRegister dst,
const DwVfpRegister src,
const Condition cond) {
// Instruction details available in ARM DDI 0406C.b, A8-968.
// cond(31-28) | 11101(27-23) | D(22) | 11(21-20) | 0001(19-16) | Vd(15-12) |
// 101(11-9) | sz=1(8) | 0(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
int vd, d;
dst.split_code(&vd, &d);
int vm, m;
src.split_code(&vm, &m);
emit(cond | 0x1D*B23 | d*B22 | 0x3*B20 | B16 | vd*B12 | 0x5*B9 | B8 | B6 |
m*B5 | vm);
}
void Assembler::vabs(const DwVfpRegister dst,
const DwVfpRegister src,
const Condition cond) {
// Instruction details available in ARM DDI 0406C.b, A8-524.
// cond(31-28) | 11101(27-23) | D(22) | 11(21-20) | 0000(19-16) | Vd(15-12) |
// 101(11-9) | sz=1(8) | 1(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
int vd, d;
dst.split_code(&vd, &d);
int vm, m;
src.split_code(&vm, &m);
emit(cond | 0x1D*B23 | d*B22 | 0x3*B20 | vd*B12 | 0x5*B9 | B8 | B7 | B6 |
m*B5 | vm);
}
void Assembler::vadd(const DwVfpRegister dst,
const DwVfpRegister src1,
const DwVfpRegister src2,
const Condition cond) {
// Dd = vadd(Dn, Dm) double precision floating point addition.
// Dd = D:Vd; Dm=M:Vm; Dn=N:Vm.
// Instruction details available in ARM DDI 0406C.b, A8-830.
// cond(31-28) | 11100(27-23)| D(22) | 11(21-20) | Vn(19-16) |
// Vd(15-12) | 101(11-9) | sz=1(8) | N(7) | 0(6) | M(5) | 0(4) | Vm(3-0)
int vd, d;
dst.split_code(&vd, &d);
int vn, n;
src1.split_code(&vn, &n);
int vm, m;
src2.split_code(&vm, &m);
emit(cond | 0x1C*B23 | d*B22 | 0x3*B20 | vn*B16 | vd*B12 | 0x5*B9 | B8 |
n*B7 | m*B5 | vm);
}
void Assembler::vsub(const DwVfpRegister dst,
const DwVfpRegister src1,
const DwVfpRegister src2,
const Condition cond) {
// Dd = vsub(Dn, Dm) double precision floating point subtraction.
// Dd = D:Vd; Dm=M:Vm; Dn=N:Vm.
// Instruction details available in ARM DDI 0406C.b, A8-1086.
// cond(31-28) | 11100(27-23)| D(22) | 11(21-20) | Vn(19-16) |
// Vd(15-12) | 101(11-9) | sz=1(8) | N(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
int vd, d;
dst.split_code(&vd, &d);
int vn, n;
src1.split_code(&vn, &n);
int vm, m;
src2.split_code(&vm, &m);
emit(cond | 0x1C*B23 | d*B22 | 0x3*B20 | vn*B16 | vd*B12 | 0x5*B9 | B8 |
n*B7 | B6 | m*B5 | vm);
}
void Assembler::vmul(const DwVfpRegister dst,
const DwVfpRegister src1,
const DwVfpRegister src2,
const Condition cond) {
// Dd = vmul(Dn, Dm) double precision floating point multiplication.
// Dd = D:Vd; Dm=M:Vm; Dn=N:Vm.
// Instruction details available in ARM DDI 0406C.b, A8-960.
// cond(31-28) | 11100(27-23)| D(22) | 10(21-20) | Vn(19-16) |
// Vd(15-12) | 101(11-9) | sz=1(8) | N(7) | 0(6) | M(5) | 0(4) | Vm(3-0)
int vd, d;
dst.split_code(&vd, &d);
int vn, n;
src1.split_code(&vn, &n);
int vm, m;
src2.split_code(&vm, &m);
emit(cond | 0x1C*B23 | d*B22 | 0x2*B20 | vn*B16 | vd*B12 | 0x5*B9 | B8 |
n*B7 | m*B5 | vm);
}
void Assembler::vmla(const DwVfpRegister dst,
const DwVfpRegister src1,
const DwVfpRegister src2,
const Condition cond) {
// Instruction details available in ARM DDI 0406C.b, A8-932.
// cond(31-28) | 11100(27-23) | D(22) | 00(21-20) | Vn(19-16) |
// Vd(15-12) | 101(11-9) | sz=1(8) | N(7) | op=0(6) | M(5) | 0(4) | Vm(3-0)
int vd, d;
dst.split_code(&vd, &d);
int vn, n;
src1.split_code(&vn, &n);
int vm, m;
src2.split_code(&vm, &m);
emit(cond | 0x1C*B23 | d*B22 | vn*B16 | vd*B12 | 0x5*B9 | B8 | n*B7 | m*B5 |
vm);
}
void Assembler::vmls(const DwVfpRegister dst,
const DwVfpRegister src1,
const DwVfpRegister src2,
const Condition cond) {
// Instruction details available in ARM DDI 0406C.b, A8-932.
// cond(31-28) | 11100(27-23) | D(22) | 00(21-20) | Vn(19-16) |
// Vd(15-12) | 101(11-9) | sz=1(8) | N(7) | op=1(6) | M(5) | 0(4) | Vm(3-0)
int vd, d;
dst.split_code(&vd, &d);
int vn, n;
src1.split_code(&vn, &n);
int vm, m;
src2.split_code(&vm, &m);
emit(cond | 0x1C*B23 | d*B22 | vn*B16 | vd*B12 | 0x5*B9 | B8 | n*B7 | B6 |
m*B5 | vm);
}
void Assembler::vdiv(const DwVfpRegister dst,
const DwVfpRegister src1,
const DwVfpRegister src2,
const Condition cond) {
// Dd = vdiv(Dn, Dm) double precision floating point division.
// Dd = D:Vd; Dm=M:Vm; Dn=N:Vm.
// Instruction details available in ARM DDI 0406C.b, A8-882.
// cond(31-28) | 11101(27-23)| D(22) | 00(21-20) | Vn(19-16) |
// Vd(15-12) | 101(11-9) | sz=1(8) | N(7) | 0(6) | M(5) | 0(4) | Vm(3-0)
int vd, d;
dst.split_code(&vd, &d);
int vn, n;
src1.split_code(&vn, &n);
int vm, m;
src2.split_code(&vm, &m);
emit(cond | 0x1D*B23 | d*B22 | vn*B16 | vd*B12 | 0x5*B9 | B8 | n*B7 | m*B5 |
vm);
}
void Assembler::vcmp(const DwVfpRegister src1,
const DwVfpRegister src2,
const Condition cond) {
// vcmp(Dd, Dm) double precision floating point comparison.
// Instruction details available in ARM DDI 0406C.b, A8-864.
// cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 0100(19-16) |
// Vd(15-12) | 101(11-9) | sz=1(8) | E=0(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
int vd, d;
src1.split_code(&vd, &d);
int vm, m;
src2.split_code(&vm, &m);
emit(cond | 0x1D*B23 | d*B22 | 0x3*B20 | 0x4*B16 | vd*B12 | 0x5*B9 | B8 | B6 |
m*B5 | vm);
}
void Assembler::vcmp(const DwVfpRegister src1,
const double src2,
const Condition cond) {
// vcmp(Dd, #0.0) double precision floating point comparison.
// Instruction details available in ARM DDI 0406C.b, A8-864.
// cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 0101(19-16) |
// Vd(15-12) | 101(11-9) | sz=1(8) | E=0(7) | 1(6) | 0(5) | 0(4) | 0000(3-0)
DCHECK(src2 == 0.0);
int vd, d;
src1.split_code(&vd, &d);
emit(cond | 0x1D*B23 | d*B22 | 0x3*B20 | 0x5*B16 | vd*B12 | 0x5*B9 | B8 | B6);
}
void Assembler::vmsr(Register dst, Condition cond) {
// Instruction details available in ARM DDI 0406A, A8-652.
// cond(31-28) | 1110 (27-24) | 1110(23-20)| 0001 (19-16) |
// Rt(15-12) | 1010 (11-8) | 0(7) | 00 (6-5) | 1(4) | 0000(3-0)
emit(cond | 0xE*B24 | 0xE*B20 | B16 |
dst.code()*B12 | 0xA*B8 | B4);
}
void Assembler::vmrs(Register dst, Condition cond) {
// Instruction details available in ARM DDI 0406A, A8-652.
// cond(31-28) | 1110 (27-24) | 1111(23-20)| 0001 (19-16) |
// Rt(15-12) | 1010 (11-8) | 0(7) | 00 (6-5) | 1(4) | 0000(3-0)
emit(cond | 0xE*B24 | 0xF*B20 | B16 |
dst.code()*B12 | 0xA*B8 | B4);
}
void Assembler::vsqrt(const DwVfpRegister dst,
const DwVfpRegister src,
const Condition cond) {
// Instruction details available in ARM DDI 0406C.b, A8-1058.
// cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 0001(19-16) |
// Vd(15-12) | 101(11-9) | sz=1(8) | 11(7-6) | M(5) | 0(4) | Vm(3-0)
int vd, d;
dst.split_code(&vd, &d);
int vm, m;
src.split_code(&vm, &m);
emit(cond | 0x1D*B23 | d*B22 | 0x3*B20 | B16 | vd*B12 | 0x5*B9 | B8 | 0x3*B6 |
m*B5 | vm);
}
// Support for NEON.
void Assembler::vld1(NeonSize size,
const NeonListOperand& dst,
const NeonMemOperand& src) {
// Instruction details available in ARM DDI 0406C.b, A8.8.320.
// 1111(31-28) | 01000(27-23) | D(22) | 10(21-20) | Rn(19-16) |
// Vd(15-12) | type(11-8) | size(7-6) | align(5-4) | Rm(3-0)
DCHECK(CpuFeatures::IsSupported(NEON));
int vd, d;
dst.base().split_code(&vd, &d);
emit(0xFU*B28 | 4*B24 | d*B22 | 2*B20 | src.rn().code()*B16 | vd*B12 |
dst.type()*B8 | size*B6 | src.align()*B4 | src.rm().code());
}
void Assembler::vst1(NeonSize size,
const NeonListOperand& src,
const NeonMemOperand& dst) {
// Instruction details available in ARM DDI 0406C.b, A8.8.404.
// 1111(31-28) | 01000(27-23) | D(22) | 00(21-20) | Rn(19-16) |
// Vd(15-12) | type(11-8) | size(7-6) | align(5-4) | Rm(3-0)
DCHECK(CpuFeatures::IsSupported(NEON));
int vd, d;
src.base().split_code(&vd, &d);
emit(0xFU*B28 | 4*B24 | d*B22 | dst.rn().code()*B16 | vd*B12 | src.type()*B8 |
size*B6 | dst.align()*B4 | dst.rm().code());
}
void Assembler::vmovl(NeonDataType dt, QwNeonRegister dst, DwVfpRegister src) {
// Instruction details available in ARM DDI 0406C.b, A8.8.346.
// 1111(31-28) | 001(27-25) | U(24) | 1(23) | D(22) | imm3(21-19) |
// 000(18-16) | Vd(15-12) | 101000(11-6) | M(5) | 1(4) | Vm(3-0)
DCHECK(CpuFeatures::IsSupported(NEON));
int vd, d;
dst.split_code(&vd, &d);
int vm, m;
src.split_code(&vm, &m);
emit(0xFU*B28 | B25 | (dt & NeonDataTypeUMask) | B23 | d*B22 |
(dt & NeonDataTypeSizeMask)*B19 | vd*B12 | 0xA*B8 | m*B5 | B4 | vm);
}
// Pseudo instructions.
void Assembler::nop(int type) {
// ARMv6{K/T2} and v7 have an actual NOP instruction but it serializes
// some of the CPU's pipeline and has to issue. Older ARM chips simply used
// MOV Rx, Rx as NOP and it performs better even in newer CPUs.
// We therefore use MOV Rx, Rx, even on newer CPUs, and use Rx to encode
// a type.
DCHECK(0 <= type && type <= 14); // mov pc, pc isn't a nop.
emit(al | 13*B21 | type*B12 | type);
}
bool Assembler::IsMovT(Instr instr) {
instr &= ~(((kNumberOfConditions - 1) << 28) | // Mask off conditions
((kNumRegisters-1)*B12) | // mask out register
EncodeMovwImmediate(0xFFFF)); // mask out immediate value
return instr == kMovtPattern;
}
bool Assembler::IsMovW(Instr instr) {
instr &= ~(((kNumberOfConditions - 1) << 28) | // Mask off conditions
((kNumRegisters-1)*B12) | // mask out destination
EncodeMovwImmediate(0xFFFF)); // mask out immediate value
return instr == kMovwPattern;
}
Instr Assembler::GetMovTPattern() { return kMovtPattern; }
Instr Assembler::GetMovWPattern() { return kMovwPattern; }
Instr Assembler::EncodeMovwImmediate(uint32_t immediate) {
DCHECK(immediate < 0x10000);
return ((immediate & 0xf000) << 4) | (immediate & 0xfff);
}
Instr Assembler::PatchMovwImmediate(Instr instruction, uint32_t immediate) {
instruction &= ~EncodeMovwImmediate(0xffff);
return instruction | EncodeMovwImmediate(immediate);
}
int Assembler::DecodeShiftImm(Instr instr) {
int rotate = Instruction::RotateValue(instr) * 2;
int immed8 = Instruction::Immed8Value(instr);
return (immed8 >> rotate) | (immed8 << (32 - rotate));
}
Instr Assembler::PatchShiftImm(Instr instr, int immed) {
uint32_t rotate_imm = 0;
uint32_t immed_8 = 0;
bool immed_fits = fits_shifter(immed, &rotate_imm, &immed_8, NULL);
DCHECK(immed_fits);
USE(immed_fits);
return (instr & ~kOff12Mask) | (rotate_imm << 8) | immed_8;
}
bool Assembler::IsNop(Instr instr, int type) {
DCHECK(0 <= type && type <= 14); // mov pc, pc isn't a nop.
// Check for mov rx, rx where x = type.
return instr == (al | 13*B21 | type*B12 | type);
}
bool Assembler::IsMovImmed(Instr instr) {
return (instr & kMovImmedMask) == kMovImmedPattern;
}
bool Assembler::IsOrrImmed(Instr instr) {
return (instr & kOrrImmedMask) == kOrrImmedPattern;
}
// static
bool Assembler::ImmediateFitsAddrMode1Instruction(int32_t imm32) {
uint32_t dummy1;
uint32_t dummy2;
return fits_shifter(imm32, &dummy1, &dummy2, NULL);
}
bool Assembler::ImmediateFitsAddrMode2Instruction(int32_t imm32) {
return is_uint12(abs(imm32));
}
// Debugging.
void Assembler::RecordJSReturn() {
positions_recorder()->WriteRecordedPositions();
CheckBuffer();
RecordRelocInfo(RelocInfo::JS_RETURN);
}
void Assembler::RecordDebugBreakSlot() {
positions_recorder()->WriteRecordedPositions();
CheckBuffer();
RecordRelocInfo(RelocInfo::DEBUG_BREAK_SLOT);
}
void Assembler::RecordComment(const char* msg) {
if (FLAG_code_comments) {
CheckBuffer();
RecordRelocInfo(RelocInfo::COMMENT, reinterpret_cast<intptr_t>(msg));
}
}
void Assembler::RecordConstPool(int size) {
// We only need this for debugger support, to correctly compute offsets in the
// code.
RecordRelocInfo(RelocInfo::CONST_POOL, static_cast<intptr_t>(size));
}
void Assembler::GrowBuffer() {
if (!own_buffer_) FATAL("external code buffer is too small");
// Compute new buffer size.
CodeDesc desc; // the new buffer
if (buffer_size_ < 1 * MB) {
desc.buffer_size = 2*buffer_size_;
} else {
desc.buffer_size = buffer_size_ + 1*MB;
}
CHECK_GT(desc.buffer_size, 0); // no overflow
// Set up new buffer.
desc.buffer = NewArray<byte>(desc.buffer_size);
desc.instr_size = pc_offset();
desc.reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos();
// Copy the data.
int pc_delta = desc.buffer - buffer_;
int rc_delta = (desc.buffer + desc.buffer_size) - (buffer_ + buffer_size_);
MemMove(desc.buffer, buffer_, desc.instr_size);
MemMove(reloc_info_writer.pos() + rc_delta, reloc_info_writer.pos(),
desc.reloc_size);
// Switch buffers.
DeleteArray(buffer_);
buffer_ = desc.buffer;
buffer_size_ = desc.buffer_size;
pc_ += pc_delta;
reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta,
reloc_info_writer.last_pc() + pc_delta);
// None of our relocation types are pc relative pointing outside the code
// buffer nor pc absolute pointing inside the code buffer, so there is no need
// to relocate any emitted relocation entries.
// Relocate pending relocation entries.
for (int i = 0; i < num_pending_32_bit_reloc_info_; i++) {
RelocInfo& rinfo = pending_32_bit_reloc_info_[i];
DCHECK(rinfo.rmode() != RelocInfo::COMMENT &&
rinfo.rmode() != RelocInfo::POSITION);
if (rinfo.rmode() != RelocInfo::JS_RETURN) {
rinfo.set_pc(rinfo.pc() + pc_delta);
}
}
for (int i = 0; i < num_pending_64_bit_reloc_info_; i++) {
RelocInfo& rinfo = pending_64_bit_reloc_info_[i];
DCHECK(rinfo.rmode() == RelocInfo::NONE64);
rinfo.set_pc(rinfo.pc() + pc_delta);
}
constant_pool_builder_.Relocate(pc_delta);
}
void Assembler::db(uint8_t data) {
// No relocation info should be pending while using db. db is used
// to write pure data with no pointers and the constant pool should
// be emitted before using db.
DCHECK(num_pending_32_bit_reloc_info_ == 0);
DCHECK(num_pending_64_bit_reloc_info_ == 0);
CheckBuffer();
*reinterpret_cast<uint8_t*>(pc_) = data;
pc_ += sizeof(uint8_t);
}
void Assembler::dd(uint32_t data) {
// No relocation info should be pending while using dd. dd is used
// to write pure data with no pointers and the constant pool should
// be emitted before using dd.
DCHECK(num_pending_32_bit_reloc_info_ == 0);
DCHECK(num_pending_64_bit_reloc_info_ == 0);
CheckBuffer();
*reinterpret_cast<uint32_t*>(pc_) = data;
pc_ += sizeof(uint32_t);
}
void Assembler::emit_code_stub_address(Code* stub) {
CheckBuffer();
*reinterpret_cast<uint32_t*>(pc_) =
reinterpret_cast<uint32_t>(stub->instruction_start());
pc_ += sizeof(uint32_t);
}
void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) {
RelocInfo rinfo(pc_, rmode, data, NULL);
RecordRelocInfo(rinfo);
}
void Assembler::RecordRelocInfo(const RelocInfo& rinfo) {
if (!RelocInfo::IsNone(rinfo.rmode())) {
// Don't record external references unless the heap will be serialized.
if (rinfo.rmode() == RelocInfo::EXTERNAL_REFERENCE &&
!serializer_enabled() && !emit_debug_code()) {
return;
}
DCHECK(buffer_space() >= kMaxRelocSize); // too late to grow buffer here
if (rinfo.rmode() == RelocInfo::CODE_TARGET_WITH_ID) {
RelocInfo reloc_info_with_ast_id(rinfo.pc(),
rinfo.rmode(),
RecordedAstId().ToInt(),
NULL);
ClearRecordedAstId();
reloc_info_writer.Write(&reloc_info_with_ast_id);
} else {
reloc_info_writer.Write(&rinfo);
}
}
}
ConstantPoolArray::LayoutSection Assembler::ConstantPoolAddEntry(
const RelocInfo& rinfo) {
if (FLAG_enable_ool_constant_pool) {
return constant_pool_builder_.AddEntry(this, rinfo);
} else {
if (rinfo.rmode() == RelocInfo::NONE64) {
DCHECK(num_pending_64_bit_reloc_info_ < kMaxNumPending64RelocInfo);
if (num_pending_64_bit_reloc_info_ == 0) {
first_const_pool_64_use_ = pc_offset();
}
pending_64_bit_reloc_info_[num_pending_64_bit_reloc_info_++] = rinfo;
} else {
DCHECK(num_pending_32_bit_reloc_info_ < kMaxNumPending32RelocInfo);
if (num_pending_32_bit_reloc_info_ == 0) {
first_const_pool_32_use_ = pc_offset();
}
pending_32_bit_reloc_info_[num_pending_32_bit_reloc_info_++] = rinfo;
}
// Make sure the constant pool is not emitted in place of the next
// instruction for which we just recorded relocation info.
BlockConstPoolFor(1);
return ConstantPoolArray::SMALL_SECTION;
}
}
void Assembler::BlockConstPoolFor(int instructions) {
if (FLAG_enable_ool_constant_pool) {
// Should be a no-op if using an out-of-line constant pool.
DCHECK(num_pending_32_bit_reloc_info_ == 0);
DCHECK(num_pending_64_bit_reloc_info_ == 0);
return;
}
int pc_limit = pc_offset() + instructions * kInstrSize;
if (no_const_pool_before_ < pc_limit) {
// Max pool start (if we need a jump and an alignment).
#ifdef DEBUG
int start = pc_limit + kInstrSize + 2 * kPointerSize;
DCHECK((num_pending_32_bit_reloc_info_ == 0) ||
(start - first_const_pool_32_use_ +
num_pending_64_bit_reloc_info_ * kDoubleSize < kMaxDistToIntPool));
DCHECK((num_pending_64_bit_reloc_info_ == 0) ||
(start - first_const_pool_64_use_ < kMaxDistToFPPool));
#endif
no_const_pool_before_ = pc_limit;
}
if (next_buffer_check_ < no_const_pool_before_) {
next_buffer_check_ = no_const_pool_before_;
}
}
void Assembler::CheckConstPool(bool force_emit, bool require_jump) {
if (FLAG_enable_ool_constant_pool) {
// Should be a no-op if using an out-of-line constant pool.
DCHECK(num_pending_32_bit_reloc_info_ == 0);
DCHECK(num_pending_64_bit_reloc_info_ == 0);
return;
}
// Some short sequence of instruction mustn't be broken up by constant pool
// emission, such sequences are protected by calls to BlockConstPoolFor and
// BlockConstPoolScope.
if (is_const_pool_blocked()) {
// Something is wrong if emission is forced and blocked at the same time.
DCHECK(!force_emit);
return;
}
// There is nothing to do if there are no pending constant pool entries.
if ((num_pending_32_bit_reloc_info_ == 0) &&
(num_pending_64_bit_reloc_info_ == 0)) {
// Calculate the offset of the next check.
next_buffer_check_ = pc_offset() + kCheckPoolInterval;
return;
}
// Check that the code buffer is large enough before emitting the constant
// pool (include the jump over the pool and the constant pool marker and
// the gap to the relocation information).
int jump_instr = require_jump ? kInstrSize : 0;
int size_up_to_marker = jump_instr + kInstrSize;
int size_after_marker = num_pending_32_bit_reloc_info_ * kPointerSize;
bool has_fp_values = (num_pending_64_bit_reloc_info_ > 0);
bool require_64_bit_align = false;
if (has_fp_values) {
require_64_bit_align = (((uintptr_t)pc_ + size_up_to_marker) & 0x7);
if (require_64_bit_align) {
size_after_marker += kInstrSize;
}
size_after_marker += num_pending_64_bit_reloc_info_ * kDoubleSize;
}
int size = size_up_to_marker + size_after_marker;
// We emit a constant pool when:
// * requested to do so by parameter force_emit (e.g. after each function).
// * the distance from the first instruction accessing the constant pool to
// any of the constant pool entries will exceed its limit the next
// time the pool is checked. This is overly restrictive, but we don't emit
// constant pool entries in-order so it's conservatively correct.
// * the instruction doesn't require a jump after itself to jump over the
// constant pool, and we're getting close to running out of range.
if (!force_emit) {
DCHECK((first_const_pool_32_use_ >= 0) || (first_const_pool_64_use_ >= 0));
bool need_emit = false;
if (has_fp_values) {
int dist64 = pc_offset() +
size -
num_pending_32_bit_reloc_info_ * kPointerSize -
first_const_pool_64_use_;
if ((dist64 >= kMaxDistToFPPool - kCheckPoolInterval) ||
(!require_jump && (dist64 >= kMaxDistToFPPool / 2))) {
need_emit = true;
}
}
int dist32 =
pc_offset() + size - first_const_pool_32_use_;
if ((dist32 >= kMaxDistToIntPool - kCheckPoolInterval) ||
(!require_jump && (dist32 >= kMaxDistToIntPool / 2))) {
need_emit = true;
}
if (!need_emit) return;
}
int needed_space = size + kGap;
while (buffer_space() <= needed_space) GrowBuffer();
{
// Block recursive calls to CheckConstPool.
BlockConstPoolScope block_const_pool(this);
RecordComment("[ Constant Pool");
RecordConstPool(size);
// Emit jump over constant pool if necessary.
Label after_pool;
if (require_jump) {
b(&after_pool);
}
// Put down constant pool marker "Undefined instruction".
// The data size helps disassembly know what to print.
emit(kConstantPoolMarker |
EncodeConstantPoolLength(size_after_marker / kPointerSize));
if (require_64_bit_align) {
emit(kConstantPoolMarker);
}
// Emit 64-bit constant pool entries first: their range is smaller than
// 32-bit entries.
for (int i = 0; i < num_pending_64_bit_reloc_info_; i++) {
RelocInfo& rinfo = pending_64_bit_reloc_info_[i];
DCHECK(!((uintptr_t)pc_ & 0x7)); // Check 64-bit alignment.
Instr instr = instr_at(rinfo.pc());
// Instruction to patch must be 'vldr rd, [pc, #offset]' with offset == 0.
DCHECK((IsVldrDPcImmediateOffset(instr) &&
GetVldrDRegisterImmediateOffset(instr) == 0));
int delta = pc_ - rinfo.pc() - kPcLoadDelta;
DCHECK(is_uint10(delta));
bool found = false;
uint64_t value = rinfo.raw_data64();
for (int j = 0; j < i; j++) {
RelocInfo& rinfo2 = pending_64_bit_reloc_info_[j];
if (value == rinfo2.raw_data64()) {
found = true;
DCHECK(rinfo2.rmode() == RelocInfo::NONE64);
Instr instr2 = instr_at(rinfo2.pc());
DCHECK(IsVldrDPcImmediateOffset(instr2));
delta = GetVldrDRegisterImmediateOffset(instr2);
delta += rinfo2.pc() - rinfo.pc();
break;
}
}
instr_at_put(rinfo.pc(), SetVldrDRegisterImmediateOffset(instr, delta));
if (!found) {
uint64_t uint_data = rinfo.raw_data64();
emit(uint_data & 0xFFFFFFFF);
emit(uint_data >> 32);
}
}
// Emit 32-bit constant pool entries.
for (int i = 0; i < num_pending_32_bit_reloc_info_; i++) {
RelocInfo& rinfo = pending_32_bit_reloc_info_[i];
DCHECK(rinfo.rmode() != RelocInfo::COMMENT &&
rinfo.rmode() != RelocInfo::POSITION &&
rinfo.rmode() != RelocInfo::STATEMENT_POSITION &&
rinfo.rmode() != RelocInfo::CONST_POOL &&
rinfo.rmode() != RelocInfo::NONE64);
Instr instr = instr_at(rinfo.pc());
// 64-bit loads shouldn't get here.
DCHECK(!IsVldrDPcImmediateOffset(instr));
if (IsLdrPcImmediateOffset(instr) &&
GetLdrRegisterImmediateOffset(instr) == 0) {
int delta = pc_ - rinfo.pc() - kPcLoadDelta;
DCHECK(is_uint12(delta));
// 0 is the smallest delta:
// ldr rd, [pc, #0]
// constant pool marker
// data
bool found = false;
if (!serializer_enabled() && rinfo.rmode() >= RelocInfo::CELL) {
for (int j = 0; j < i; j++) {
RelocInfo& rinfo2 = pending_32_bit_reloc_info_[j];
if ((rinfo2.data() == rinfo.data()) &&
(rinfo2.rmode() == rinfo.rmode())) {
Instr instr2 = instr_at(rinfo2.pc());
if (IsLdrPcImmediateOffset(instr2)) {
delta = GetLdrRegisterImmediateOffset(instr2);
delta += rinfo2.pc() - rinfo.pc();
found = true;
break;
}
}
}
}
instr_at_put(rinfo.pc(), SetLdrRegisterImmediateOffset(instr, delta));
if (!found) {
emit(rinfo.data());
}
} else {
DCHECK(IsMovW(instr));
}
}
num_pending_32_bit_reloc_info_ = 0;
num_pending_64_bit_reloc_info_ = 0;
first_const_pool_32_use_ = -1;
first_const_pool_64_use_ = -1;
RecordComment("]");
if (after_pool.is_linked()) {
bind(&after_pool);
}
}
// Since a constant pool was just emitted, move the check offset forward by
// the standard interval.
next_buffer_check_ = pc_offset() + kCheckPoolInterval;
}
Handle<ConstantPoolArray> Assembler::NewConstantPool(Isolate* isolate) {
if (!FLAG_enable_ool_constant_pool) {
return isolate->factory()->empty_constant_pool_array();
}
return constant_pool_builder_.New(isolate);
}
void Assembler::PopulateConstantPool(ConstantPoolArray* constant_pool) {
constant_pool_builder_.Populate(this, constant_pool);
}
ConstantPoolBuilder::ConstantPoolBuilder()
: entries_(), current_section_(ConstantPoolArray::SMALL_SECTION) {}
bool ConstantPoolBuilder::IsEmpty() {
return entries_.size() == 0;
}
ConstantPoolArray::Type ConstantPoolBuilder::GetConstantPoolType(
RelocInfo::Mode rmode) {
if (rmode == RelocInfo::NONE64) {
return ConstantPoolArray::INT64;
} else if (!RelocInfo::IsGCRelocMode(rmode)) {
return ConstantPoolArray::INT32;
} else if (RelocInfo::IsCodeTarget(rmode)) {
return ConstantPoolArray::CODE_PTR;
} else {
DCHECK(RelocInfo::IsGCRelocMode(rmode) && !RelocInfo::IsCodeTarget(rmode));
return ConstantPoolArray::HEAP_PTR;
}
}
ConstantPoolArray::LayoutSection ConstantPoolBuilder::AddEntry(
Assembler* assm, const RelocInfo& rinfo) {
RelocInfo::Mode rmode = rinfo.rmode();
DCHECK(rmode != RelocInfo::COMMENT &&
rmode != RelocInfo::POSITION &&
rmode != RelocInfo::STATEMENT_POSITION &&
rmode != RelocInfo::CONST_POOL);
// Try to merge entries which won't be patched.
int merged_index = -1;
ConstantPoolArray::LayoutSection entry_section = current_section_;
if (RelocInfo::IsNone(rmode) ||
(!assm->serializer_enabled() && (rmode >= RelocInfo::CELL))) {
size_t i;
std::vector<ConstantPoolEntry>::const_iterator it;
for (it = entries_.begin(), i = 0; it != entries_.end(); it++, i++) {
if (RelocInfo::IsEqual(rinfo, it->rinfo_)) {
// Merge with found entry.
merged_index = i;
entry_section = entries_[i].section_;
break;
}
}
}
DCHECK(entry_section <= current_section_);
entries_.push_back(ConstantPoolEntry(rinfo, entry_section, merged_index));
if (merged_index == -1) {
// Not merged, so update the appropriate count.
number_of_entries_[entry_section].increment(GetConstantPoolType(rmode));
}
// Check if we still have room for another entry in the small section
// given Arm's ldr and vldr immediate offset range.
if (current_section_ == ConstantPoolArray::SMALL_SECTION &&
!(is_uint12(ConstantPoolArray::SizeFor(*small_entries())) &&
is_uint10(ConstantPoolArray::MaxInt64Offset(
small_entries()->count_of(ConstantPoolArray::INT64))))) {
current_section_ = ConstantPoolArray::EXTENDED_SECTION;
}
return entry_section;
}
void ConstantPoolBuilder::Relocate(int pc_delta) {
for (std::vector<ConstantPoolEntry>::iterator entry = entries_.begin();
entry != entries_.end(); entry++) {
DCHECK(entry->rinfo_.rmode() != RelocInfo::JS_RETURN);
entry->rinfo_.set_pc(entry->rinfo_.pc() + pc_delta);
}
}
Handle<ConstantPoolArray> ConstantPoolBuilder::New(Isolate* isolate) {
if (IsEmpty()) {
return isolate->factory()->empty_constant_pool_array();
} else if (extended_entries()->is_empty()) {
return isolate->factory()->NewConstantPoolArray(*small_entries());
} else {
DCHECK(current_section_ == ConstantPoolArray::EXTENDED_SECTION);
return isolate->factory()->NewExtendedConstantPoolArray(
*small_entries(), *extended_entries());
}
}
void ConstantPoolBuilder::Populate(Assembler* assm,
ConstantPoolArray* constant_pool) {
DCHECK_EQ(extended_entries()->is_empty(),
!constant_pool->is_extended_layout());
DCHECK(small_entries()->equals(ConstantPoolArray::NumberOfEntries(
constant_pool, ConstantPoolArray::SMALL_SECTION)));
if (constant_pool->is_extended_layout()) {
DCHECK(extended_entries()->equals(ConstantPoolArray::NumberOfEntries(
constant_pool, ConstantPoolArray::EXTENDED_SECTION)));
}
// Set up initial offsets.
int offsets[ConstantPoolArray::NUMBER_OF_LAYOUT_SECTIONS]
[ConstantPoolArray::NUMBER_OF_TYPES];
for (int section = 0; section <= constant_pool->final_section(); section++) {
int section_start = (section == ConstantPoolArray::EXTENDED_SECTION)
? small_entries()->total_count()
: 0;
for (int i = 0; i < ConstantPoolArray::NUMBER_OF_TYPES; i++) {
ConstantPoolArray::Type type = static_cast<ConstantPoolArray::Type>(i);
if (number_of_entries_[section].count_of(type) != 0) {
offsets[section][type] = constant_pool->OffsetOfElementAt(
number_of_entries_[section].base_of(type) + section_start);
}
}
}
for (std::vector<ConstantPoolEntry>::iterator entry = entries_.begin();
entry != entries_.end(); entry++) {
RelocInfo rinfo = entry->rinfo_;
RelocInfo::Mode rmode = entry->rinfo_.rmode();
ConstantPoolArray::Type type = GetConstantPoolType(rmode);
// Update constant pool if necessary and get the entry's offset.
int offset;
if (entry->merged_index_ == -1) {
offset = offsets[entry->section_][type];
offsets[entry->section_][type] += ConstantPoolArray::entry_size(type);
if (type == ConstantPoolArray::INT64) {
constant_pool->set_at_offset(offset, rinfo.data64());
} else if (type == ConstantPoolArray::INT32) {
constant_pool->set_at_offset(offset,
static_cast<int32_t>(rinfo.data()));
} else if (type == ConstantPoolArray::CODE_PTR) {
constant_pool->set_at_offset(offset,
reinterpret_cast<Address>(rinfo.data()));
} else {
DCHECK(type == ConstantPoolArray::HEAP_PTR);
constant_pool->set_at_offset(offset,
reinterpret_cast<Object*>(rinfo.data()));
}
offset -= kHeapObjectTag;
entry->merged_index_ = offset; // Stash offset for merged entries.
} else {
DCHECK(entry->merged_index_ < (entry - entries_.begin()));
offset = entries_[entry->merged_index_].merged_index_;
}
// Patch vldr/ldr instruction with correct offset.
Instr instr = assm->instr_at(rinfo.pc());
if (entry->section_ == ConstantPoolArray::EXTENDED_SECTION) {
if (CpuFeatures::IsSupported(ARMv7)) {
// Instructions to patch must be 'movw rd, [#0]' and 'movt rd, [#0].
Instr next_instr = assm->instr_at(rinfo.pc() + Assembler::kInstrSize);
DCHECK((Assembler::IsMovW(instr) &&
Instruction::ImmedMovwMovtValue(instr) == 0));
DCHECK((Assembler::IsMovT(next_instr) &&
Instruction::ImmedMovwMovtValue(next_instr) == 0));
assm->instr_at_put(
rinfo.pc(), Assembler::PatchMovwImmediate(instr, offset & 0xffff));
assm->instr_at_put(
rinfo.pc() + Assembler::kInstrSize,
Assembler::PatchMovwImmediate(next_instr, offset >> 16));
} else {
// Instructions to patch must be 'mov rd, [#0]' and 'orr rd, rd, [#0].
Instr instr_2 = assm->instr_at(rinfo.pc() + Assembler::kInstrSize);
Instr instr_3 = assm->instr_at(rinfo.pc() + 2 * Assembler::kInstrSize);
Instr instr_4 = assm->instr_at(rinfo.pc() + 3 * Assembler::kInstrSize);
DCHECK((Assembler::IsMovImmed(instr) &&
Instruction::Immed8Value(instr) == 0));
DCHECK((Assembler::IsOrrImmed(instr_2) &&
Instruction::Immed8Value(instr_2) == 0) &&
Assembler::GetRn(instr_2).is(Assembler::GetRd(instr_2)));
DCHECK((Assembler::IsOrrImmed(instr_3) &&
Instruction::Immed8Value(instr_3) == 0) &&
Assembler::GetRn(instr_3).is(Assembler::GetRd(instr_3)));
DCHECK((Assembler::IsOrrImmed(instr_4) &&
Instruction::Immed8Value(instr_4) == 0) &&
Assembler::GetRn(instr_4).is(Assembler::GetRd(instr_4)));
assm->instr_at_put(
rinfo.pc(), Assembler::PatchShiftImm(instr, (offset & kImm8Mask)));
assm->instr_at_put(
rinfo.pc() + Assembler::kInstrSize,
Assembler::PatchShiftImm(instr_2, (offset & (kImm8Mask << 8))));
assm->instr_at_put(
rinfo.pc() + 2 * Assembler::kInstrSize,
Assembler::PatchShiftImm(instr_3, (offset & (kImm8Mask << 16))));
assm->instr_at_put(
rinfo.pc() + 3 * Assembler::kInstrSize,
Assembler::PatchShiftImm(instr_4, (offset & (kImm8Mask << 24))));
}
} else if (type == ConstantPoolArray::INT64) {
// Instruction to patch must be 'vldr rd, [pp, #0]'.
DCHECK((Assembler::IsVldrDPpImmediateOffset(instr) &&
Assembler::GetVldrDRegisterImmediateOffset(instr) == 0));
DCHECK(is_uint10(offset));
assm->instr_at_put(rinfo.pc(), Assembler::SetVldrDRegisterImmediateOffset(
instr, offset));
} else {
// Instruction to patch must be 'ldr rd, [pp, #0]'.
DCHECK((Assembler::IsLdrPpImmediateOffset(instr) &&
Assembler::GetLdrRegisterImmediateOffset(instr) == 0));
DCHECK(is_uint12(offset));
assm->instr_at_put(
rinfo.pc(), Assembler::SetLdrRegisterImmediateOffset(instr, offset));
}
}
}
} } // namespace v8::internal
#endif // V8_TARGET_ARCH_ARM