C++程序  |  3790行  |  143.65 KB

/*
 * Copyright 2011 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "SkCanvas.h"
#include "SkPaint.h"
#include "SkParse.h"
#include "SkParsePath.h"
#include "SkPath.h"
#include "SkPathEffect.h"
#include "SkRRect.h"
#include "SkRandom.h"
#include "SkReader32.h"
#include "SkSize.h"
#include "SkStream.h"
#include "SkSurface.h"
#include "SkTypes.h"
#include "SkWriter32.h"
#include "Test.h"

static void set_radii(SkVector radii[4], int index, float rad) {
    sk_bzero(radii, sizeof(SkVector) * 4);
    radii[index].set(rad, rad);
}

static void test_add_rrect(skiatest::Reporter* reporter, const SkRect& bounds,
                           const SkVector radii[4]) {
    SkRRect rrect;
    rrect.setRectRadii(bounds, radii);
    REPORTER_ASSERT(reporter, bounds == rrect.rect());

    SkPath path;
    // this line should not assert in the debug build (from validate)
    path.addRRect(rrect);
    REPORTER_ASSERT(reporter, bounds == path.getBounds());
}

static void test_skbug_3469(skiatest::Reporter* reporter) {
    SkPath path;
    path.moveTo(20, 20);
    path.quadTo(20, 50, 80, 50);
    path.quadTo(20, 50, 20, 80);
    REPORTER_ASSERT(reporter, !path.isConvex());
}

static void test_skbug_3239(skiatest::Reporter* reporter) {
    const float min = SkBits2Float(0xcb7f16c8); /* -16717512.000000 */
    const float max = SkBits2Float(0x4b7f1c1d); /*  16718877.000000 */
    const float big = SkBits2Float(0x4b7f1bd7); /*  16718807.000000 */

    const float rad = 33436320;

    const SkRect rectx = SkRect::MakeLTRB(min, min, max, big);
    const SkRect recty = SkRect::MakeLTRB(min, min, big, max);

    SkVector radii[4];
    for (int i = 0; i < 4; ++i) {
        set_radii(radii, i, rad);
        test_add_rrect(reporter, rectx, radii);
        test_add_rrect(reporter, recty, radii);
    }
}

static void make_path_crbug364224(SkPath* path) {
    path->reset();
    path->moveTo(3.747501373f, 2.724499941f);
    path->lineTo(3.747501373f, 3.75f);
    path->cubicTo(3.747501373f, 3.88774991f, 3.635501385f, 4.0f, 3.497501373f, 4.0f);
    path->lineTo(0.7475013733f, 4.0f);
    path->cubicTo(0.6095013618f, 4.0f, 0.4975013733f, 3.88774991f, 0.4975013733f, 3.75f);
    path->lineTo(0.4975013733f, 1.0f);
    path->cubicTo(0.4975013733f, 0.8622499704f, 0.6095013618f, 0.75f, 0.7475013733f,0.75f);
    path->lineTo(3.497501373f, 0.75f);
    path->cubicTo(3.50275135f, 0.75f, 3.5070014f, 0.7527500391f, 3.513001442f, 0.753000021f);
    path->lineTo(3.715001345f, 0.5512499809f);
    path->cubicTo(3.648251295f, 0.5194999576f, 3.575501442f, 0.4999999702f, 3.497501373f, 0.4999999702f);
    path->lineTo(0.7475013733f, 0.4999999702f);
    path->cubicTo(0.4715013802f, 0.4999999702f, 0.2475013733f, 0.7239999771f, 0.2475013733f, 1.0f);
    path->lineTo(0.2475013733f, 3.75f);
    path->cubicTo(0.2475013733f, 4.026000023f, 0.4715013504f, 4.25f, 0.7475013733f, 4.25f);
    path->lineTo(3.497501373f, 4.25f);
    path->cubicTo(3.773501396f, 4.25f, 3.997501373f, 4.026000023f, 3.997501373f, 3.75f);
    path->lineTo(3.997501373f, 2.474750042f);
    path->lineTo(3.747501373f, 2.724499941f);
    path->close();
}

static void make_path_crbug364224_simplified(SkPath* path) {
    path->moveTo(3.747501373f, 2.724499941f);
    path->cubicTo(3.648251295f, 0.5194999576f, 3.575501442f, 0.4999999702f, 3.497501373f, 0.4999999702f);
    path->close();
}

static void test_path_crbug364224() {
    SkPath path;
    SkPaint paint;
    SkAutoTUnref<SkSurface> surface(SkSurface::NewRasterN32Premul(84, 88));
    SkCanvas* canvas = surface->getCanvas();

    make_path_crbug364224_simplified(&path);
    canvas->drawPath(path, paint);

    make_path_crbug364224(&path);
    canvas->drawPath(path, paint);
}

/**
 * In debug mode, this path was causing an assertion to fail in
 * SkPathStroker::preJoinTo() and, in Release, the use of an unitialized value.
 */
static void make_path_crbugskia2820(SkPath* path, skiatest::Reporter* reporter) {
    SkPoint orig, p1, p2, p3;
    orig = SkPoint::Make(1.f, 1.f);
    p1 = SkPoint::Make(1.f - SK_ScalarNearlyZero, 1.f);
    p2 = SkPoint::Make(1.f, 1.f + SK_ScalarNearlyZero);
    p3 = SkPoint::Make(2.f, 2.f);

    path->reset();
    path->moveTo(orig);
    path->cubicTo(p1, p2, p3);
    path->close();
}

static void test_path_crbugskia2820(skiatest::Reporter* reporter) {//GrContext* context) {
    SkPath path;
    make_path_crbugskia2820(&path, reporter);

    SkStrokeRec stroke(SkStrokeRec::kFill_InitStyle);
    stroke.setStrokeStyle(2 * SK_Scalar1);
    stroke.applyToPath(&path, path);
}

static void make_path0(SkPath* path) {
    // from  *  https://code.google.com/p/skia/issues/detail?id=1706

    path->moveTo(146.939f, 1012.84f);
    path->lineTo(181.747f, 1009.18f);
    path->lineTo(182.165f, 1013.16f);
    path->lineTo(147.357f, 1016.82f);
    path->lineTo(146.939f, 1012.84f);
    path->close();
}

static void make_path1(SkPath* path) {
    path->addRect(SkRect::MakeXYWH(10, 10, 10, 1));
}

typedef void (*PathProc)(SkPath*);

/*
 *  Regression test: we used to crash (overwrite internal storage) during
 *  construction of the region when the path was INVERSE. That is now fixed,
 *  so test these regions (which used to assert/crash).
 *
 *  https://code.google.com/p/skia/issues/detail?id=1706
 */
static void test_path_to_region(skiatest::Reporter* reporter) {
    PathProc procs[] = {
        make_path0,
        make_path1,
    };

    SkRegion clip;
    clip.setRect(0, 0, 1255, 1925);

    for (size_t i = 0; i < SK_ARRAY_COUNT(procs); ++i) {
        SkPath path;
        procs[i](&path);

        SkRegion rgn;
        rgn.setPath(path, clip);
        path.toggleInverseFillType();
        rgn.setPath(path, clip);
    }
}

#if defined(WIN32)
    #define SUPPRESS_VISIBILITY_WARNING
#else
    #define SUPPRESS_VISIBILITY_WARNING __attribute__((visibility("hidden")))
#endif

static void test_path_close_issue1474(skiatest::Reporter* reporter) {
    // This test checks that r{Line,Quad,Conic,Cubic}To following a close()
    // are relative to the point we close to, not relative to the point we close from.
    SkPath path;
    SkPoint last;

    // Test rLineTo().
    path.rLineTo(0, 100);
    path.rLineTo(100, 0);
    path.close();          // Returns us back to 0,0.
    path.rLineTo(50, 50);  // This should go to 50,50.

    path.getLastPt(&last);
    REPORTER_ASSERT(reporter, 50 == last.fX);
    REPORTER_ASSERT(reporter, 50 == last.fY);

    // Test rQuadTo().
    path.rewind();
    path.rLineTo(0, 100);
    path.rLineTo(100, 0);
    path.close();
    path.rQuadTo(50, 50, 75, 75);

    path.getLastPt(&last);
    REPORTER_ASSERT(reporter, 75 == last.fX);
    REPORTER_ASSERT(reporter, 75 == last.fY);

    // Test rConicTo().
    path.rewind();
    path.rLineTo(0, 100);
    path.rLineTo(100, 0);
    path.close();
    path.rConicTo(50, 50, 85, 85, 2);

    path.getLastPt(&last);
    REPORTER_ASSERT(reporter, 85 == last.fX);
    REPORTER_ASSERT(reporter, 85 == last.fY);

    // Test rCubicTo().
    path.rewind();
    path.rLineTo(0, 100);
    path.rLineTo(100, 0);
    path.close();
    path.rCubicTo(50, 50, 85, 85, 95, 95);

    path.getLastPt(&last);
    REPORTER_ASSERT(reporter, 95 == last.fX);
    REPORTER_ASSERT(reporter, 95 == last.fY);
}

static void test_gen_id(skiatest::Reporter* reporter) {
    SkPath a, b;
    REPORTER_ASSERT(reporter, a.getGenerationID() == b.getGenerationID());

    a.moveTo(0, 0);
    const uint32_t z = a.getGenerationID();
    REPORTER_ASSERT(reporter, z != b.getGenerationID());

    a.reset();
    REPORTER_ASSERT(reporter, a.getGenerationID() == b.getGenerationID());

    a.moveTo(1, 1);
    const uint32_t y = a.getGenerationID();
    REPORTER_ASSERT(reporter, z != y);

    b.moveTo(2, 2);
    const uint32_t x = b.getGenerationID();
    REPORTER_ASSERT(reporter, x != y && x != z);

    a.swap(b);
    REPORTER_ASSERT(reporter, b.getGenerationID() == y && a.getGenerationID() == x);

    b = a;
    REPORTER_ASSERT(reporter, b.getGenerationID() == x);

    SkPath c(a);
    REPORTER_ASSERT(reporter, c.getGenerationID() == x);

    c.lineTo(3, 3);
    const uint32_t w = c.getGenerationID();
    REPORTER_ASSERT(reporter, b.getGenerationID() == x);
    REPORTER_ASSERT(reporter, a.getGenerationID() == x);
    REPORTER_ASSERT(reporter, w != x);

#ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK
    static bool kExpectGenIDToIgnoreFill = false;
#else
    static bool kExpectGenIDToIgnoreFill = true;
#endif

    c.toggleInverseFillType();
    const uint32_t v = c.getGenerationID();
    REPORTER_ASSERT(reporter, (v == w) == kExpectGenIDToIgnoreFill);

    c.rewind();
    REPORTER_ASSERT(reporter, v != c.getGenerationID());
}

// This used to assert in the debug build, as the edges did not all line-up.
static void test_bad_cubic_crbug234190() {
    SkPath path;
    path.moveTo(13.8509f, 3.16858f);
    path.cubicTo(-2.35893e+08f, -4.21044e+08f,
                 -2.38991e+08f, -4.26573e+08f,
                 -2.41016e+08f, -4.30188e+08f);

    SkPaint paint;
    paint.setAntiAlias(true);
    SkAutoTUnref<SkSurface> surface(SkSurface::NewRasterN32Premul(84, 88));
    surface->getCanvas()->drawPath(path, paint);
}

static void test_bad_cubic_crbug229478() {
    const SkPoint pts[] = {
        { 4595.91064f,    -11596.9873f },
        { 4597.2168f,    -11595.9414f },
        { 4598.52344f,    -11594.8955f },
        { 4599.83008f,    -11593.8496f },
    };

    SkPath path;
    path.moveTo(pts[0]);
    path.cubicTo(pts[1], pts[2], pts[3]);

    SkPaint paint;
    paint.setStyle(SkPaint::kStroke_Style);
    paint.setStrokeWidth(20);

    SkPath dst;
    // Before the fix, this would infinite-recurse, and run out of stack
    // because we would keep trying to subdivide a degenerate cubic segment.
    paint.getFillPath(path, &dst, NULL);
}

static void build_path_170666(SkPath& path) {
    path.moveTo(17.9459f, 21.6344f);
    path.lineTo(139.545f, -47.8105f);
    path.lineTo(139.545f, -47.8105f);
    path.lineTo(131.07f, -47.3888f);
    path.lineTo(131.07f, -47.3888f);
    path.lineTo(122.586f, -46.9532f);
    path.lineTo(122.586f, -46.9532f);
    path.lineTo(18076.6f, 31390.9f);
    path.lineTo(18076.6f, 31390.9f);
    path.lineTo(18085.1f, 31390.5f);
    path.lineTo(18085.1f, 31390.5f);
    path.lineTo(18076.6f, 31390.9f);
    path.lineTo(18076.6f, 31390.9f);
    path.lineTo(17955, 31460.3f);
    path.lineTo(17955, 31460.3f);
    path.lineTo(17963.5f, 31459.9f);
    path.lineTo(17963.5f, 31459.9f);
    path.lineTo(17971.9f, 31459.5f);
    path.lineTo(17971.9f, 31459.5f);
    path.lineTo(17.9551f, 21.6205f);
    path.lineTo(17.9551f, 21.6205f);
    path.lineTo(9.47091f, 22.0561f);
    path.lineTo(9.47091f, 22.0561f);
    path.lineTo(17.9459f, 21.6344f);
    path.lineTo(17.9459f, 21.6344f);
    path.close();path.moveTo(0.995934f, 22.4779f);
    path.lineTo(0.986725f, 22.4918f);
    path.lineTo(0.986725f, 22.4918f);
    path.lineTo(17955, 31460.4f);
    path.lineTo(17955, 31460.4f);
    path.lineTo(17971.9f, 31459.5f);
    path.lineTo(17971.9f, 31459.5f);
    path.lineTo(18093.6f, 31390.1f);
    path.lineTo(18093.6f, 31390.1f);
    path.lineTo(18093.6f, 31390);
    path.lineTo(18093.6f, 31390);
    path.lineTo(139.555f, -47.8244f);
    path.lineTo(139.555f, -47.8244f);
    path.lineTo(122.595f, -46.9671f);
    path.lineTo(122.595f, -46.9671f);
    path.lineTo(0.995934f, 22.4779f);
    path.lineTo(0.995934f, 22.4779f);
    path.close();
    path.moveTo(5.43941f, 25.5223f);
    path.lineTo(798267, -28871.1f);
    path.lineTo(798267, -28871.1f);
    path.lineTo(3.12512e+06f, -113102);
    path.lineTo(3.12512e+06f, -113102);
    path.cubicTo(5.16324e+06f, -186882, 8.15247e+06f, -295092, 1.1957e+07f, -432813);
    path.cubicTo(1.95659e+07f, -708257, 3.04359e+07f, -1.10175e+06f, 4.34798e+07f, -1.57394e+06f);
    path.cubicTo(6.95677e+07f, -2.51831e+06f, 1.04352e+08f, -3.77748e+06f, 1.39135e+08f, -5.03666e+06f);
    path.cubicTo(1.73919e+08f, -6.29583e+06f, 2.08703e+08f, -7.555e+06f, 2.34791e+08f, -8.49938e+06f);
    path.cubicTo(2.47835e+08f, -8.97157e+06f, 2.58705e+08f, -9.36506e+06f, 2.66314e+08f, -9.6405e+06f);
    path.cubicTo(2.70118e+08f, -9.77823e+06f, 2.73108e+08f, -9.88644e+06f, 2.75146e+08f, -9.96022e+06f);
    path.cubicTo(2.76165e+08f, -9.99711e+06f, 2.76946e+08f, -1.00254e+07f, 2.77473e+08f, -1.00444e+07f);
    path.lineTo(2.78271e+08f, -1.00733e+07f);
    path.lineTo(2.78271e+08f, -1.00733e+07f);
    path.cubicTo(2.78271e+08f, -1.00733e+07f, 2.08703e+08f, -7.555e+06f, 135.238f, 23.3517f);
    path.cubicTo(131.191f, 23.4981f, 125.995f, 23.7976f, 123.631f, 24.0206f);
    path.cubicTo(121.267f, 24.2436f, 122.631f, 24.3056f, 126.677f, 24.1591f);
    path.cubicTo(2.08703e+08f, -7.555e+06f, 2.78271e+08f, -1.00733e+07f, 2.78271e+08f, -1.00733e+07f);
    path.lineTo(2.77473e+08f, -1.00444e+07f);
    path.lineTo(2.77473e+08f, -1.00444e+07f);
    path.cubicTo(2.76946e+08f, -1.00254e+07f, 2.76165e+08f, -9.99711e+06f, 2.75146e+08f, -9.96022e+06f);
    path.cubicTo(2.73108e+08f, -9.88644e+06f, 2.70118e+08f, -9.77823e+06f, 2.66314e+08f, -9.6405e+06f);
    path.cubicTo(2.58705e+08f, -9.36506e+06f, 2.47835e+08f, -8.97157e+06f, 2.34791e+08f, -8.49938e+06f);
    path.cubicTo(2.08703e+08f, -7.555e+06f, 1.73919e+08f, -6.29583e+06f, 1.39135e+08f, -5.03666e+06f);
    path.cubicTo(1.04352e+08f, -3.77749e+06f, 6.95677e+07f, -2.51831e+06f, 4.34798e+07f, -1.57394e+06f);
    path.cubicTo(3.04359e+07f, -1.10175e+06f, 1.95659e+07f, -708258, 1.1957e+07f, -432814);
    path.cubicTo(8.15248e+06f, -295092, 5.16324e+06f, -186883, 3.12513e+06f, -113103);
    path.lineTo(798284, -28872);
    path.lineTo(798284, -28872);
    path.lineTo(22.4044f, 24.6677f);
    path.lineTo(22.4044f, 24.6677f);
    path.cubicTo(22.5186f, 24.5432f, 18.8134f, 24.6337f, 14.1287f, 24.8697f);
    path.cubicTo(9.4439f, 25.1057f, 5.55359f, 25.3978f, 5.43941f, 25.5223f);
    path.close();
}

static void build_path_simple_170666(SkPath& path) {
    path.moveTo(126.677f, 24.1591f);
    path.cubicTo(2.08703e+08f, -7.555e+06f, 2.78271e+08f, -1.00733e+07f, 2.78271e+08f, -1.00733e+07f);
}

// This used to assert in the SK_DEBUG build, as the clip step would fail with
// too-few interations in our cubic-line intersection code. That code now runs
// 24 interations (instead of 16).
static void test_crbug_170666() {
    SkPath path;
    SkPaint paint;
    paint.setAntiAlias(true);

    SkAutoTUnref<SkSurface> surface(SkSurface::NewRasterN32Premul(1000, 1000));

    build_path_simple_170666(path);
    surface->getCanvas()->drawPath(path, paint);

    build_path_170666(path);
    surface->getCanvas()->drawPath(path, paint);
}

static void test_addrect(skiatest::Reporter* reporter) {
    SkPath path;
    path.lineTo(0, 0);
    path.addRect(SkRect::MakeWH(50, 100));
    REPORTER_ASSERT(reporter, path.isRect(NULL));

    path.reset();
    path.lineTo(FLT_EPSILON, FLT_EPSILON);
    path.addRect(SkRect::MakeWH(50, 100));
    REPORTER_ASSERT(reporter, !path.isRect(NULL));

    path.reset();
    path.quadTo(0, 0, 0, 0);
    path.addRect(SkRect::MakeWH(50, 100));
    REPORTER_ASSERT(reporter, !path.isRect(NULL));

    path.reset();
    path.conicTo(0, 0, 0, 0, 0.5f);
    path.addRect(SkRect::MakeWH(50, 100));
    REPORTER_ASSERT(reporter, !path.isRect(NULL));

    path.reset();
    path.cubicTo(0, 0, 0, 0, 0, 0);
    path.addRect(SkRect::MakeWH(50, 100));
    REPORTER_ASSERT(reporter, !path.isRect(NULL));
}

// Make sure we stay non-finite once we get there (unless we reset or rewind).
static void test_addrect_isfinite(skiatest::Reporter* reporter) {
    SkPath path;

    path.addRect(SkRect::MakeWH(50, 100));
    REPORTER_ASSERT(reporter, path.isFinite());

    path.moveTo(0, 0);
    path.lineTo(SK_ScalarInfinity, 42);
    REPORTER_ASSERT(reporter, !path.isFinite());

    path.addRect(SkRect::MakeWH(50, 100));
    REPORTER_ASSERT(reporter, !path.isFinite());

    path.reset();
    REPORTER_ASSERT(reporter, path.isFinite());

    path.addRect(SkRect::MakeWH(50, 100));
    REPORTER_ASSERT(reporter, path.isFinite());
}

static void build_big_path(SkPath* path, bool reducedCase) {
    if (reducedCase) {
        path->moveTo(577330, 1971.72f);
        path->cubicTo(10.7082f, -116.596f, 262.057f, 45.6468f, 294.694f, 1.96237f);
    } else {
        path->moveTo(60.1631f, 7.70567f);
        path->quadTo(60.1631f, 7.70567f, 0.99474f, 0.901199f);
        path->lineTo(577379, 1977.77f);
        path->quadTo(577364, 1979.57f, 577325, 1980.26f);
        path->quadTo(577286, 1980.95f, 577245, 1980.13f);
        path->quadTo(577205, 1979.3f, 577187, 1977.45f);
        path->quadTo(577168, 1975.6f, 577183, 1973.8f);
        path->quadTo(577198, 1972, 577238, 1971.31f);
        path->quadTo(577277, 1970.62f, 577317, 1971.45f);
        path->quadTo(577330, 1971.72f, 577341, 1972.11f);
        path->cubicTo(10.7082f, -116.596f, 262.057f, 45.6468f, 294.694f, 1.96237f);
        path->moveTo(306.718f, -32.912f);
        path->cubicTo(30.531f, 10.0005f, 1502.47f, 13.2804f, 84.3088f, 9.99601f);
    }
}

static void test_clipped_cubic() {
    SkAutoTUnref<SkSurface> surface(SkSurface::NewRasterN32Premul(640, 480));

    // This path used to assert, because our cubic-chopping code incorrectly
    // moved control points after the chop. This test should be run in SK_DEBUG
    // mode to ensure that we no long assert.
    SkPath path;
    for (int doReducedCase = 0; doReducedCase <= 1; ++doReducedCase) {
        build_big_path(&path, SkToBool(doReducedCase));

        SkPaint paint;
        for (int doAA = 0; doAA <= 1; ++doAA) {
            paint.setAntiAlias(SkToBool(doAA));
            surface->getCanvas()->drawPath(path, paint);
        }
    }
}

// Inspired by http://ie.microsoft.com/testdrive/Performance/Chalkboard/
// which triggered an assert, from a tricky cubic. This test replicates that
// example, so we can ensure that we handle it (in SkEdge.cpp), and don't
// assert in the SK_DEBUG build.
static void test_tricky_cubic() {
    const SkPoint pts[] = {
        { SkDoubleToScalar(18.8943768),    SkDoubleToScalar(129.121277) },
        { SkDoubleToScalar(18.8937435),    SkDoubleToScalar(129.121689) },
        { SkDoubleToScalar(18.8950119),    SkDoubleToScalar(129.120422) },
        { SkDoubleToScalar(18.5030727),    SkDoubleToScalar(129.13121)  },
    };

    SkPath path;
    path.moveTo(pts[0]);
    path.cubicTo(pts[1], pts[2], pts[3]);

    SkPaint paint;
    paint.setAntiAlias(true);

    SkSurface* surface = SkSurface::NewRasterN32Premul(19, 130);
    surface->getCanvas()->drawPath(path, paint);
    surface->unref();
}

// Inspired by http://code.google.com/p/chromium/issues/detail?id=141651
//
static void test_isfinite_after_transform(skiatest::Reporter* reporter) {
    SkPath path;
    path.quadTo(157, 366, 286, 208);
    path.arcTo(37, 442, 315, 163, 957494590897113.0f);

    SkMatrix matrix;
    matrix.setScale(1000*1000, 1000*1000);

    // Be sure that path::transform correctly updates isFinite and the bounds
    // if the transformation overflows. The previous bug was that isFinite was
    // set to true in this case, but the bounds were not set to empty (which
    // they should be).
    while (path.isFinite()) {
        REPORTER_ASSERT(reporter, path.getBounds().isFinite());
        REPORTER_ASSERT(reporter, !path.getBounds().isEmpty());
        path.transform(matrix);
    }
    REPORTER_ASSERT(reporter, path.getBounds().isEmpty());

    matrix.setTranslate(SK_Scalar1, SK_Scalar1);
    path.transform(matrix);
    // we need to still be non-finite
    REPORTER_ASSERT(reporter, !path.isFinite());
    REPORTER_ASSERT(reporter, path.getBounds().isEmpty());
}

static void add_corner_arc(SkPath* path, const SkRect& rect,
                           SkScalar xIn, SkScalar yIn,
                           int startAngle)
{

    SkScalar rx = SkMinScalar(rect.width(), xIn);
    SkScalar ry = SkMinScalar(rect.height(), yIn);

    SkRect arcRect;
    arcRect.set(-rx, -ry, rx, ry);
    switch (startAngle) {
    case 0:
        arcRect.offset(rect.fRight - arcRect.fRight, rect.fBottom - arcRect.fBottom);
        break;
    case 90:
        arcRect.offset(rect.fLeft - arcRect.fLeft, rect.fBottom - arcRect.fBottom);
        break;
    case 180:
        arcRect.offset(rect.fLeft - arcRect.fLeft, rect.fTop - arcRect.fTop);
        break;
    case 270:
        arcRect.offset(rect.fRight - arcRect.fRight, rect.fTop - arcRect.fTop);
        break;
    default:
        break;
    }

    path->arcTo(arcRect, SkIntToScalar(startAngle), SkIntToScalar(90), false);
}

static void make_arb_round_rect(SkPath* path, const SkRect& r,
                                SkScalar xCorner, SkScalar yCorner) {
    // we are lazy here and use the same x & y for each corner
    add_corner_arc(path, r, xCorner, yCorner, 270);
    add_corner_arc(path, r, xCorner, yCorner, 0);
    add_corner_arc(path, r, xCorner, yCorner, 90);
    add_corner_arc(path, r, xCorner, yCorner, 180);
    path->close();
}

// Chrome creates its own round rects with each corner possibly being different.
// Performance will suffer if they are not convex.
// Note: PathBench::ArbRoundRectBench performs almost exactly
// the same test (but with drawing)
static void test_arb_round_rect_is_convex(skiatest::Reporter* reporter) {
    SkRandom rand;
    SkRect r;

    for (int i = 0; i < 5000; ++i) {

        SkScalar size = rand.nextUScalar1() * 30;
        if (size < SK_Scalar1) {
            continue;
        }
        r.fLeft = rand.nextUScalar1() * 300;
        r.fTop =  rand.nextUScalar1() * 300;
        r.fRight =  r.fLeft + 2 * size;
        r.fBottom = r.fTop + 2 * size;

        SkPath temp;

        make_arb_round_rect(&temp, r, r.width() / 10, r.height() / 15);

        REPORTER_ASSERT(reporter, temp.isConvex());
    }
}

// Chrome will sometimes create a 0 radius round rect. The degenerate
// quads prevent the path from being converted to a rect
// Note: PathBench::ArbRoundRectBench performs almost exactly
// the same test (but with drawing)
static void test_arb_zero_rad_round_rect_is_rect(skiatest::Reporter* reporter) {
    SkRandom rand;
    SkRect r;

    for (int i = 0; i < 5000; ++i) {

        SkScalar size = rand.nextUScalar1() * 30;
        if (size < SK_Scalar1) {
            continue;
        }
        r.fLeft = rand.nextUScalar1() * 300;
        r.fTop =  rand.nextUScalar1() * 300;
        r.fRight =  r.fLeft + 2 * size;
        r.fBottom = r.fTop + 2 * size;

        SkPath temp;

        make_arb_round_rect(&temp, r, 0, 0);

        SkRect result;
        REPORTER_ASSERT(reporter, temp.isRect(&result));
        REPORTER_ASSERT(reporter, r == result);
    }
}

static void test_rect_isfinite(skiatest::Reporter* reporter) {
    const SkScalar inf = SK_ScalarInfinity;
    const SkScalar negInf = SK_ScalarNegativeInfinity;
    const SkScalar nan = SK_ScalarNaN;

    SkRect r;
    r.setEmpty();
    REPORTER_ASSERT(reporter, r.isFinite());
    r.set(0, 0, inf, negInf);
    REPORTER_ASSERT(reporter, !r.isFinite());
    r.set(0, 0, nan, 0);
    REPORTER_ASSERT(reporter, !r.isFinite());

    SkPoint pts[] = {
        { 0, 0 },
        { SK_Scalar1, 0 },
        { 0, SK_Scalar1 },
    };

    bool isFine = r.setBoundsCheck(pts, 3);
    REPORTER_ASSERT(reporter, isFine);
    REPORTER_ASSERT(reporter, !r.isEmpty());

    pts[1].set(inf, 0);
    isFine = r.setBoundsCheck(pts, 3);
    REPORTER_ASSERT(reporter, !isFine);
    REPORTER_ASSERT(reporter, r.isEmpty());

    pts[1].set(nan, 0);
    isFine = r.setBoundsCheck(pts, 3);
    REPORTER_ASSERT(reporter, !isFine);
    REPORTER_ASSERT(reporter, r.isEmpty());
}

static void test_path_isfinite(skiatest::Reporter* reporter) {
    const SkScalar inf = SK_ScalarInfinity;
    const SkScalar negInf = SK_ScalarNegativeInfinity;
    const SkScalar nan = SK_ScalarNaN;

    SkPath path;
    REPORTER_ASSERT(reporter, path.isFinite());

    path.reset();
    REPORTER_ASSERT(reporter, path.isFinite());

    path.reset();
    path.moveTo(SK_Scalar1, 0);
    REPORTER_ASSERT(reporter, path.isFinite());

    path.reset();
    path.moveTo(inf, negInf);
    REPORTER_ASSERT(reporter, !path.isFinite());

    path.reset();
    path.moveTo(nan, 0);
    REPORTER_ASSERT(reporter, !path.isFinite());
}

static void test_isfinite(skiatest::Reporter* reporter) {
    test_rect_isfinite(reporter);
    test_path_isfinite(reporter);
}

// assert that we always
//  start with a moveTo
//  only have 1 moveTo
//  only have Lines after that
//  end with a single close
//  only have (at most) 1 close
//
static void test_poly(skiatest::Reporter* reporter, const SkPath& path,
                      const SkPoint srcPts[], bool expectClose) {
    SkPath::RawIter iter(path);
    SkPoint         pts[4];

    bool firstTime = true;
    bool foundClose = false;
    for (;;) {
        switch (iter.next(pts)) {
            case SkPath::kMove_Verb:
                REPORTER_ASSERT(reporter, firstTime);
                REPORTER_ASSERT(reporter, pts[0] == srcPts[0]);
                srcPts++;
                firstTime = false;
                break;
            case SkPath::kLine_Verb:
                REPORTER_ASSERT(reporter, !firstTime);
                REPORTER_ASSERT(reporter, pts[1] == srcPts[0]);
                srcPts++;
                break;
            case SkPath::kQuad_Verb:
                REPORTER_ASSERT_MESSAGE(reporter, false, "unexpected quad verb");
                break;
            case SkPath::kConic_Verb:
                REPORTER_ASSERT_MESSAGE(reporter, false, "unexpected conic verb");
                break;
            case SkPath::kCubic_Verb:
                REPORTER_ASSERT_MESSAGE(reporter, false, "unexpected cubic verb");
                break;
            case SkPath::kClose_Verb:
                REPORTER_ASSERT(reporter, !firstTime);
                REPORTER_ASSERT(reporter, !foundClose);
                REPORTER_ASSERT(reporter, expectClose);
                foundClose = true;
                break;
            case SkPath::kDone_Verb:
                goto DONE;
        }
    }
DONE:
    REPORTER_ASSERT(reporter, foundClose == expectClose);
}

static void test_addPoly(skiatest::Reporter* reporter) {
    SkPoint pts[32];
    SkRandom rand;

    for (size_t i = 0; i < SK_ARRAY_COUNT(pts); ++i) {
        pts[i].fX = rand.nextSScalar1();
        pts[i].fY = rand.nextSScalar1();
    }

    for (int doClose = 0; doClose <= 1; ++doClose) {
        for (size_t count = 1; count <= SK_ARRAY_COUNT(pts); ++count) {
            SkPath path;
            path.addPoly(pts, SkToInt(count), SkToBool(doClose));
            test_poly(reporter, path, pts, SkToBool(doClose));
        }
    }
}

static void test_strokerec(skiatest::Reporter* reporter) {
    SkStrokeRec rec(SkStrokeRec::kFill_InitStyle);
    REPORTER_ASSERT(reporter, rec.isFillStyle());

    rec.setHairlineStyle();
    REPORTER_ASSERT(reporter, rec.isHairlineStyle());

    rec.setStrokeStyle(SK_Scalar1, false);
    REPORTER_ASSERT(reporter, SkStrokeRec::kStroke_Style == rec.getStyle());

    rec.setStrokeStyle(SK_Scalar1, true);
    REPORTER_ASSERT(reporter, SkStrokeRec::kStrokeAndFill_Style == rec.getStyle());

    rec.setStrokeStyle(0, false);
    REPORTER_ASSERT(reporter, SkStrokeRec::kHairline_Style == rec.getStyle());

    rec.setStrokeStyle(0, true);
    REPORTER_ASSERT(reporter, SkStrokeRec::kFill_Style == rec.getStyle());
}

// Set this for paths that don't have a consistent direction such as a bowtie.
// (cheapComputeDirection is not expected to catch these.)
static const SkPath::Direction kDontCheckDir = static_cast<SkPath::Direction>(-1);

static void check_direction(skiatest::Reporter* reporter, const SkPath& path,
                            SkPath::Direction expected) {
    if (expected == kDontCheckDir) {
        return;
    }
    SkPath copy(path); // we make a copy so that we don't cache the result on the passed in path.

    SkPath::Direction dir;
    if (copy.cheapComputeDirection(&dir)) {
        REPORTER_ASSERT(reporter, dir == expected);
    } else {
        REPORTER_ASSERT(reporter, SkPath::kUnknown_Direction == expected);
    }
}

static void test_direction(skiatest::Reporter* reporter) {
    size_t i;
    SkPath path;
    REPORTER_ASSERT(reporter, !path.cheapComputeDirection(NULL));
    REPORTER_ASSERT(reporter, !path.cheapIsDirection(SkPath::kCW_Direction));
    REPORTER_ASSERT(reporter, !path.cheapIsDirection(SkPath::kCCW_Direction));
    REPORTER_ASSERT(reporter, path.cheapIsDirection(SkPath::kUnknown_Direction));

    static const char* gDegen[] = {
        "M 10 10",
        "M 10 10 M 20 20",
        "M 10 10 L 20 20",
        "M 10 10 L 10 10 L 10 10",
        "M 10 10 Q 10 10 10 10",
        "M 10 10 C 10 10 10 10 10 10",
    };
    for (i = 0; i < SK_ARRAY_COUNT(gDegen); ++i) {
        path.reset();
        bool valid = SkParsePath::FromSVGString(gDegen[i], &path);
        REPORTER_ASSERT(reporter, valid);
        REPORTER_ASSERT(reporter, !path.cheapComputeDirection(NULL));
    }

    static const char* gCW[] = {
        "M 10 10 L 10 10 Q 20 10 20 20",
        "M 10 10 C 20 10 20 20 20 20",
        "M 20 10 Q 20 20 30 20 L 10 20", // test double-back at y-max
        // rect with top two corners replaced by cubics with identical middle
        // control points
        "M 10 10 C 10 0 10 0 20 0 L 40 0 C 50 0 50 0 50 10",
        "M 20 10 L 0 10 Q 10 10 20 0",  // left, degenerate serif
    };
    for (i = 0; i < SK_ARRAY_COUNT(gCW); ++i) {
        path.reset();
        bool valid = SkParsePath::FromSVGString(gCW[i], &path);
        REPORTER_ASSERT(reporter, valid);
        check_direction(reporter, path, SkPath::kCW_Direction);
    }

    static const char* gCCW[] = {
        "M 10 10 L 10 10 Q 20 10 20 -20",
        "M 10 10 C 20 10 20 -20 20 -20",
        "M 20 10 Q 20 20 10 20 L 30 20", // test double-back at y-max
        // rect with top two corners replaced by cubics with identical middle
        // control points
        "M 50 10 C 50 0 50 0 40 0 L 20 0 C 10 0 10 0 10 10",
        "M 10 10 L 30 10 Q 20 10 10 0",  // right, degenerate serif
    };
    for (i = 0; i < SK_ARRAY_COUNT(gCCW); ++i) {
        path.reset();
        bool valid = SkParsePath::FromSVGString(gCCW[i], &path);
        REPORTER_ASSERT(reporter, valid);
        check_direction(reporter, path, SkPath::kCCW_Direction);
    }

    // Test two donuts, each wound a different direction. Only the outer contour
    // determines the cheap direction
    path.reset();
    path.addCircle(0, 0, SkIntToScalar(2), SkPath::kCW_Direction);
    path.addCircle(0, 0, SkIntToScalar(1), SkPath::kCCW_Direction);
    check_direction(reporter, path, SkPath::kCW_Direction);

    path.reset();
    path.addCircle(0, 0, SkIntToScalar(1), SkPath::kCW_Direction);
    path.addCircle(0, 0, SkIntToScalar(2), SkPath::kCCW_Direction);
    check_direction(reporter, path, SkPath::kCCW_Direction);

    // triangle with one point really far from the origin.
    path.reset();
    // the first point is roughly 1.05e10, 1.05e10
    path.moveTo(SkBits2Float(0x501c7652), SkBits2Float(0x501c7652));
    path.lineTo(110 * SK_Scalar1, -10 * SK_Scalar1);
    path.lineTo(-10 * SK_Scalar1, 60 * SK_Scalar1);
    check_direction(reporter, path, SkPath::kCCW_Direction);

    path.reset();
    path.conicTo(20, 0, 20, 20, 0.5f);
    path.close();
    check_direction(reporter, path, SkPath::kCW_Direction);

    path.reset();
    path.lineTo(1, 1e7f);
    path.lineTo(1e7f, 2e7f);
    path.close();
    REPORTER_ASSERT(reporter, SkPath::kConvex_Convexity == path.getConvexity());
    check_direction(reporter, path, SkPath::kCCW_Direction);
}

static void add_rect(SkPath* path, const SkRect& r) {
    path->moveTo(r.fLeft, r.fTop);
    path->lineTo(r.fRight, r.fTop);
    path->lineTo(r.fRight, r.fBottom);
    path->lineTo(r.fLeft, r.fBottom);
    path->close();
}

static void test_bounds(skiatest::Reporter* reporter) {
    static const SkRect rects[] = {
        { SkIntToScalar(10), SkIntToScalar(160), SkIntToScalar(610), SkIntToScalar(160) },
        { SkIntToScalar(610), SkIntToScalar(160), SkIntToScalar(610), SkIntToScalar(199) },
        { SkIntToScalar(10), SkIntToScalar(198), SkIntToScalar(610), SkIntToScalar(199) },
        { SkIntToScalar(10), SkIntToScalar(160), SkIntToScalar(10), SkIntToScalar(199) },
    };

    SkPath path0, path1;
    for (size_t i = 0; i < SK_ARRAY_COUNT(rects); ++i) {
        path0.addRect(rects[i]);
        add_rect(&path1, rects[i]);
    }

    REPORTER_ASSERT(reporter, path0.getBounds() == path1.getBounds());
}

static void stroke_cubic(const SkPoint pts[4]) {
    SkPath path;
    path.moveTo(pts[0]);
    path.cubicTo(pts[1], pts[2], pts[3]);

    SkPaint paint;
    paint.setStyle(SkPaint::kStroke_Style);
    paint.setStrokeWidth(SK_Scalar1 * 2);

    SkPath fill;
    paint.getFillPath(path, &fill);
}

// just ensure this can run w/o any SkASSERTS firing in the debug build
// we used to assert due to differences in how we determine a degenerate vector
// but that was fixed with the introduction of SkPoint::CanNormalize
static void stroke_tiny_cubic() {
    SkPoint p0[] = {
        { 372.0f,   92.0f },
        { 372.0f,   92.0f },
        { 372.0f,   92.0f },
        { 372.0f,   92.0f },
    };

    stroke_cubic(p0);

    SkPoint p1[] = {
        { 372.0f,       92.0f },
        { 372.0007f,    92.000755f },
        { 371.99927f,   92.003922f },
        { 371.99826f,   92.003899f },
    };

    stroke_cubic(p1);
}

static void check_close(skiatest::Reporter* reporter, const SkPath& path) {
    for (int i = 0; i < 2; ++i) {
        SkPath::Iter iter(path, SkToBool(i));
        SkPoint mv;
        SkPoint pts[4];
        SkPath::Verb v;
        int nMT = 0;
        int nCL = 0;
        mv.set(0, 0);
        while (SkPath::kDone_Verb != (v = iter.next(pts))) {
            switch (v) {
                case SkPath::kMove_Verb:
                    mv = pts[0];
                    ++nMT;
                    break;
                case SkPath::kClose_Verb:
                    REPORTER_ASSERT(reporter, mv == pts[0]);
                    ++nCL;
                    break;
                default:
                    break;
            }
        }
        // if we force a close on the interator we should have a close
        // for every moveTo
        REPORTER_ASSERT(reporter, !i || nMT == nCL);
    }
}

static void test_close(skiatest::Reporter* reporter) {
    SkPath closePt;
    closePt.moveTo(0, 0);
    closePt.close();
    check_close(reporter, closePt);

    SkPath openPt;
    openPt.moveTo(0, 0);
    check_close(reporter, openPt);

    SkPath empty;
    check_close(reporter, empty);
    empty.close();
    check_close(reporter, empty);

    SkPath rect;
    rect.addRect(SK_Scalar1, SK_Scalar1, 10 * SK_Scalar1, 10*SK_Scalar1);
    check_close(reporter, rect);
    rect.close();
    check_close(reporter, rect);

    SkPath quad;
    quad.quadTo(SK_Scalar1, SK_Scalar1, 10 * SK_Scalar1, 10*SK_Scalar1);
    check_close(reporter, quad);
    quad.close();
    check_close(reporter, quad);

    SkPath cubic;
    quad.cubicTo(SK_Scalar1, SK_Scalar1, 10 * SK_Scalar1,
                 10*SK_Scalar1, 20 * SK_Scalar1, 20*SK_Scalar1);
    check_close(reporter, cubic);
    cubic.close();
    check_close(reporter, cubic);

    SkPath line;
    line.moveTo(SK_Scalar1, SK_Scalar1);
    line.lineTo(10 * SK_Scalar1, 10*SK_Scalar1);
    check_close(reporter, line);
    line.close();
    check_close(reporter, line);

    SkPath rect2;
    rect2.addRect(SK_Scalar1, SK_Scalar1, 10 * SK_Scalar1, 10*SK_Scalar1);
    rect2.close();
    rect2.addRect(SK_Scalar1, SK_Scalar1, 10 * SK_Scalar1, 10*SK_Scalar1);
    check_close(reporter, rect2);
    rect2.close();
    check_close(reporter, rect2);

    SkPath oval3;
    oval3.addOval(SkRect::MakeWH(SK_Scalar1*100,SK_Scalar1*100));
    oval3.close();
    oval3.addOval(SkRect::MakeWH(SK_Scalar1*200,SK_Scalar1*200));
    check_close(reporter, oval3);
    oval3.close();
    check_close(reporter, oval3);

    SkPath moves;
    moves.moveTo(SK_Scalar1, SK_Scalar1);
    moves.moveTo(5 * SK_Scalar1, SK_Scalar1);
    moves.moveTo(SK_Scalar1, 10 * SK_Scalar1);
    moves.moveTo(10 *SK_Scalar1, SK_Scalar1);
    check_close(reporter, moves);

    stroke_tiny_cubic();
}

static void check_convexity(skiatest::Reporter* reporter, const SkPath& path,
                            SkPath::Convexity expected) {
    SkPath copy(path); // we make a copy so that we don't cache the result on the passed in path.
    SkPath::Convexity c = copy.getConvexity();
    REPORTER_ASSERT(reporter, c == expected);
}

static void test_path_crbug389050(skiatest::Reporter* reporter) {
    SkPath  tinyConvexPolygon;
    tinyConvexPolygon.moveTo(600.131559f, 800.112512f);
    tinyConvexPolygon.lineTo(600.161735f, 800.118627f);
    tinyConvexPolygon.lineTo(600.148962f, 800.142338f);
    tinyConvexPolygon.lineTo(600.134891f, 800.137724f);
    tinyConvexPolygon.close();
    tinyConvexPolygon.getConvexity();
    check_convexity(reporter, tinyConvexPolygon, SkPath::kConvex_Convexity);
    check_direction(reporter, tinyConvexPolygon, SkPath::kCW_Direction);

    SkPath  platTriangle;
    platTriangle.moveTo(0, 0);
    platTriangle.lineTo(200, 0);
    platTriangle.lineTo(100, 0.04f);
    platTriangle.close();
    platTriangle.getConvexity();
    check_direction(reporter, platTriangle, SkPath::kCW_Direction);

    platTriangle.reset();
    platTriangle.moveTo(0, 0);
    platTriangle.lineTo(200, 0);
    platTriangle.lineTo(100, 0.03f);
    platTriangle.close();
    platTriangle.getConvexity();
    check_direction(reporter, platTriangle, SkPath::kCW_Direction);
}

static void test_convexity2(skiatest::Reporter* reporter) {
    SkPath pt;
    pt.moveTo(0, 0);
    pt.close();
    check_convexity(reporter, pt, SkPath::kConvex_Convexity);
    check_direction(reporter, pt, SkPath::kUnknown_Direction);

    SkPath line;
    line.moveTo(12*SK_Scalar1, 20*SK_Scalar1);
    line.lineTo(-12*SK_Scalar1, -20*SK_Scalar1);
    line.close();
    check_convexity(reporter, line, SkPath::kConvex_Convexity);
    check_direction(reporter, line, SkPath::kUnknown_Direction);

    SkPath triLeft;
    triLeft.moveTo(0, 0);
    triLeft.lineTo(SK_Scalar1, 0);
    triLeft.lineTo(SK_Scalar1, SK_Scalar1);
    triLeft.close();
    check_convexity(reporter, triLeft, SkPath::kConvex_Convexity);
    check_direction(reporter, triLeft, SkPath::kCW_Direction);

    SkPath triRight;
    triRight.moveTo(0, 0);
    triRight.lineTo(-SK_Scalar1, 0);
    triRight.lineTo(SK_Scalar1, SK_Scalar1);
    triRight.close();
    check_convexity(reporter, triRight, SkPath::kConvex_Convexity);
    check_direction(reporter, triRight, SkPath::kCCW_Direction);

    SkPath square;
    square.moveTo(0, 0);
    square.lineTo(SK_Scalar1, 0);
    square.lineTo(SK_Scalar1, SK_Scalar1);
    square.lineTo(0, SK_Scalar1);
    square.close();
    check_convexity(reporter, square, SkPath::kConvex_Convexity);
    check_direction(reporter, square, SkPath::kCW_Direction);

    SkPath redundantSquare;
    redundantSquare.moveTo(0, 0);
    redundantSquare.lineTo(0, 0);
    redundantSquare.lineTo(0, 0);
    redundantSquare.lineTo(SK_Scalar1, 0);
    redundantSquare.lineTo(SK_Scalar1, 0);
    redundantSquare.lineTo(SK_Scalar1, 0);
    redundantSquare.lineTo(SK_Scalar1, SK_Scalar1);
    redundantSquare.lineTo(SK_Scalar1, SK_Scalar1);
    redundantSquare.lineTo(SK_Scalar1, SK_Scalar1);
    redundantSquare.lineTo(0, SK_Scalar1);
    redundantSquare.lineTo(0, SK_Scalar1);
    redundantSquare.lineTo(0, SK_Scalar1);
    redundantSquare.close();
    check_convexity(reporter, redundantSquare, SkPath::kConvex_Convexity);
    check_direction(reporter, redundantSquare, SkPath::kCW_Direction);

    SkPath bowTie;
    bowTie.moveTo(0, 0);
    bowTie.lineTo(0, 0);
    bowTie.lineTo(0, 0);
    bowTie.lineTo(SK_Scalar1, SK_Scalar1);
    bowTie.lineTo(SK_Scalar1, SK_Scalar1);
    bowTie.lineTo(SK_Scalar1, SK_Scalar1);
    bowTie.lineTo(SK_Scalar1, 0);
    bowTie.lineTo(SK_Scalar1, 0);
    bowTie.lineTo(SK_Scalar1, 0);
    bowTie.lineTo(0, SK_Scalar1);
    bowTie.lineTo(0, SK_Scalar1);
    bowTie.lineTo(0, SK_Scalar1);
    bowTie.close();
    check_convexity(reporter, bowTie, SkPath::kConcave_Convexity);
    check_direction(reporter, bowTie, kDontCheckDir);

    SkPath spiral;
    spiral.moveTo(0, 0);
    spiral.lineTo(100*SK_Scalar1, 0);
    spiral.lineTo(100*SK_Scalar1, 100*SK_Scalar1);
    spiral.lineTo(0, 100*SK_Scalar1);
    spiral.lineTo(0, 50*SK_Scalar1);
    spiral.lineTo(50*SK_Scalar1, 50*SK_Scalar1);
    spiral.lineTo(50*SK_Scalar1, 75*SK_Scalar1);
    spiral.close();
    check_convexity(reporter, spiral, SkPath::kConcave_Convexity);
    check_direction(reporter, spiral, kDontCheckDir);

    SkPath dent;
    dent.moveTo(0, 0);
    dent.lineTo(100*SK_Scalar1, 100*SK_Scalar1);
    dent.lineTo(0, 100*SK_Scalar1);
    dent.lineTo(-50*SK_Scalar1, 200*SK_Scalar1);
    dent.lineTo(-200*SK_Scalar1, 100*SK_Scalar1);
    dent.close();
    check_convexity(reporter, dent, SkPath::kConcave_Convexity);
    check_direction(reporter, dent, SkPath::kCW_Direction);

    // http://skbug.com/2235
    SkPath strokedSin;
    for (int i = 0; i < 2000; i++) {
        SkScalar x = SkIntToScalar(i) / 2;
        SkScalar y = 500 - (x + SkScalarSin(x / 100) * 40) / 3;
        if (0 == i) {
            strokedSin.moveTo(x, y);
        } else {
            strokedSin.lineTo(x, y);
        }
    }
    SkStrokeRec stroke(SkStrokeRec::kFill_InitStyle);
    stroke.setStrokeStyle(2 * SK_Scalar1);
    stroke.applyToPath(&strokedSin, strokedSin);
    check_convexity(reporter, strokedSin, SkPath::kConcave_Convexity);
    check_direction(reporter, strokedSin, kDontCheckDir);

    // http://crbug.com/412640
    SkPath degenerateConcave;
    degenerateConcave.moveTo(148.67912f, 191.875f);
    degenerateConcave.lineTo(470.37695f, 7.5f);
    degenerateConcave.lineTo(148.67912f, 191.875f);
    degenerateConcave.lineTo(41.446522f, 376.25f);
    degenerateConcave.lineTo(-55.971577f, 460.0f);
    degenerateConcave.lineTo(41.446522f, 376.25f);
    check_convexity(reporter, degenerateConcave, SkPath::kConcave_Convexity);
    check_direction(reporter, degenerateConcave, SkPath::kUnknown_Direction);

    // http://crbug.com/433683
    SkPath badFirstVector;
    badFirstVector.moveTo(501.087708f, 319.610352f);
    badFirstVector.lineTo(501.087708f, 319.610352f);
    badFirstVector.cubicTo(501.087677f, 319.610321f, 449.271606f, 258.078674f, 395.084564f, 198.711182f);
    badFirstVector.cubicTo(358.967072f, 159.140717f, 321.910553f, 120.650436f, 298.442322f, 101.955399f);
    badFirstVector.lineTo(301.557678f, 98.044601f);
    badFirstVector.cubicTo(325.283844f, 116.945084f, 362.615204f, 155.720825f, 398.777557f, 195.340454f);
    badFirstVector.cubicTo(453.031860f, 254.781662f, 504.912262f, 316.389618f, 504.912292f, 316.389648f);
    badFirstVector.lineTo(504.912292f, 316.389648f);
    badFirstVector.lineTo(501.087708f, 319.610352f);
    badFirstVector.close();
    check_convexity(reporter, badFirstVector, SkPath::kConcave_Convexity);
}

static void check_convex_bounds(skiatest::Reporter* reporter, const SkPath& p,
                                const SkRect& bounds) {
    REPORTER_ASSERT(reporter, p.isConvex());
    REPORTER_ASSERT(reporter, p.getBounds() == bounds);

    SkPath p2(p);
    REPORTER_ASSERT(reporter, p2.isConvex());
    REPORTER_ASSERT(reporter, p2.getBounds() == bounds);

    SkPath other;
    other.swap(p2);
    REPORTER_ASSERT(reporter, other.isConvex());
    REPORTER_ASSERT(reporter, other.getBounds() == bounds);
}

static void setFromString(SkPath* path, const char str[]) {
    bool first = true;
    while (str) {
        SkScalar x, y;
        str = SkParse::FindScalar(str, &x);
        if (NULL == str) {
            break;
        }
        str = SkParse::FindScalar(str, &y);
        SkASSERT(str);
        if (first) {
            path->moveTo(x, y);
            first = false;
        } else {
            path->lineTo(x, y);
        }
    }
}

static void test_convexity(skiatest::Reporter* reporter) {
    SkPath path;

    check_convexity(reporter, path, SkPath::kConvex_Convexity);
    path.addCircle(0, 0, SkIntToScalar(10));
    check_convexity(reporter, path, SkPath::kConvex_Convexity);
    path.addCircle(0, 0, SkIntToScalar(10));   // 2nd circle
    check_convexity(reporter, path, SkPath::kConcave_Convexity);

    path.reset();
    path.addRect(0, 0, SkIntToScalar(10), SkIntToScalar(10), SkPath::kCCW_Direction);
    check_convexity(reporter, path, SkPath::kConvex_Convexity);
    REPORTER_ASSERT(reporter, path.cheapIsDirection(SkPath::kCCW_Direction));

    path.reset();
    path.addRect(0, 0, SkIntToScalar(10), SkIntToScalar(10), SkPath::kCW_Direction);
    check_convexity(reporter, path, SkPath::kConvex_Convexity);
    REPORTER_ASSERT(reporter, path.cheapIsDirection(SkPath::kCW_Direction));

    static const struct {
        const char*         fPathStr;
        SkPath::Convexity   fExpectedConvexity;
        SkPath::Direction   fExpectedDirection;
    } gRec[] = {
        { "", SkPath::kConvex_Convexity, SkPath::kUnknown_Direction },
        { "0 0", SkPath::kConvex_Convexity, SkPath::kUnknown_Direction },
        { "0 0 10 10", SkPath::kConvex_Convexity, SkPath::kUnknown_Direction },
        { "0 0 10 10 20 20 0 0 10 10", SkPath::kConcave_Convexity, SkPath::kUnknown_Direction },
        { "0 0 10 10 10 20", SkPath::kConvex_Convexity, SkPath::kCW_Direction },
        { "0 0 10 10 10 0", SkPath::kConvex_Convexity, SkPath::kCCW_Direction },
        { "0 0 10 10 10 0 0 10", SkPath::kConcave_Convexity, kDontCheckDir },
        { "0 0 10 0 0 10 -10 -10", SkPath::kConcave_Convexity, SkPath::kCW_Direction },
    };

    for (size_t i = 0; i < SK_ARRAY_COUNT(gRec); ++i) {
        SkPath path;
        setFromString(&path, gRec[i].fPathStr);
        check_convexity(reporter, path, gRec[i].fExpectedConvexity);
        check_direction(reporter, path, gRec[i].fExpectedDirection);
        // check after setting the initial convex and direction
        if (kDontCheckDir != gRec[i].fExpectedDirection) {
            SkPath copy(path);
            SkPath::Direction dir;
            bool foundDir = copy.cheapComputeDirection(&dir);
            REPORTER_ASSERT(reporter, (gRec[i].fExpectedDirection == SkPath::kUnknown_Direction)
                    ^ foundDir);
            REPORTER_ASSERT(reporter, !foundDir || gRec[i].fExpectedDirection == dir);
            check_convexity(reporter, copy, gRec[i].fExpectedConvexity);
        }
        REPORTER_ASSERT(reporter, gRec[i].fExpectedConvexity == path.getConvexity());
        check_direction(reporter, path, gRec[i].fExpectedDirection);
    }

    static const SkPoint nonFinitePts[] = {
        { SK_ScalarInfinity, 0 },
        { 0, SK_ScalarInfinity },
        { SK_ScalarInfinity, SK_ScalarInfinity },
        { SK_ScalarNegativeInfinity, 0},
        { 0, SK_ScalarNegativeInfinity },
        { SK_ScalarNegativeInfinity, SK_ScalarNegativeInfinity },
        { SK_ScalarNegativeInfinity, SK_ScalarInfinity },
        { SK_ScalarInfinity, SK_ScalarNegativeInfinity },
        { SK_ScalarNaN, 0 },
        { 0, SK_ScalarNaN },
        { SK_ScalarNaN, SK_ScalarNaN },
    };

    const size_t nonFinitePtsCount = sizeof(nonFinitePts) / sizeof(nonFinitePts[0]);

    static const SkPoint finitePts[] = {
        { SK_ScalarMax, 0 },
        { 0, SK_ScalarMax },
        { SK_ScalarMax, SK_ScalarMax },
        { SK_ScalarMin, 0 },
        { 0, SK_ScalarMin },
        { SK_ScalarMin, SK_ScalarMin },
    };

    const size_t finitePtsCount = sizeof(finitePts) / sizeof(finitePts[0]);

    for (int index = 0; index < (int) (13 * nonFinitePtsCount * finitePtsCount); ++index) {
        int i = (int) (index % nonFinitePtsCount);
        int f = (int) (index % finitePtsCount);
        int g = (int) ((f + 1) % finitePtsCount);
        path.reset();
        switch (index % 13) {
            case 0: path.lineTo(nonFinitePts[i]); break;
            case 1: path.quadTo(nonFinitePts[i], nonFinitePts[i]); break;
            case 2: path.quadTo(nonFinitePts[i], finitePts[f]); break;
            case 3: path.quadTo(finitePts[f], nonFinitePts[i]); break;
            case 4: path.cubicTo(nonFinitePts[i], finitePts[f], finitePts[f]); break;
            case 5: path.cubicTo(finitePts[f], nonFinitePts[i], finitePts[f]); break;
            case 6: path.cubicTo(finitePts[f], finitePts[f], nonFinitePts[i]); break;
            case 7: path.cubicTo(nonFinitePts[i], nonFinitePts[i], finitePts[f]); break;
            case 8: path.cubicTo(nonFinitePts[i], finitePts[f], nonFinitePts[i]); break;
            case 9: path.cubicTo(finitePts[f], nonFinitePts[i], nonFinitePts[i]); break;
            case 10: path.cubicTo(nonFinitePts[i], nonFinitePts[i], nonFinitePts[i]); break;
            case 11: path.cubicTo(nonFinitePts[i], finitePts[f], finitePts[g]); break;
            case 12: path.moveTo(nonFinitePts[i]); break;
        }
        check_convexity(reporter, path, SkPath::kUnknown_Convexity);
    }

    for (int index = 0; index < (int) (11 * finitePtsCount); ++index) {
        int f = (int) (index % finitePtsCount);
        int g = (int) ((f + 1) % finitePtsCount);
        path.reset();
        int curveSelect = index % 11;
        switch (curveSelect) {
            case 0: path.moveTo(finitePts[f]); break;
            case 1: path.lineTo(finitePts[f]); break;
            case 2: path.quadTo(finitePts[f], finitePts[f]); break;
            case 3: path.quadTo(finitePts[f], finitePts[g]); break;
            case 4: path.quadTo(finitePts[g], finitePts[f]); break;
            case 5: path.cubicTo(finitePts[f], finitePts[f], finitePts[f]); break;
            case 6: path.cubicTo(finitePts[f], finitePts[f], finitePts[g]); break;
            case 7: path.cubicTo(finitePts[f], finitePts[g], finitePts[f]); break;
            case 8: path.cubicTo(finitePts[f], finitePts[g], finitePts[g]); break;
            case 9: path.cubicTo(finitePts[g], finitePts[f], finitePts[f]); break;
            case 10: path.cubicTo(finitePts[g], finitePts[f], finitePts[g]); break;
        }
        check_convexity(reporter, path, curveSelect == 0 ? SkPath::kConvex_Convexity
                : SkPath::kUnknown_Convexity);
    }

}

static void test_isLine(skiatest::Reporter* reporter) {
    SkPath path;
    SkPoint pts[2];
    const SkScalar value = SkIntToScalar(5);

    REPORTER_ASSERT(reporter, !path.isLine(NULL));

    // set some non-zero values
    pts[0].set(value, value);
    pts[1].set(value, value);
    REPORTER_ASSERT(reporter, !path.isLine(pts));
    // check that pts was untouched
    REPORTER_ASSERT(reporter, pts[0].equals(value, value));
    REPORTER_ASSERT(reporter, pts[1].equals(value, value));

    const SkScalar moveX = SkIntToScalar(1);
    const SkScalar moveY = SkIntToScalar(2);
    REPORTER_ASSERT(reporter, value != moveX && value != moveY);

    path.moveTo(moveX, moveY);
    REPORTER_ASSERT(reporter, !path.isLine(NULL));
    REPORTER_ASSERT(reporter, !path.isLine(pts));
    // check that pts was untouched
    REPORTER_ASSERT(reporter, pts[0].equals(value, value));
    REPORTER_ASSERT(reporter, pts[1].equals(value, value));

    const SkScalar lineX = SkIntToScalar(2);
    const SkScalar lineY = SkIntToScalar(2);
    REPORTER_ASSERT(reporter, value != lineX && value != lineY);

    path.lineTo(lineX, lineY);
    REPORTER_ASSERT(reporter, path.isLine(NULL));

    REPORTER_ASSERT(reporter, !pts[0].equals(moveX, moveY));
    REPORTER_ASSERT(reporter, !pts[1].equals(lineX, lineY));
    REPORTER_ASSERT(reporter, path.isLine(pts));
    REPORTER_ASSERT(reporter, pts[0].equals(moveX, moveY));
    REPORTER_ASSERT(reporter, pts[1].equals(lineX, lineY));

    path.lineTo(0, 0);  // too many points/verbs
    REPORTER_ASSERT(reporter, !path.isLine(NULL));
    REPORTER_ASSERT(reporter, !path.isLine(pts));
    REPORTER_ASSERT(reporter, pts[0].equals(moveX, moveY));
    REPORTER_ASSERT(reporter, pts[1].equals(lineX, lineY));

    path.reset();
    path.quadTo(1, 1, 2, 2);
    REPORTER_ASSERT(reporter, !path.isLine(NULL));
}

static void test_conservativelyContains(skiatest::Reporter* reporter) {
    SkPath path;

    // kBaseRect is used to construct most our test paths: a rect, a circle, and a round-rect.
    static const SkRect kBaseRect = SkRect::MakeWH(SkIntToScalar(100), SkIntToScalar(100));

    // A circle that bounds kBaseRect (with a significant amount of slop)
    SkScalar circleR = SkMaxScalar(kBaseRect.width(), kBaseRect.height());
    circleR = SkScalarMul(circleR, 1.75f) / 2;
    static const SkPoint kCircleC = {kBaseRect.centerX(), kBaseRect.centerY()};

    // round-rect radii
    static const SkScalar kRRRadii[] = {SkIntToScalar(5), SkIntToScalar(3)};

    static const struct SUPPRESS_VISIBILITY_WARNING {
        SkRect fQueryRect;
        bool   fInRect;
        bool   fInCircle;
        bool   fInRR;
        bool   fInCubicRR;
    } kQueries[] = {
        {kBaseRect, true, true, false, false},

        // rect well inside of kBaseRect
        {SkRect::MakeLTRB(kBaseRect.fLeft + 0.25f*kBaseRect.width(),
                          kBaseRect.fTop + 0.25f*kBaseRect.height(),
                          kBaseRect.fRight - 0.25f*kBaseRect.width(),
                          kBaseRect.fBottom - 0.25f*kBaseRect.height()),
                          true, true, true, true},

        // rects with edges off by one from kBaseRect's edges
        {SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.fTop,
                          kBaseRect.width(), kBaseRect.height() + 1),
         false, true, false, false},
        {SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.fTop,
                          kBaseRect.width() + 1, kBaseRect.height()),
         false, true, false, false},
        {SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.fTop,
                          kBaseRect.width() + 1, kBaseRect.height() + 1),
         false, true, false, false},
        {SkRect::MakeXYWH(kBaseRect.fLeft - 1, kBaseRect.fTop,
                          kBaseRect.width(), kBaseRect.height()),
         false, true, false, false},
        {SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.fTop - 1,
                          kBaseRect.width(), kBaseRect.height()),
         false, true, false, false},
        {SkRect::MakeXYWH(kBaseRect.fLeft - 1, kBaseRect.fTop,
                          kBaseRect.width() + 2, kBaseRect.height()),
         false, true, false, false},
        {SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.fTop - 1,
                          kBaseRect.width() + 2, kBaseRect.height()),
         false, true, false, false},

        // zero-w/h rects at each corner of kBaseRect
        {SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.fTop, 0, 0), true, true, false, false},
        {SkRect::MakeXYWH(kBaseRect.fRight, kBaseRect.fTop, 0, 0), true, true, false, true},
        {SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.fBottom, 0, 0), true, true, false, true},
        {SkRect::MakeXYWH(kBaseRect.fRight, kBaseRect.fBottom, 0, 0), true, true, false, true},

        // far away rect
        {SkRect::MakeXYWH(10 * kBaseRect.fRight, 10 * kBaseRect.fBottom,
                          SkIntToScalar(10), SkIntToScalar(10)),
         false, false, false, false},

        // very large rect containing kBaseRect
        {SkRect::MakeXYWH(kBaseRect.fLeft - 5 * kBaseRect.width(),
                          kBaseRect.fTop - 5 * kBaseRect.height(),
                          11 * kBaseRect.width(), 11 * kBaseRect.height()),
         false, false, false, false},

        // skinny rect that spans same y-range as kBaseRect
        {SkRect::MakeXYWH(kBaseRect.centerX(), kBaseRect.fTop,
                          SkIntToScalar(1), kBaseRect.height()),
         true, true, true, true},

        // short rect that spans same x-range as kBaseRect
        {SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.centerY(), kBaseRect.width(), SkScalar(1)),
         true, true, true, true},

        // skinny rect that spans slightly larger y-range than kBaseRect
        {SkRect::MakeXYWH(kBaseRect.centerX(), kBaseRect.fTop,
                          SkIntToScalar(1), kBaseRect.height() + 1),
         false, true, false, false},

        // short rect that spans slightly larger x-range than kBaseRect
        {SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.centerY(),
                          kBaseRect.width() + 1, SkScalar(1)),
         false, true, false, false},
    };

    for (int inv = 0; inv < 4; ++inv) {
        for (size_t q = 0; q < SK_ARRAY_COUNT(kQueries); ++q) {
            SkRect qRect = kQueries[q].fQueryRect;
            if (inv & 0x1) {
                SkTSwap(qRect.fLeft, qRect.fRight);
            }
            if (inv & 0x2) {
                SkTSwap(qRect.fTop, qRect.fBottom);
            }
            for (int d = 0; d < 2; ++d) {
                SkPath::Direction dir = d ? SkPath::kCCW_Direction : SkPath::kCW_Direction;
                path.reset();
                path.addRect(kBaseRect, dir);
                REPORTER_ASSERT(reporter, kQueries[q].fInRect ==
                                          path.conservativelyContainsRect(qRect));

                path.reset();
                path.addCircle(kCircleC.fX, kCircleC.fY, circleR, dir);
                REPORTER_ASSERT(reporter, kQueries[q].fInCircle ==
                                          path.conservativelyContainsRect(qRect));

                path.reset();
                path.addRoundRect(kBaseRect, kRRRadii[0], kRRRadii[1], dir);
                REPORTER_ASSERT(reporter, kQueries[q].fInRR ==
                                          path.conservativelyContainsRect(qRect));

                path.reset();
                path.moveTo(kBaseRect.fLeft + kRRRadii[0], kBaseRect.fTop);
                path.cubicTo(kBaseRect.fLeft + kRRRadii[0] / 2, kBaseRect.fTop,
                             kBaseRect.fLeft, kBaseRect.fTop + kRRRadii[1] / 2,
                             kBaseRect.fLeft, kBaseRect.fTop + kRRRadii[1]);
                path.lineTo(kBaseRect.fLeft, kBaseRect.fBottom);
                path.lineTo(kBaseRect.fRight, kBaseRect.fBottom);
                path.lineTo(kBaseRect.fRight, kBaseRect.fTop);
                path.close();
                REPORTER_ASSERT(reporter, kQueries[q].fInCubicRR ==
                                          path.conservativelyContainsRect(qRect));

            }
            // Slightly non-convex shape, shouldn't contain any rects.
            path.reset();
            path.moveTo(0, 0);
            path.lineTo(SkIntToScalar(50), 0.05f);
            path.lineTo(SkIntToScalar(100), 0);
            path.lineTo(SkIntToScalar(100), SkIntToScalar(100));
            path.lineTo(0, SkIntToScalar(100));
            path.close();
            REPORTER_ASSERT(reporter, !path.conservativelyContainsRect(qRect));
        }
    }

    // make sure a minimal convex shape works, a right tri with edges along pos x and y axes.
    path.reset();
    path.moveTo(0, 0);
    path.lineTo(SkIntToScalar(100), 0);
    path.lineTo(0, SkIntToScalar(100));

    // inside, on along top edge
    REPORTER_ASSERT(reporter, path.conservativelyContainsRect(SkRect::MakeXYWH(SkIntToScalar(50), 0,
                                                                               SkIntToScalar(10),
                                                                               SkIntToScalar(10))));
    // above
    REPORTER_ASSERT(reporter, !path.conservativelyContainsRect(
        SkRect::MakeXYWH(SkIntToScalar(50),
                         SkIntToScalar(-10),
                         SkIntToScalar(10),
                         SkIntToScalar(10))));
    // to the left
    REPORTER_ASSERT(reporter, !path.conservativelyContainsRect(SkRect::MakeXYWH(SkIntToScalar(-10),
                                                                                SkIntToScalar(5),
                                                                                SkIntToScalar(5),
                                                                                SkIntToScalar(5))));

    // outside the diagonal edge
    REPORTER_ASSERT(reporter, !path.conservativelyContainsRect(SkRect::MakeXYWH(SkIntToScalar(10),
                                                                                SkIntToScalar(200),
                                                                                SkIntToScalar(20),
                                                                                SkIntToScalar(5))));


    // Test that multiple move commands do not cause asserts.

    // At the time of writing, this would not modify cached convexity. This caused an assert while
    // checking conservative containment again. http://skbug.com/1460
    path.moveTo(SkIntToScalar(100), SkIntToScalar(100));
#if 0
    REPORTER_ASSERT(reporter, path.conservativelyContainsRect(SkRect::MakeXYWH(SkIntToScalar(50), 0,
                                                                               SkIntToScalar(10),
                                                                               SkIntToScalar(10))));
#endif

    // Same as above path and first test but with an extra moveTo.
    path.reset();
    path.moveTo(100, 100);
    path.moveTo(0, 0);
    path.lineTo(SkIntToScalar(100), 0);
    path.lineTo(0, SkIntToScalar(100));

    REPORTER_ASSERT(reporter, path.conservativelyContainsRect(SkRect::MakeXYWH(SkIntToScalar(50), 0,
                                                                               SkIntToScalar(10),
                                                                               SkIntToScalar(10))));

    // Test that multiple move commands do not cause asserts and that the function
    // is not confused by the multiple moves.
    path.reset();
    path.moveTo(0, 0);
    path.lineTo(SkIntToScalar(100), 0);
    path.lineTo(0, SkIntToScalar(100));
    path.moveTo(0, SkIntToScalar(200));
    path.lineTo(SkIntToScalar(100), SkIntToScalar(200));
    path.lineTo(0, SkIntToScalar(300));

    REPORTER_ASSERT(reporter, !path.conservativelyContainsRect(
                                                            SkRect::MakeXYWH(SkIntToScalar(50), 0,
                                                                             SkIntToScalar(10),
                                                                             SkIntToScalar(10))));

    path.reset();
    path.lineTo(100, 100);
    REPORTER_ASSERT(reporter, !path.conservativelyContainsRect(SkRect::MakeXYWH(0, 0, 1, 1)));
}

static void test_isRect_open_close(skiatest::Reporter* reporter) {
    SkPath path;
    bool isClosed;

    path.moveTo(0, 0); path.lineTo(1, 0); path.lineTo(1, 1); path.lineTo(0, 1);
    path.close();

    REPORTER_ASSERT(reporter, path.isRect(NULL, &isClosed, NULL));
    REPORTER_ASSERT(reporter, isClosed);
}

// Simple isRect test is inline TestPath, below.
// test_isRect provides more extensive testing.
static void test_isRect(skiatest::Reporter* reporter) {
    test_isRect_open_close(reporter);

    // passing tests (all moveTo / lineTo...
    SkPoint r1[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}};
    SkPoint r2[] = {{1, 0}, {1, 1}, {0, 1}, {0, 0}};
    SkPoint r3[] = {{1, 1}, {0, 1}, {0, 0}, {1, 0}};
    SkPoint r4[] = {{0, 1}, {0, 0}, {1, 0}, {1, 1}};
    SkPoint r5[] = {{0, 0}, {0, 1}, {1, 1}, {1, 0}};
    SkPoint r6[] = {{0, 1}, {1, 1}, {1, 0}, {0, 0}};
    SkPoint r7[] = {{1, 1}, {1, 0}, {0, 0}, {0, 1}};
    SkPoint r8[] = {{1, 0}, {0, 0}, {0, 1}, {1, 1}};
    SkPoint r9[] = {{0, 1}, {1, 1}, {1, 0}, {0, 0}};
    SkPoint ra[] = {{0, 0}, {0, .5f}, {0, 1}, {.5f, 1}, {1, 1}, {1, .5f}, {1, 0}, {.5f, 0}};
    SkPoint rb[] = {{0, 0}, {.5f, 0}, {1, 0}, {1, .5f}, {1, 1}, {.5f, 1}, {0, 1}, {0, .5f}};
    SkPoint rc[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 0}};
    SkPoint rd[] = {{0, 0}, {0, 1}, {1, 1}, {1, 0}, {0, 0}};
    SkPoint re[] = {{0, 0}, {1, 0}, {1, 0}, {1, 1}, {0, 1}};
    SkPoint rf[] = {{1, 0}, {8, 0}, {8, 8}, {0, 8}, {0, 0}};

    // failing tests
    SkPoint f1[] = {{0, 0}, {1, 0}, {1, 1}}; // too few points
    SkPoint f2[] = {{0, 0}, {1, 1}, {0, 1}, {1, 0}}; // diagonal
    SkPoint f3[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 0}, {1, 0}}; // wraps
    SkPoint f4[] = {{0, 0}, {1, 0}, {0, 0}, {1, 0}, {1, 1}, {0, 1}}; // backs up
    SkPoint f5[] = {{0, 0}, {1, 0}, {1, 1}, {2, 0}}; // end overshoots
    SkPoint f6[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 2}}; // end overshoots
    SkPoint f7[] = {{0, 0}, {1, 0}, {1, 1}, {0, 2}}; // end overshoots
    SkPoint f8[] = {{0, 0}, {1, 0}, {1, 1}, {1, 0}}; // 'L'
    SkPoint f9[] = {{1, 0}, {8, 0}, {8, 8}, {0, 8}, {0, 0}, {2, 0}}; // overlaps
    SkPoint fa[] = {{1, 0}, {8, 0}, {8, 8}, {0, 8}, {0, -1}, {1, -1}}; // non colinear gap
    SkPoint fb[] = {{1, 0}, {8, 0}, {8, 8}, {0, 8}, {0, 1}}; // falls short

    // no close, but we should detect them as fillably the same as a rect
    SkPoint c1[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}};
    SkPoint c2[] = {{0, 0}, {1, 0}, {1, 2}, {0, 2}, {0, 1}};
    SkPoint c3[] = {{0, 0}, {1, 0}, {1, 2}, {0, 2}, {0, 1}, {0, 0}}; // hit the start

    // like c2, but we double-back on ourselves
    SkPoint d1[] = {{0, 0}, {1, 0}, {1, 2}, {0, 2}, {0, 1}, {0, 2}};
    // like c2, but we overshoot the start point
    SkPoint d2[] = {{0, 0}, {1, 0}, {1, 2}, {0, 2}, {0, -1}};
    SkPoint d3[] = {{0, 0}, {1, 0}, {1, 2}, {0, 2}, {0, -1}, {0, 0}};

    struct IsRectTest {
        SkPoint *fPoints;
        int fPointCount;
        bool fClose;
        bool fIsRect;
    } tests[] = {
        { r1, SK_ARRAY_COUNT(r1), true, true },
        { r2, SK_ARRAY_COUNT(r2), true, true },
        { r3, SK_ARRAY_COUNT(r3), true, true },
        { r4, SK_ARRAY_COUNT(r4), true, true },
        { r5, SK_ARRAY_COUNT(r5), true, true },
        { r6, SK_ARRAY_COUNT(r6), true, true },
        { r7, SK_ARRAY_COUNT(r7), true, true },
        { r8, SK_ARRAY_COUNT(r8), true, true },
        { r9, SK_ARRAY_COUNT(r9), true, true },
        { ra, SK_ARRAY_COUNT(ra), true, true },
        { rb, SK_ARRAY_COUNT(rb), true, true },
        { rc, SK_ARRAY_COUNT(rc), true, true },
        { rd, SK_ARRAY_COUNT(rd), true, true },
        { re, SK_ARRAY_COUNT(re), true, true },
        { rf, SK_ARRAY_COUNT(rf), true, true },

        { f1, SK_ARRAY_COUNT(f1), true, false },
        { f2, SK_ARRAY_COUNT(f2), true, false },
        { f3, SK_ARRAY_COUNT(f3), true, false },
        { f4, SK_ARRAY_COUNT(f4), true, false },
        { f5, SK_ARRAY_COUNT(f5), true, false },
        { f6, SK_ARRAY_COUNT(f6), true, false },
        { f7, SK_ARRAY_COUNT(f7), true, false },
        { f8, SK_ARRAY_COUNT(f8), true, false },
        { f9, SK_ARRAY_COUNT(f9), true, false },
        { fa, SK_ARRAY_COUNT(fa), true, false },
        { fb, SK_ARRAY_COUNT(fb), true, false },

        { c1, SK_ARRAY_COUNT(c1), false, true },
        { c2, SK_ARRAY_COUNT(c2), false, true },
        { c3, SK_ARRAY_COUNT(c3), false, true },

        { d1, SK_ARRAY_COUNT(d1), false, false },
        { d2, SK_ARRAY_COUNT(d2), false, false },
        { d3, SK_ARRAY_COUNT(d3), false, false },
    };

    const size_t testCount = SK_ARRAY_COUNT(tests);
    int index;
    for (size_t testIndex = 0; testIndex < testCount; ++testIndex) {
        SkPath path;
        path.moveTo(tests[testIndex].fPoints[0].fX, tests[testIndex].fPoints[0].fY);
        for (index = 1; index < tests[testIndex].fPointCount; ++index) {
            path.lineTo(tests[testIndex].fPoints[index].fX, tests[testIndex].fPoints[index].fY);
        }
        if (tests[testIndex].fClose) {
            path.close();
        }
        REPORTER_ASSERT(reporter, tests[testIndex].fIsRect == path.isRect(NULL));

        if (tests[testIndex].fIsRect) {
            SkRect computed, expected;
            bool isClosed;
            SkPath::Direction direction, cheapDirection;
            expected.set(tests[testIndex].fPoints, tests[testIndex].fPointCount);
            REPORTER_ASSERT(reporter, path.cheapComputeDirection(&cheapDirection));
            REPORTER_ASSERT(reporter, path.isRect(&computed, &isClosed, &direction));
            REPORTER_ASSERT(reporter, expected == computed);
            REPORTER_ASSERT(reporter, isClosed == tests[testIndex].fClose);
            REPORTER_ASSERT(reporter, direction == cheapDirection);
        } else {
            SkRect computed;
            computed.set(123, 456, 789, 1011);
            bool isClosed = (bool)-1;
            SkPath::Direction direction = (SkPath::Direction) - 1;
            REPORTER_ASSERT(reporter, !path.isRect(&computed, &isClosed, &direction));
            REPORTER_ASSERT(reporter, computed.fLeft == 123 && computed.fTop == 456);
            REPORTER_ASSERT(reporter, computed.fRight == 789 && computed.fBottom == 1011);
            REPORTER_ASSERT(reporter, isClosed == (bool) -1);
            REPORTER_ASSERT(reporter, direction == (SkPath::Direction) -1);
        }
    }

    // fail, close then line
    SkPath path1;
    path1.moveTo(r1[0].fX, r1[0].fY);
    for (index = 1; index < SkToInt(SK_ARRAY_COUNT(r1)); ++index) {
        path1.lineTo(r1[index].fX, r1[index].fY);
    }
    path1.close();
    path1.lineTo(1, 0);
    REPORTER_ASSERT(reporter, !path1.isRect(NULL));

    // fail, move in the middle
    path1.reset();
    path1.moveTo(r1[0].fX, r1[0].fY);
    for (index = 1; index < SkToInt(SK_ARRAY_COUNT(r1)); ++index) {
        if (index == 2) {
            path1.moveTo(1, .5f);
        }
        path1.lineTo(r1[index].fX, r1[index].fY);
    }
    path1.close();
    REPORTER_ASSERT(reporter, !path1.isRect(NULL));

    // fail, move on the edge
    path1.reset();
    for (index = 1; index < SkToInt(SK_ARRAY_COUNT(r1)); ++index) {
        path1.moveTo(r1[index - 1].fX, r1[index - 1].fY);
        path1.lineTo(r1[index].fX, r1[index].fY);
    }
    path1.close();
    REPORTER_ASSERT(reporter, !path1.isRect(NULL));

    // fail, quad
    path1.reset();
    path1.moveTo(r1[0].fX, r1[0].fY);
    for (index = 1; index < SkToInt(SK_ARRAY_COUNT(r1)); ++index) {
        if (index == 2) {
            path1.quadTo(1, .5f, 1, .5f);
        }
        path1.lineTo(r1[index].fX, r1[index].fY);
    }
    path1.close();
    REPORTER_ASSERT(reporter, !path1.isRect(NULL));

    // fail, cubic
    path1.reset();
    path1.moveTo(r1[0].fX, r1[0].fY);
    for (index = 1; index < SkToInt(SK_ARRAY_COUNT(r1)); ++index) {
        if (index == 2) {
            path1.cubicTo(1, .5f, 1, .5f, 1, .5f);
        }
        path1.lineTo(r1[index].fX, r1[index].fY);
    }
    path1.close();
    REPORTER_ASSERT(reporter, !path1.isRect(NULL));
}

static void test_isNestedFillRects(skiatest::Reporter* reporter) {
    // passing tests (all moveTo / lineTo...
    SkPoint r1[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}}; // CW
    SkPoint r2[] = {{1, 0}, {1, 1}, {0, 1}, {0, 0}};
    SkPoint r3[] = {{1, 1}, {0, 1}, {0, 0}, {1, 0}};
    SkPoint r4[] = {{0, 1}, {0, 0}, {1, 0}, {1, 1}};
    SkPoint r5[] = {{0, 0}, {0, 1}, {1, 1}, {1, 0}}; // CCW
    SkPoint r6[] = {{0, 1}, {1, 1}, {1, 0}, {0, 0}};
    SkPoint r7[] = {{1, 1}, {1, 0}, {0, 0}, {0, 1}};
    SkPoint r8[] = {{1, 0}, {0, 0}, {0, 1}, {1, 1}};
    SkPoint r9[] = {{0, 1}, {1, 1}, {1, 0}, {0, 0}};
    SkPoint ra[] = {{0, 0}, {0, .5f}, {0, 1}, {.5f, 1}, {1, 1}, {1, .5f}, {1, 0}, {.5f, 0}}; // CCW
    SkPoint rb[] = {{0, 0}, {.5f, 0}, {1, 0}, {1, .5f}, {1, 1}, {.5f, 1}, {0, 1}, {0, .5f}}; // CW
    SkPoint rc[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 0}}; // CW
    SkPoint rd[] = {{0, 0}, {0, 1}, {1, 1}, {1, 0}, {0, 0}}; // CCW
    SkPoint re[] = {{0, 0}, {1, 0}, {1, 0}, {1, 1}, {0, 1}}; // CW

    // failing tests
    SkPoint f1[] = {{0, 0}, {1, 0}, {1, 1}}; // too few points
    SkPoint f2[] = {{0, 0}, {1, 1}, {0, 1}, {1, 0}}; // diagonal
    SkPoint f3[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 0}, {1, 0}}; // wraps
    SkPoint f4[] = {{0, 0}, {1, 0}, {0, 0}, {1, 0}, {1, 1}, {0, 1}}; // backs up
    SkPoint f5[] = {{0, 0}, {1, 0}, {1, 1}, {2, 0}}; // end overshoots
    SkPoint f6[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 2}}; // end overshoots
    SkPoint f7[] = {{0, 0}, {1, 0}, {1, 1}, {0, 2}}; // end overshoots
    SkPoint f8[] = {{0, 0}, {1, 0}, {1, 1}, {1, 0}}; // 'L'

    // success, no close is OK
    SkPoint c1[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}}; // close doesn't match
    SkPoint c2[] = {{0, 0}, {1, 0}, {1, 2}, {0, 2}, {0, 1}}; // ditto

    struct IsNestedRectTest {
        SkPoint *fPoints;
        int fPointCount;
        SkPath::Direction fDirection;
        bool fClose;
        bool fIsNestedRect; // nests with path.addRect(-1, -1, 2, 2);
    } tests[] = {
        { r1, SK_ARRAY_COUNT(r1), SkPath::kCW_Direction , true, true },
        { r2, SK_ARRAY_COUNT(r2), SkPath::kCW_Direction , true, true },
        { r3, SK_ARRAY_COUNT(r3), SkPath::kCW_Direction , true, true },
        { r4, SK_ARRAY_COUNT(r4), SkPath::kCW_Direction , true, true },
        { r5, SK_ARRAY_COUNT(r5), SkPath::kCCW_Direction, true, true },
        { r6, SK_ARRAY_COUNT(r6), SkPath::kCCW_Direction, true, true },
        { r7, SK_ARRAY_COUNT(r7), SkPath::kCCW_Direction, true, true },
        { r8, SK_ARRAY_COUNT(r8), SkPath::kCCW_Direction, true, true },
        { r9, SK_ARRAY_COUNT(r9), SkPath::kCCW_Direction, true, true },
        { ra, SK_ARRAY_COUNT(ra), SkPath::kCCW_Direction, true, true },
        { rb, SK_ARRAY_COUNT(rb), SkPath::kCW_Direction,  true, true },
        { rc, SK_ARRAY_COUNT(rc), SkPath::kCW_Direction,  true, true },
        { rd, SK_ARRAY_COUNT(rd), SkPath::kCCW_Direction, true, true },
        { re, SK_ARRAY_COUNT(re), SkPath::kCW_Direction,  true, true },

        { f1, SK_ARRAY_COUNT(f1), SkPath::kUnknown_Direction, true, false },
        { f2, SK_ARRAY_COUNT(f2), SkPath::kUnknown_Direction, true, false },
        { f3, SK_ARRAY_COUNT(f3), SkPath::kUnknown_Direction, true, false },
        { f4, SK_ARRAY_COUNT(f4), SkPath::kUnknown_Direction, true, false },
        { f5, SK_ARRAY_COUNT(f5), SkPath::kUnknown_Direction, true, false },
        { f6, SK_ARRAY_COUNT(f6), SkPath::kUnknown_Direction, true, false },
        { f7, SK_ARRAY_COUNT(f7), SkPath::kUnknown_Direction, true, false },
        { f8, SK_ARRAY_COUNT(f8), SkPath::kUnknown_Direction, true, false },

        { c1, SK_ARRAY_COUNT(c1), SkPath::kCW_Direction, false, true },
        { c2, SK_ARRAY_COUNT(c2), SkPath::kCW_Direction, false, true },
    };

    const size_t testCount = SK_ARRAY_COUNT(tests);
    int index;
    for (int rectFirst = 0; rectFirst <= 1; ++rectFirst) {
        for (size_t testIndex = 0; testIndex < testCount; ++testIndex) {
            SkPath path;
            if (rectFirst) {
                path.addRect(-1, -1, 2, 2, SkPath::kCW_Direction);
            }
            path.moveTo(tests[testIndex].fPoints[0].fX, tests[testIndex].fPoints[0].fY);
            for (index = 1; index < tests[testIndex].fPointCount; ++index) {
                path.lineTo(tests[testIndex].fPoints[index].fX, tests[testIndex].fPoints[index].fY);
            }
            if (tests[testIndex].fClose) {
                path.close();
            }
            if (!rectFirst) {
                path.addRect(-1, -1, 2, 2, SkPath::kCCW_Direction);
            }
            REPORTER_ASSERT(reporter,
                    tests[testIndex].fIsNestedRect == path.isNestedFillRects(NULL));
            if (tests[testIndex].fIsNestedRect) {
                SkRect expected[2], computed[2];
                SkPath::Direction expectedDirs[2], computedDirs[2];
                SkRect testBounds;
                testBounds.set(tests[testIndex].fPoints, tests[testIndex].fPointCount);
                expected[0] = SkRect::MakeLTRB(-1, -1, 2, 2);
                expected[1] = testBounds;
                if (rectFirst) {
                    expectedDirs[0] = SkPath::kCW_Direction;
                } else {
                    expectedDirs[0] = SkPath::kCCW_Direction;
                }
                expectedDirs[1] = tests[testIndex].fDirection;
                REPORTER_ASSERT(reporter, path.isNestedFillRects(computed, computedDirs));
                REPORTER_ASSERT(reporter, expected[0] == computed[0]);
                REPORTER_ASSERT(reporter, expected[1] == computed[1]);
                REPORTER_ASSERT(reporter, expectedDirs[0] == computedDirs[0]);
                REPORTER_ASSERT(reporter, expectedDirs[1] == computedDirs[1]);
            }
        }

        // fail, close then line
        SkPath path1;
        if (rectFirst) {
            path1.addRect(-1, -1, 2, 2, SkPath::kCW_Direction);
        }
        path1.moveTo(r1[0].fX, r1[0].fY);
        for (index = 1; index < SkToInt(SK_ARRAY_COUNT(r1)); ++index) {
            path1.lineTo(r1[index].fX, r1[index].fY);
        }
        path1.close();
        path1.lineTo(1, 0);
        if (!rectFirst) {
            path1.addRect(-1, -1, 2, 2, SkPath::kCCW_Direction);
        }
        REPORTER_ASSERT(reporter, !path1.isNestedFillRects(NULL));

        // fail, move in the middle
        path1.reset();
        if (rectFirst) {
            path1.addRect(-1, -1, 2, 2, SkPath::kCW_Direction);
        }
        path1.moveTo(r1[0].fX, r1[0].fY);
        for (index = 1; index < SkToInt(SK_ARRAY_COUNT(r1)); ++index) {
            if (index == 2) {
                path1.moveTo(1, .5f);
            }
            path1.lineTo(r1[index].fX, r1[index].fY);
        }
        path1.close();
        if (!rectFirst) {
            path1.addRect(-1, -1, 2, 2, SkPath::kCCW_Direction);
        }
        REPORTER_ASSERT(reporter, !path1.isNestedFillRects(NULL));

        // fail, move on the edge
        path1.reset();
        if (rectFirst) {
            path1.addRect(-1, -1, 2, 2, SkPath::kCW_Direction);
        }
        for (index = 1; index < SkToInt(SK_ARRAY_COUNT(r1)); ++index) {
            path1.moveTo(r1[index - 1].fX, r1[index - 1].fY);
            path1.lineTo(r1[index].fX, r1[index].fY);
        }
        path1.close();
        if (!rectFirst) {
            path1.addRect(-1, -1, 2, 2, SkPath::kCCW_Direction);
        }
        REPORTER_ASSERT(reporter, !path1.isNestedFillRects(NULL));

        // fail, quad
        path1.reset();
        if (rectFirst) {
            path1.addRect(-1, -1, 2, 2, SkPath::kCW_Direction);
        }
        path1.moveTo(r1[0].fX, r1[0].fY);
        for (index = 1; index < SkToInt(SK_ARRAY_COUNT(r1)); ++index) {
            if (index == 2) {
                path1.quadTo(1, .5f, 1, .5f);
            }
            path1.lineTo(r1[index].fX, r1[index].fY);
        }
        path1.close();
        if (!rectFirst) {
            path1.addRect(-1, -1, 2, 2, SkPath::kCCW_Direction);
        }
        REPORTER_ASSERT(reporter, !path1.isNestedFillRects(NULL));

        // fail, cubic
        path1.reset();
        if (rectFirst) {
            path1.addRect(-1, -1, 2, 2, SkPath::kCW_Direction);
        }
        path1.moveTo(r1[0].fX, r1[0].fY);
        for (index = 1; index < SkToInt(SK_ARRAY_COUNT(r1)); ++index) {
            if (index == 2) {
                path1.cubicTo(1, .5f, 1, .5f, 1, .5f);
            }
            path1.lineTo(r1[index].fX, r1[index].fY);
        }
        path1.close();
        if (!rectFirst) {
            path1.addRect(-1, -1, 2, 2, SkPath::kCCW_Direction);
        }
        REPORTER_ASSERT(reporter, !path1.isNestedFillRects(NULL));

        // fail,  not nested
        path1.reset();
        path1.addRect(1, 1, 3, 3, SkPath::kCW_Direction);
        path1.addRect(2, 2, 4, 4, SkPath::kCW_Direction);
        REPORTER_ASSERT(reporter, !path1.isNestedFillRects(NULL));
    }

    //  pass, constructed explicitly from manually closed rects specified as moves/lines.
    SkPath path;
    path.moveTo(0, 0);
    path.lineTo(10, 0);
    path.lineTo(10, 10);
    path.lineTo(0, 10);
    path.lineTo(0, 0);
    path.moveTo(1, 1);
    path.lineTo(9, 1);
    path.lineTo(9, 9);
    path.lineTo(1, 9);
    path.lineTo(1, 1);
    REPORTER_ASSERT(reporter, path.isNestedFillRects(NULL));

    // pass, stroke rect
    SkPath src, dst;
    src.addRect(1, 1, 7, 7, SkPath::kCW_Direction);
    SkPaint strokePaint;
    strokePaint.setStyle(SkPaint::kStroke_Style);
    strokePaint.setStrokeWidth(2);
    strokePaint.getFillPath(src, &dst);
    REPORTER_ASSERT(reporter, dst.isNestedFillRects(NULL));
}

static void write_and_read_back(skiatest::Reporter* reporter,
                                const SkPath& p) {
    SkWriter32 writer;
    writer.writePath(p);
    size_t size = writer.bytesWritten();
    SkAutoMalloc storage(size);
    writer.flatten(storage.get());
    SkReader32 reader(storage.get(), size);

    SkPath readBack;
    REPORTER_ASSERT(reporter, readBack != p);
    reader.readPath(&readBack);
    REPORTER_ASSERT(reporter, readBack == p);

    REPORTER_ASSERT(reporter, readBack.getConvexityOrUnknown() ==
                              p.getConvexityOrUnknown());

    REPORTER_ASSERT(reporter, readBack.isOval(NULL) == p.isOval(NULL));

    const SkRect& origBounds = p.getBounds();
    const SkRect& readBackBounds = readBack.getBounds();

    REPORTER_ASSERT(reporter, origBounds == readBackBounds);
}

static void test_flattening(skiatest::Reporter* reporter) {
    SkPath p;

    static const SkPoint pts[] = {
        { 0, 0 },
        { SkIntToScalar(10), SkIntToScalar(10) },
        { SkIntToScalar(20), SkIntToScalar(10) }, { SkIntToScalar(20), 0 },
        { 0, 0 }, { 0, SkIntToScalar(10) }, { SkIntToScalar(1), SkIntToScalar(10) }
    };
    p.moveTo(pts[0]);
    p.lineTo(pts[1]);
    p.quadTo(pts[2], pts[3]);
    p.cubicTo(pts[4], pts[5], pts[6]);

    write_and_read_back(reporter, p);

    // create a buffer that should be much larger than the path so we don't
    // kill our stack if writer goes too far.
    char buffer[1024];
    size_t size1 = p.writeToMemory(NULL);
    size_t size2 = p.writeToMemory(buffer);
    REPORTER_ASSERT(reporter, size1 == size2);

    SkPath p2;
    size_t size3 = p2.readFromMemory(buffer, 1024);
    REPORTER_ASSERT(reporter, size1 == size3);
    REPORTER_ASSERT(reporter, p == p2);

    size3 = p2.readFromMemory(buffer, 0);
    REPORTER_ASSERT(reporter, !size3);

    SkPath tooShort;
    size3 = tooShort.readFromMemory(buffer, size1 - 1);
    REPORTER_ASSERT(reporter, tooShort.isEmpty());

    char buffer2[1024];
    size3 = p2.writeToMemory(buffer2);
    REPORTER_ASSERT(reporter, size1 == size3);
    REPORTER_ASSERT(reporter, memcmp(buffer, buffer2, size1) == 0);

    // test persistence of the oval flag & convexity
    {
        SkPath oval;
        SkRect rect = SkRect::MakeWH(10, 10);
        oval.addOval(rect);

        write_and_read_back(reporter, oval);
    }
}

static void test_transform(skiatest::Reporter* reporter) {
    SkPath p;

#define CONIC_PERSPECTIVE_BUG_FIXED 0
    static const SkPoint pts[] = {
        { 0, 0 },  // move
        { SkIntToScalar(10), SkIntToScalar(10) },  // line
        { SkIntToScalar(20), SkIntToScalar(10) }, { SkIntToScalar(20), 0 },  // quad
        { 0, 0 }, { 0, SkIntToScalar(10) }, { SkIntToScalar(1), SkIntToScalar(10) },  // cubic
#if CONIC_PERSPECTIVE_BUG_FIXED
        { 0, 0 }, { SkIntToScalar(20), SkIntToScalar(10) },  // conic
#endif
    };
    const int kPtCount = SK_ARRAY_COUNT(pts);

    p.moveTo(pts[0]);
    p.lineTo(pts[1]);
    p.quadTo(pts[2], pts[3]);
    p.cubicTo(pts[4], pts[5], pts[6]);
#if CONIC_PERSPECTIVE_BUG_FIXED
    p.conicTo(pts[4], pts[5], 0.5f);
#endif
    p.close();

    {
        SkMatrix matrix;
        matrix.reset();
        SkPath p1;
        p.transform(matrix, &p1);
        REPORTER_ASSERT(reporter, p == p1);
    }


    {
        SkMatrix matrix;
        matrix.setScale(SK_Scalar1 * 2, SK_Scalar1 * 3);

        SkPath p1;      // Leave p1 non-unique (i.e., the empty path)

        p.transform(matrix, &p1);
        SkPoint pts1[kPtCount];
        int count = p1.getPoints(pts1, kPtCount);
        REPORTER_ASSERT(reporter, kPtCount == count);
        for (int i = 0; i < count; ++i) {
            SkPoint newPt = SkPoint::Make(pts[i].fX * 2, pts[i].fY * 3);
            REPORTER_ASSERT(reporter, newPt == pts1[i]);
        }
    }

    {
        SkMatrix matrix;
        matrix.reset();
        matrix.setPerspX(4);

        SkPath p1;
        p1.moveTo(SkPoint::Make(0, 0));

        p.transform(matrix, &p1);
        REPORTER_ASSERT(reporter, matrix.invert(&matrix));
        p1.transform(matrix, NULL);
        SkRect pBounds = p.getBounds();
        SkRect p1Bounds = p1.getBounds();
        REPORTER_ASSERT(reporter, SkScalarNearlyEqual(pBounds.fLeft, p1Bounds.fLeft));
        REPORTER_ASSERT(reporter, SkScalarNearlyEqual(pBounds.fTop, p1Bounds.fTop));
        REPORTER_ASSERT(reporter, SkScalarNearlyEqual(pBounds.fRight, p1Bounds.fRight));
        REPORTER_ASSERT(reporter, SkScalarNearlyEqual(pBounds.fBottom, p1Bounds.fBottom));
    }

    p.reset();
    p.addCircle(0, 0, 1, SkPath::kCW_Direction);

    {
        SkMatrix matrix;
        matrix.reset();
        SkPath p1;
        p1.moveTo(SkPoint::Make(0, 0));

        p.transform(matrix, &p1);
        REPORTER_ASSERT(reporter, p1.cheapIsDirection(SkPath::kCW_Direction));
    }


    {
        SkMatrix matrix;
        matrix.reset();
        matrix.setScaleX(-1);
        SkPath p1;
        p1.moveTo(SkPoint::Make(0, 0)); // Make p1 unique (i.e., not empty path)

        p.transform(matrix, &p1);
        REPORTER_ASSERT(reporter, p1.cheapIsDirection(SkPath::kCCW_Direction));
    }

    {
        SkMatrix matrix;
        matrix.setAll(1, 1, 0, 1, 1, 0, 0, 0, 1);
        SkPath p1;
        p1.moveTo(SkPoint::Make(0, 0)); // Make p1 unique (i.e., not empty path)

        p.transform(matrix, &p1);
        REPORTER_ASSERT(reporter, p1.cheapIsDirection(SkPath::kUnknown_Direction));
    }
}

static void test_zero_length_paths(skiatest::Reporter* reporter) {
    SkPath  p;
    uint8_t verbs[32];

    struct SUPPRESS_VISIBILITY_WARNING zeroPathTestData {
        const char* testPath;
        const size_t numResultPts;
        const SkRect resultBound;
        const SkPath::Verb* resultVerbs;
        const size_t numResultVerbs;
    };

    static const SkPath::Verb resultVerbs1[] = { SkPath::kMove_Verb };
    static const SkPath::Verb resultVerbs2[] = { SkPath::kMove_Verb, SkPath::kMove_Verb };
    static const SkPath::Verb resultVerbs3[] = { SkPath::kMove_Verb, SkPath::kClose_Verb };
    static const SkPath::Verb resultVerbs4[] = { SkPath::kMove_Verb, SkPath::kClose_Verb, SkPath::kMove_Verb, SkPath::kClose_Verb };
    static const SkPath::Verb resultVerbs5[] = { SkPath::kMove_Verb, SkPath::kLine_Verb };
    static const SkPath::Verb resultVerbs6[] = { SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kMove_Verb, SkPath::kLine_Verb };
    static const SkPath::Verb resultVerbs7[] = { SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kClose_Verb };
    static const SkPath::Verb resultVerbs8[] = {
        SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kClose_Verb, SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kClose_Verb
    };
    static const SkPath::Verb resultVerbs9[] = { SkPath::kMove_Verb, SkPath::kQuad_Verb };
    static const SkPath::Verb resultVerbs10[] = { SkPath::kMove_Verb, SkPath::kQuad_Verb, SkPath::kMove_Verb, SkPath::kQuad_Verb };
    static const SkPath::Verb resultVerbs11[] = { SkPath::kMove_Verb, SkPath::kQuad_Verb, SkPath::kClose_Verb };
    static const SkPath::Verb resultVerbs12[] = {
        SkPath::kMove_Verb, SkPath::kQuad_Verb, SkPath::kClose_Verb, SkPath::kMove_Verb, SkPath::kQuad_Verb, SkPath::kClose_Verb
    };
    static const SkPath::Verb resultVerbs13[] = { SkPath::kMove_Verb, SkPath::kCubic_Verb };
    static const SkPath::Verb resultVerbs14[] = { SkPath::kMove_Verb, SkPath::kCubic_Verb, SkPath::kMove_Verb, SkPath::kCubic_Verb };
    static const SkPath::Verb resultVerbs15[] = { SkPath::kMove_Verb, SkPath::kCubic_Verb, SkPath::kClose_Verb };
    static const SkPath::Verb resultVerbs16[] = {
        SkPath::kMove_Verb, SkPath::kCubic_Verb, SkPath::kClose_Verb, SkPath::kMove_Verb, SkPath::kCubic_Verb, SkPath::kClose_Verb
    };
    static const struct zeroPathTestData gZeroLengthTests[] = {
        { "M 1 1", 1, {0, 0, 0, 0}, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) },
        { "M 1 1 M 2 1", 2, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs2, SK_ARRAY_COUNT(resultVerbs2) },
        { "M 1 1 z", 1, {0, 0, 0, 0}, resultVerbs3, SK_ARRAY_COUNT(resultVerbs3) },
        { "M 1 1 z M 2 1 z", 2, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs4, SK_ARRAY_COUNT(resultVerbs4) },
        { "M 1 1 L 1 1", 2, {SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1}, resultVerbs5, SK_ARRAY_COUNT(resultVerbs5) },
        { "M 1 1 L 1 1 M 2 1 L 2 1", 4, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs6, SK_ARRAY_COUNT(resultVerbs6) },
        { "M 1 1 L 1 1 z", 2, {SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1}, resultVerbs7, SK_ARRAY_COUNT(resultVerbs7) },
        { "M 1 1 L 1 1 z M 2 1 L 2 1 z", 4, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs8, SK_ARRAY_COUNT(resultVerbs8) },
        { "M 1 1 Q 1 1 1 1", 3, {SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1}, resultVerbs9, SK_ARRAY_COUNT(resultVerbs9) },
        { "M 1 1 Q 1 1 1 1 M 2 1 Q 2 1 2 1", 6, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs10, SK_ARRAY_COUNT(resultVerbs10) },
        { "M 1 1 Q 1 1 1 1 z", 3, {SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1}, resultVerbs11, SK_ARRAY_COUNT(resultVerbs11) },
        { "M 1 1 Q 1 1 1 1 z M 2 1 Q 2 1 2 1 z", 6, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs12, SK_ARRAY_COUNT(resultVerbs12) },
        { "M 1 1 C 1 1 1 1 1 1", 4, {SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1}, resultVerbs13, SK_ARRAY_COUNT(resultVerbs13) },
        { "M 1 1 C 1 1 1 1 1 1 M 2 1 C 2 1 2 1 2 1", 8, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs14,
            SK_ARRAY_COUNT(resultVerbs14)
        },
        { "M 1 1 C 1 1 1 1 1 1 z", 4, {SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1}, resultVerbs15, SK_ARRAY_COUNT(resultVerbs15) },
        { "M 1 1 C 1 1 1 1 1 1 z M 2 1 C 2 1 2 1 2 1 z", 8, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs16,
            SK_ARRAY_COUNT(resultVerbs16)
        }
    };

    for (size_t i = 0; i < SK_ARRAY_COUNT(gZeroLengthTests); ++i) {
        p.reset();
        bool valid = SkParsePath::FromSVGString(gZeroLengthTests[i].testPath, &p);
        REPORTER_ASSERT(reporter, valid);
        REPORTER_ASSERT(reporter, !p.isEmpty());
        REPORTER_ASSERT(reporter, gZeroLengthTests[i].numResultPts == (size_t)p.countPoints());
        REPORTER_ASSERT(reporter, gZeroLengthTests[i].resultBound == p.getBounds());
        REPORTER_ASSERT(reporter, gZeroLengthTests[i].numResultVerbs == (size_t)p.getVerbs(verbs, SK_ARRAY_COUNT(verbs)));
        for (size_t j = 0; j < gZeroLengthTests[i].numResultVerbs; ++j) {
            REPORTER_ASSERT(reporter, gZeroLengthTests[i].resultVerbs[j] == verbs[j]);
        }
    }
}

struct SegmentInfo {
    SkPath fPath;
    int    fPointCount;
};

#define kCurveSegmentMask   (SkPath::kQuad_SegmentMask | SkPath::kCubic_SegmentMask)

static void test_segment_masks(skiatest::Reporter* reporter) {
    SkPath p, p2;

    p.moveTo(0, 0);
    p.quadTo(100, 100, 200, 200);
    REPORTER_ASSERT(reporter, SkPath::kQuad_SegmentMask == p.getSegmentMasks());
    REPORTER_ASSERT(reporter, !p.isEmpty());
    p2 = p;
    REPORTER_ASSERT(reporter, p2.getSegmentMasks() == p.getSegmentMasks());
    p.cubicTo(100, 100, 200, 200, 300, 300);
    REPORTER_ASSERT(reporter, kCurveSegmentMask == p.getSegmentMasks());
    REPORTER_ASSERT(reporter, !p.isEmpty());
    p2 = p;
    REPORTER_ASSERT(reporter, p2.getSegmentMasks() == p.getSegmentMasks());

    p.reset();
    p.moveTo(0, 0);
    p.cubicTo(100, 100, 200, 200, 300, 300);
    REPORTER_ASSERT(reporter, SkPath::kCubic_SegmentMask == p.getSegmentMasks());
    p2 = p;
    REPORTER_ASSERT(reporter, p2.getSegmentMasks() == p.getSegmentMasks());

    REPORTER_ASSERT(reporter, !p.isEmpty());
}

static void test_iter(skiatest::Reporter* reporter) {
    SkPath  p;
    SkPoint pts[4];

    // Test an iterator with no path
    SkPath::Iter noPathIter;
    REPORTER_ASSERT(reporter, noPathIter.next(pts) == SkPath::kDone_Verb);

    // Test that setting an empty path works
    noPathIter.setPath(p, false);
    REPORTER_ASSERT(reporter, noPathIter.next(pts) == SkPath::kDone_Verb);

    // Test that close path makes no difference for an empty path
    noPathIter.setPath(p, true);
    REPORTER_ASSERT(reporter, noPathIter.next(pts) == SkPath::kDone_Verb);

    // Test an iterator with an initial empty path
    SkPath::Iter iter(p, false);
    REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kDone_Verb);

    // Test that close path makes no difference
    iter.setPath(p, true);
    REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kDone_Verb);


    struct iterTestData {
        const char* testPath;
        const bool forceClose;
        const bool consumeDegenerates;
        const size_t* numResultPtsPerVerb;
        const SkPoint* resultPts;
        const SkPath::Verb* resultVerbs;
        const size_t numResultVerbs;
    };

    static const SkPath::Verb resultVerbs1[] = { SkPath::kDone_Verb };
    static const SkPath::Verb resultVerbs2[] = {
        SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kDone_Verb
    };
    static const SkPath::Verb resultVerbs3[] = {
        SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kClose_Verb, SkPath::kDone_Verb
    };
    static const SkPath::Verb resultVerbs4[] = {
        SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kMove_Verb, SkPath::kClose_Verb, SkPath::kDone_Verb
    };
    static const SkPath::Verb resultVerbs5[] = {
        SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kClose_Verb, SkPath::kMove_Verb, SkPath::kClose_Verb, SkPath::kDone_Verb
    };
    static const size_t resultPtsSizes1[] = { 0 };
    static const size_t resultPtsSizes2[] = { 1, 2, 2, 0 };
    static const size_t resultPtsSizes3[] = { 1, 2, 2, 2, 1, 0 };
    static const size_t resultPtsSizes4[] = { 1, 2, 1, 1, 0 };
    static const size_t resultPtsSizes5[] = { 1, 2, 1, 1, 1, 0 };
    static const SkPoint* resultPts1 = 0;
    static const SkPoint resultPts2[] = {
        { SK_Scalar1, 0 }, { SK_Scalar1, 0 }, { SK_Scalar1, SK_Scalar1 }, { SK_Scalar1, SK_Scalar1 }, { 0, SK_Scalar1 }
    };
    static const SkPoint resultPts3[] = {
        { SK_Scalar1, 0 }, { SK_Scalar1, 0 }, { SK_Scalar1, SK_Scalar1 }, { SK_Scalar1, SK_Scalar1 }, { 0, SK_Scalar1 },
        { 0, SK_Scalar1 }, { SK_Scalar1, 0 }, { SK_Scalar1, 0 }
    };
    static const SkPoint resultPts4[] = {
        { SK_Scalar1, 0 }, { SK_Scalar1, 0 }, { SK_Scalar1, 0 }, { 0, 0 }, { 0, 0 }
    };
    static const SkPoint resultPts5[] = {
        { SK_Scalar1, 0 }, { SK_Scalar1, 0 }, { SK_Scalar1, 0 }, { SK_Scalar1, 0 }, { 0, 0 }, { 0, 0 }
    };
    static const struct iterTestData gIterTests[] = {
        { "M 1 0", false, true, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) },
        { "M 1 0 M 2 0 M 3 0 M 4 0 M 5 0", false, true, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) },
        { "M 1 0 M 1 0 M 3 0 M 4 0 M 5 0", true, true, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) },
        { "z", false, true, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) },
        { "z", true, true, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) },
        { "z M 1 0 z z M 2 0 z M 3 0 M 4 0 z", false, true, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) },
        { "z M 1 0 z z M 2 0 z M 3 0 M 4 0 z", true, true, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) },
        { "M 1 0 L 1 1 L 0 1 M 0 0 z", false, true, resultPtsSizes2, resultPts2, resultVerbs2, SK_ARRAY_COUNT(resultVerbs2) },
        { "M 1 0 L 1 1 L 0 1 M 0 0 z", true, true, resultPtsSizes3, resultPts3, resultVerbs3, SK_ARRAY_COUNT(resultVerbs3) },
        { "M 1 0 L 1 0 M 0 0 z", false, true, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) },
        { "M 1 0 L 1 0 M 0 0 z", true, true, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) },
        { "M 1 0 L 1 0 M 0 0 z", false, false, resultPtsSizes4, resultPts4, resultVerbs4, SK_ARRAY_COUNT(resultVerbs4) },
        { "M 1 0 L 1 0 M 0 0 z", true, false, resultPtsSizes5, resultPts5, resultVerbs5, SK_ARRAY_COUNT(resultVerbs5) }
    };

    for (size_t i = 0; i < SK_ARRAY_COUNT(gIterTests); ++i) {
        p.reset();
        bool valid = SkParsePath::FromSVGString(gIterTests[i].testPath, &p);
        REPORTER_ASSERT(reporter, valid);
        iter.setPath(p, gIterTests[i].forceClose);
        int j = 0, l = 0;
        do {
            REPORTER_ASSERT(reporter, iter.next(pts, gIterTests[i].consumeDegenerates) == gIterTests[i].resultVerbs[j]);
            for (int k = 0; k < (int)gIterTests[i].numResultPtsPerVerb[j]; ++k) {
                REPORTER_ASSERT(reporter, pts[k] == gIterTests[i].resultPts[l++]);
            }
        } while (gIterTests[i].resultVerbs[j++] != SkPath::kDone_Verb);
        REPORTER_ASSERT(reporter, j == (int)gIterTests[i].numResultVerbs);
    }

    p.reset();
    iter.setPath(p, false);
    REPORTER_ASSERT(reporter, !iter.isClosedContour());
    p.lineTo(1, 1);
    p.close();
    iter.setPath(p, false);
    REPORTER_ASSERT(reporter, iter.isClosedContour());
    p.reset();
    iter.setPath(p, true);
    REPORTER_ASSERT(reporter, !iter.isClosedContour());
    p.lineTo(1, 1);
    iter.setPath(p, true);
    REPORTER_ASSERT(reporter, iter.isClosedContour());
    p.moveTo(0, 0);
    p.lineTo(2, 2);
    iter.setPath(p, false);
    REPORTER_ASSERT(reporter, !iter.isClosedContour());

    // this checks to see if the NaN logic is executed in SkPath::autoClose(), but does not
    // check to see if the result is correct.
    for (int setNaN = 0; setNaN < 4; ++setNaN) {
        p.reset();
        p.moveTo(setNaN == 0 ? SK_ScalarNaN : 0, setNaN == 1 ? SK_ScalarNaN : 0);
        p.lineTo(setNaN == 2 ? SK_ScalarNaN : 1, setNaN == 3 ? SK_ScalarNaN : 1);
        iter.setPath(p, true);
        iter.next(pts, false);
        iter.next(pts, false);
        REPORTER_ASSERT(reporter, SkPath::kClose_Verb == iter.next(pts, false));
    }

    p.reset();
    p.quadTo(0, 0, 0, 0);
    iter.setPath(p, false);
    iter.next(pts, false);
    REPORTER_ASSERT(reporter, SkPath::kQuad_Verb == iter.next(pts, false));
    iter.setPath(p, false);
    iter.next(pts, false);
    REPORTER_ASSERT(reporter, SkPath::kDone_Verb == iter.next(pts, true));

    p.reset();
    p.conicTo(0, 0, 0, 0, 0.5f);
    iter.setPath(p, false);
    iter.next(pts, false);
    REPORTER_ASSERT(reporter, SkPath::kConic_Verb == iter.next(pts, false));
    iter.setPath(p, false);
    iter.next(pts, false);
    REPORTER_ASSERT(reporter, SkPath::kDone_Verb == iter.next(pts, true));

    p.reset();
    p.cubicTo(0, 0, 0, 0, 0, 0);
    iter.setPath(p, false);
    iter.next(pts, false);
    REPORTER_ASSERT(reporter, SkPath::kCubic_Verb == iter.next(pts, false));
    iter.setPath(p, false);
    iter.next(pts, false);
    REPORTER_ASSERT(reporter, SkPath::kDone_Verb == iter.next(pts, true));

    p.moveTo(1, 1);  // add a trailing moveto
    iter.setPath(p, false);
    iter.next(pts, false);
    REPORTER_ASSERT(reporter, SkPath::kCubic_Verb == iter.next(pts, false));
    iter.setPath(p, false);
    iter.next(pts, false);
    REPORTER_ASSERT(reporter, SkPath::kDone_Verb == iter.next(pts, true));

    // The GM degeneratesegments.cpp test is more extensive

    // Test out mixed degenerate and non-degenerate geometry with Conics
    const SkVector radii[4] = { { 0, 0 }, { 0, 0 }, { 0, 0 }, { 100, 100 } };
    SkRect r = SkRect::MakeWH(100, 100);
    SkRRect rr;
    rr.setRectRadii(r, radii);
    p.reset();
    p.addRRect(rr);
    iter.setPath(p, false);
    REPORTER_ASSERT(reporter, SkPath::kMove_Verb == iter.next(pts));
    REPORTER_ASSERT(reporter, SkPath::kLine_Verb == iter.next(pts));
    REPORTER_ASSERT(reporter, SkPath::kLine_Verb == iter.next(pts));
    REPORTER_ASSERT(reporter, SkPath::kConic_Verb == iter.next(pts));
    REPORTER_ASSERT(reporter, SK_ScalarRoot2Over2 == iter.conicWeight());
}

static void test_raw_iter(skiatest::Reporter* reporter) {
    SkPath p;
    SkPoint pts[4];

    // Test an iterator with no path
    SkPath::RawIter noPathIter;
    REPORTER_ASSERT(reporter, noPathIter.next(pts) == SkPath::kDone_Verb);
    // Test that setting an empty path works
    noPathIter.setPath(p);
    REPORTER_ASSERT(reporter, noPathIter.next(pts) == SkPath::kDone_Verb);

    // Test an iterator with an initial empty path
    SkPath::RawIter iter(p);
    REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kDone_Verb);

    // Test that a move-only path returns the move.
    p.moveTo(SK_Scalar1, 0);
    iter.setPath(p);
    REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb);
    REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1);
    REPORTER_ASSERT(reporter, pts[0].fY == 0);
    REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kDone_Verb);

    // No matter how many moves we add, we should get them all back
    p.moveTo(SK_Scalar1*2, SK_Scalar1);
    p.moveTo(SK_Scalar1*3, SK_Scalar1*2);
    iter.setPath(p);
    REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb);
    REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1);
    REPORTER_ASSERT(reporter, pts[0].fY == 0);
    REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb);
    REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1*2);
    REPORTER_ASSERT(reporter, pts[0].fY == SK_Scalar1);
    REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb);
    REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1*3);
    REPORTER_ASSERT(reporter, pts[0].fY == SK_Scalar1*2);
    REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kDone_Verb);

    // Initial close is never ever stored
    p.reset();
    p.close();
    iter.setPath(p);
    REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kDone_Verb);

    // Move/close sequences
    p.reset();
    p.close(); // Not stored, no purpose
    p.moveTo(SK_Scalar1, 0);
    p.close();
    p.close(); // Not stored, no purpose
    p.moveTo(SK_Scalar1*2, SK_Scalar1);
    p.close();
    p.moveTo(SK_Scalar1*3, SK_Scalar1*2);
    p.moveTo(SK_Scalar1*4, SK_Scalar1*3);
    p.close();
    iter.setPath(p);
    REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb);
    REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1);
    REPORTER_ASSERT(reporter, pts[0].fY == 0);
    REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kClose_Verb);
    REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1);
    REPORTER_ASSERT(reporter, pts[0].fY == 0);
    REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb);
    REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1*2);
    REPORTER_ASSERT(reporter, pts[0].fY == SK_Scalar1);
    REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kClose_Verb);
    REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1*2);
    REPORTER_ASSERT(reporter, pts[0].fY == SK_Scalar1);
    REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb);
    REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1*3);
    REPORTER_ASSERT(reporter, pts[0].fY == SK_Scalar1*2);
    REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb);
    REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1*4);
    REPORTER_ASSERT(reporter, pts[0].fY == SK_Scalar1*3);
    REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kClose_Verb);
    REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1*4);
    REPORTER_ASSERT(reporter, pts[0].fY == SK_Scalar1*3);
    REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kDone_Verb);

    // Generate random paths and verify
    SkPoint randomPts[25];
    for (int i = 0; i < 5; ++i) {
        for (int j = 0; j < 5; ++j) {
            randomPts[i*5+j].set(SK_Scalar1*i, SK_Scalar1*j);
        }
    }

    // Max of 10 segments, max 3 points per segment
    SkRandom rand(9876543);
    SkPoint          expectedPts[31]; // May have leading moveTo
    SkPath::Verb     expectedVerbs[22]; // May have leading moveTo
    SkPath::Verb     nextVerb;

    for (int i = 0; i < 500; ++i) {
        p.reset();
        bool lastWasClose = true;
        bool haveMoveTo = false;
        SkPoint lastMoveToPt = { 0, 0 };
        int numPoints = 0;
        int numVerbs = (rand.nextU() >> 16) % 10;
        int numIterVerbs = 0;
        for (int j = 0; j < numVerbs; ++j) {
            do {
                nextVerb = static_cast<SkPath::Verb>((rand.nextU() >> 16) % SkPath::kDone_Verb);
            } while (lastWasClose && nextVerb == SkPath::kClose_Verb);
            switch (nextVerb) {
                case SkPath::kMove_Verb:
                    expectedPts[numPoints] = randomPts[(rand.nextU() >> 16) % 25];
                    p.moveTo(expectedPts[numPoints]);
                    lastMoveToPt = expectedPts[numPoints];
                    numPoints += 1;
                    lastWasClose = false;
                    haveMoveTo = true;
                    break;
                case SkPath::kLine_Verb:
                    if (!haveMoveTo) {
                        expectedPts[numPoints++] = lastMoveToPt;
                        expectedVerbs[numIterVerbs++] = SkPath::kMove_Verb;
                        haveMoveTo = true;
                    }
                    expectedPts[numPoints] = randomPts[(rand.nextU() >> 16) % 25];
                    p.lineTo(expectedPts[numPoints]);
                    numPoints += 1;
                    lastWasClose = false;
                    break;
                case SkPath::kQuad_Verb:
                    if (!haveMoveTo) {
                        expectedPts[numPoints++] = lastMoveToPt;
                        expectedVerbs[numIterVerbs++] = SkPath::kMove_Verb;
                        haveMoveTo = true;
                    }
                    expectedPts[numPoints] = randomPts[(rand.nextU() >> 16) % 25];
                    expectedPts[numPoints + 1] = randomPts[(rand.nextU() >> 16) % 25];
                    p.quadTo(expectedPts[numPoints], expectedPts[numPoints + 1]);
                    numPoints += 2;
                    lastWasClose = false;
                    break;
                case SkPath::kConic_Verb:
                    if (!haveMoveTo) {
                        expectedPts[numPoints++] = lastMoveToPt;
                        expectedVerbs[numIterVerbs++] = SkPath::kMove_Verb;
                        haveMoveTo = true;
                    }
                    expectedPts[numPoints] = randomPts[(rand.nextU() >> 16) % 25];
                    expectedPts[numPoints + 1] = randomPts[(rand.nextU() >> 16) % 25];
                    p.conicTo(expectedPts[numPoints], expectedPts[numPoints + 1],
                              rand.nextUScalar1() * 4);
                    numPoints += 2;
                    lastWasClose = false;
                    break;
                case SkPath::kCubic_Verb:
                    if (!haveMoveTo) {
                        expectedPts[numPoints++] = lastMoveToPt;
                        expectedVerbs[numIterVerbs++] = SkPath::kMove_Verb;
                        haveMoveTo = true;
                    }
                    expectedPts[numPoints] = randomPts[(rand.nextU() >> 16) % 25];
                    expectedPts[numPoints + 1] = randomPts[(rand.nextU() >> 16) % 25];
                    expectedPts[numPoints + 2] = randomPts[(rand.nextU() >> 16) % 25];
                    p.cubicTo(expectedPts[numPoints], expectedPts[numPoints + 1],
                              expectedPts[numPoints + 2]);
                    numPoints += 3;
                    lastWasClose = false;
                    break;
                case SkPath::kClose_Verb:
                    p.close();
                    haveMoveTo = false;
                    lastWasClose = true;
                    break;
                default:
                    SkDEBUGFAIL("unexpected verb");
            }
            expectedVerbs[numIterVerbs++] = nextVerb;
        }

        iter.setPath(p);
        numVerbs = numIterVerbs;
        numIterVerbs = 0;
        int numIterPts = 0;
        SkPoint lastMoveTo;
        SkPoint lastPt;
        lastMoveTo.set(0, 0);
        lastPt.set(0, 0);
        while ((nextVerb = iter.next(pts)) != SkPath::kDone_Verb) {
            REPORTER_ASSERT(reporter, nextVerb == expectedVerbs[numIterVerbs]);
            numIterVerbs++;
            switch (nextVerb) {
                case SkPath::kMove_Verb:
                    REPORTER_ASSERT(reporter, numIterPts < numPoints);
                    REPORTER_ASSERT(reporter, pts[0] == expectedPts[numIterPts]);
                    lastPt = lastMoveTo = pts[0];
                    numIterPts += 1;
                    break;
                case SkPath::kLine_Verb:
                    REPORTER_ASSERT(reporter, numIterPts < numPoints + 1);
                    REPORTER_ASSERT(reporter, pts[0] == lastPt);
                    REPORTER_ASSERT(reporter, pts[1] == expectedPts[numIterPts]);
                    lastPt = pts[1];
                    numIterPts += 1;
                    break;
                case SkPath::kQuad_Verb:
                case SkPath::kConic_Verb:
                    REPORTER_ASSERT(reporter, numIterPts < numPoints + 2);
                    REPORTER_ASSERT(reporter, pts[0] == lastPt);
                    REPORTER_ASSERT(reporter, pts[1] == expectedPts[numIterPts]);
                    REPORTER_ASSERT(reporter, pts[2] == expectedPts[numIterPts + 1]);
                    lastPt = pts[2];
                    numIterPts += 2;
                    break;
                case SkPath::kCubic_Verb:
                    REPORTER_ASSERT(reporter, numIterPts < numPoints + 3);
                    REPORTER_ASSERT(reporter, pts[0] == lastPt);
                    REPORTER_ASSERT(reporter, pts[1] == expectedPts[numIterPts]);
                    REPORTER_ASSERT(reporter, pts[2] == expectedPts[numIterPts + 1]);
                    REPORTER_ASSERT(reporter, pts[3] == expectedPts[numIterPts + 2]);
                    lastPt = pts[3];
                    numIterPts += 3;
                    break;
                case SkPath::kClose_Verb:
                    REPORTER_ASSERT(reporter, pts[0] == lastMoveTo);
                    lastPt = lastMoveTo;
                    break;
                default:
                    SkDEBUGFAIL("unexpected verb");
            }
        }
        REPORTER_ASSERT(reporter, numIterPts == numPoints);
        REPORTER_ASSERT(reporter, numIterVerbs == numVerbs);
    }
}

static void check_for_circle(skiatest::Reporter* reporter,
                             const SkPath& path,
                             bool expectedCircle,
                             SkPath::Direction expectedDir) {
    SkRect rect = SkRect::MakeEmpty();
    REPORTER_ASSERT(reporter, path.isOval(&rect) == expectedCircle);
    REPORTER_ASSERT(reporter, path.cheapIsDirection(expectedDir));

    if (expectedCircle) {
        REPORTER_ASSERT(reporter, rect.height() == rect.width());
    }
}

static void test_circle_skew(skiatest::Reporter* reporter,
                             const SkPath& path,
                             SkPath::Direction dir) {
    SkPath tmp;

    SkMatrix m;
    m.setSkew(SkIntToScalar(3), SkIntToScalar(5));
    path.transform(m, &tmp);
    // this matrix reverses the direction.
    if (SkPath::kCCW_Direction == dir) {
        dir = SkPath::kCW_Direction;
    } else {
        REPORTER_ASSERT(reporter, SkPath::kCW_Direction == dir);
        dir = SkPath::kCCW_Direction;
    }
    check_for_circle(reporter, tmp, false, dir);
}

static void test_circle_translate(skiatest::Reporter* reporter,
                                  const SkPath& path,
                                  SkPath::Direction dir) {
    SkPath tmp;

    // translate at small offset
    SkMatrix m;
    m.setTranslate(SkIntToScalar(15), SkIntToScalar(15));
    path.transform(m, &tmp);
    check_for_circle(reporter, tmp, true, dir);

    tmp.reset();
    m.reset();

    // translate at a relatively big offset
    m.setTranslate(SkIntToScalar(1000), SkIntToScalar(1000));
    path.transform(m, &tmp);
    check_for_circle(reporter, tmp, true, dir);
}

static void test_circle_rotate(skiatest::Reporter* reporter,
                               const SkPath& path,
                               SkPath::Direction dir) {
    for (int angle = 0; angle < 360; ++angle) {
        SkPath tmp;
        SkMatrix m;
        m.setRotate(SkIntToScalar(angle));
        path.transform(m, &tmp);

        // TODO: a rotated circle whose rotated angle is not a multiple of 90
        // degrees is not an oval anymore, this can be improved.  we made this
        // for the simplicity of our implementation.
        if (angle % 90 == 0) {
            check_for_circle(reporter, tmp, true, dir);
        } else {
            check_for_circle(reporter, tmp, false, dir);
        }
    }
}

static void test_circle_mirror_x(skiatest::Reporter* reporter,
                                 const SkPath& path,
                                 SkPath::Direction dir) {
    SkPath tmp;
    SkMatrix m;
    m.reset();
    m.setScaleX(-SK_Scalar1);
    path.transform(m, &tmp);

    if (SkPath::kCW_Direction == dir) {
        dir = SkPath::kCCW_Direction;
    } else {
        REPORTER_ASSERT(reporter, SkPath::kCCW_Direction == dir);
        dir = SkPath::kCW_Direction;
    }

    check_for_circle(reporter, tmp, true, dir);
}

static void test_circle_mirror_y(skiatest::Reporter* reporter,
                                 const SkPath& path,
                                 SkPath::Direction dir) {
    SkPath tmp;
    SkMatrix m;
    m.reset();
    m.setScaleY(-SK_Scalar1);
    path.transform(m, &tmp);

    if (SkPath::kCW_Direction == dir) {
        dir = SkPath::kCCW_Direction;
    } else {
        REPORTER_ASSERT(reporter, SkPath::kCCW_Direction == dir);
        dir = SkPath::kCW_Direction;
    }

    check_for_circle(reporter, tmp, true, dir);
}

static void test_circle_mirror_xy(skiatest::Reporter* reporter,
                                 const SkPath& path,
                                 SkPath::Direction dir) {
    SkPath tmp;
    SkMatrix m;
    m.reset();
    m.setScaleX(-SK_Scalar1);
    m.setScaleY(-SK_Scalar1);
    path.transform(m, &tmp);

    check_for_circle(reporter, tmp, true, dir);
}

static void test_circle_with_direction(skiatest::Reporter* reporter,
                                       SkPath::Direction dir) {
    SkPath path;

    // circle at origin
    path.addCircle(0, 0, SkIntToScalar(20), dir);
    check_for_circle(reporter, path, true, dir);
    test_circle_rotate(reporter, path, dir);
    test_circle_translate(reporter, path, dir);
    test_circle_skew(reporter, path, dir);

    // circle at an offset at (10, 10)
    path.reset();
    path.addCircle(SkIntToScalar(10), SkIntToScalar(10),
                   SkIntToScalar(20), dir);
    check_for_circle(reporter, path, true, dir);
    test_circle_rotate(reporter, path, dir);
    test_circle_translate(reporter, path, dir);
    test_circle_skew(reporter, path, dir);
    test_circle_mirror_x(reporter, path, dir);
    test_circle_mirror_y(reporter, path, dir);
    test_circle_mirror_xy(reporter, path, dir);
}

static void test_circle_with_add_paths(skiatest::Reporter* reporter) {
    SkPath path;
    SkPath circle;
    SkPath rect;
    SkPath empty;

    static const SkPath::Direction kCircleDir = SkPath::kCW_Direction;
    static const SkPath::Direction kCircleDirOpposite = SkPath::kCCW_Direction;

    circle.addCircle(0, 0, SkIntToScalar(10), kCircleDir);
    rect.addRect(SkIntToScalar(5), SkIntToScalar(5),
                 SkIntToScalar(20), SkIntToScalar(20), SkPath::kCW_Direction);

    SkMatrix translate;
    translate.setTranslate(SkIntToScalar(12), SkIntToScalar(12));

    // Although all the path concatenation related operations leave
    // the path a circle, most mark it as a non-circle for simplicity

    // empty + circle (translate)
    path = empty;
    path.addPath(circle, translate);
    check_for_circle(reporter, path, false, kCircleDir);

    // circle + empty (translate)
    path = circle;
    path.addPath(empty, translate);
    check_for_circle(reporter, path, true, kCircleDir);

    // test reverseAddPath
    path = circle;
    path.reverseAddPath(rect);
    check_for_circle(reporter, path, false, kCircleDirOpposite);
}

static void test_circle(skiatest::Reporter* reporter) {
    test_circle_with_direction(reporter, SkPath::kCW_Direction);
    test_circle_with_direction(reporter, SkPath::kCCW_Direction);

    // multiple addCircle()
    SkPath path;
    path.addCircle(0, 0, SkIntToScalar(10), SkPath::kCW_Direction);
    path.addCircle(0, 0, SkIntToScalar(20), SkPath::kCW_Direction);
    check_for_circle(reporter, path, false, SkPath::kCW_Direction);

    // some extra lineTo() would make isOval() fail
    path.reset();
    path.addCircle(0, 0, SkIntToScalar(10), SkPath::kCW_Direction);
    path.lineTo(0, 0);
    check_for_circle(reporter, path, false, SkPath::kCW_Direction);

    // not back to the original point
    path.reset();
    path.addCircle(0, 0, SkIntToScalar(10), SkPath::kCW_Direction);
    path.setLastPt(SkIntToScalar(5), SkIntToScalar(5));
    check_for_circle(reporter, path, false, SkPath::kCW_Direction);

    test_circle_with_add_paths(reporter);

    // test negative radius
    path.reset();
    path.addCircle(0, 0, -1, SkPath::kCW_Direction);
    REPORTER_ASSERT(reporter, path.isEmpty());
}

static void test_oval(skiatest::Reporter* reporter) {
    SkRect rect;
    SkMatrix m;
    SkPath path;

    rect = SkRect::MakeWH(SkIntToScalar(30), SkIntToScalar(50));
    path.addOval(rect);

    REPORTER_ASSERT(reporter, path.isOval(NULL));

    m.setRotate(SkIntToScalar(90));
    SkPath tmp;
    path.transform(m, &tmp);
    // an oval rotated 90 degrees is still an oval.
    REPORTER_ASSERT(reporter, tmp.isOval(NULL));

    m.reset();
    m.setRotate(SkIntToScalar(30));
    tmp.reset();
    path.transform(m, &tmp);
    // an oval rotated 30 degrees is not an oval anymore.
    REPORTER_ASSERT(reporter, !tmp.isOval(NULL));

    // since empty path being transformed.
    path.reset();
    tmp.reset();
    m.reset();
    path.transform(m, &tmp);
    REPORTER_ASSERT(reporter, !tmp.isOval(NULL));

    // empty path is not an oval
    tmp.reset();
    REPORTER_ASSERT(reporter, !tmp.isOval(NULL));

    // only has moveTo()s
    tmp.reset();
    tmp.moveTo(0, 0);
    tmp.moveTo(SkIntToScalar(10), SkIntToScalar(10));
    REPORTER_ASSERT(reporter, !tmp.isOval(NULL));

    // mimic WebKit's calling convention,
    // call moveTo() first and then call addOval()
    path.reset();
    path.moveTo(0, 0);
    path.addOval(rect);
    REPORTER_ASSERT(reporter, path.isOval(NULL));

    // copy path
    path.reset();
    tmp.reset();
    tmp.addOval(rect);
    path = tmp;
    REPORTER_ASSERT(reporter, path.isOval(NULL));
}

static void test_empty(skiatest::Reporter* reporter, const SkPath& p) {
    SkPath  empty;

    REPORTER_ASSERT(reporter, p.isEmpty());
    REPORTER_ASSERT(reporter, 0 == p.countPoints());
    REPORTER_ASSERT(reporter, 0 == p.countVerbs());
    REPORTER_ASSERT(reporter, 0 == p.getSegmentMasks());
    REPORTER_ASSERT(reporter, p.isConvex());
    REPORTER_ASSERT(reporter, p.getFillType() == SkPath::kWinding_FillType);
    REPORTER_ASSERT(reporter, !p.isInverseFillType());
    REPORTER_ASSERT(reporter, p == empty);
    REPORTER_ASSERT(reporter, !(p != empty));
}

static void test_rrect_is_convex(skiatest::Reporter* reporter, SkPath* path,
                                 SkPath::Direction dir) {
    REPORTER_ASSERT(reporter, path->isConvex());
    REPORTER_ASSERT(reporter, path->cheapIsDirection(dir));
    path->setConvexity(SkPath::kUnknown_Convexity);
    REPORTER_ASSERT(reporter, path->isConvex());
    path->reset();
}

static void test_rrect_convexity_is_unknown(skiatest::Reporter* reporter, SkPath* path,
                                 SkPath::Direction dir) {
    REPORTER_ASSERT(reporter, path->isConvex());
    REPORTER_ASSERT(reporter, path->cheapIsDirection(dir));
    path->setConvexity(SkPath::kUnknown_Convexity);
    REPORTER_ASSERT(reporter, path->getConvexity() == SkPath::kUnknown_Convexity);
    path->reset();
}

static void test_rrect(skiatest::Reporter* reporter) {
    SkPath p;
    SkRRect rr;
    SkVector radii[] = {{1, 2}, {3, 4}, {5, 6}, {7, 8}};
    SkRect r = {10, 20, 30, 40};
    rr.setRectRadii(r, radii);
    p.addRRect(rr);
    test_rrect_is_convex(reporter, &p, SkPath::kCW_Direction);
    p.addRRect(rr, SkPath::kCCW_Direction);
    test_rrect_is_convex(reporter, &p, SkPath::kCCW_Direction);
    p.addRoundRect(r, &radii[0].fX);
    test_rrect_is_convex(reporter, &p, SkPath::kCW_Direction);
    p.addRoundRect(r, &radii[0].fX, SkPath::kCCW_Direction);
    test_rrect_is_convex(reporter, &p, SkPath::kCCW_Direction);
    p.addRoundRect(r, radii[1].fX, radii[1].fY);
    test_rrect_is_convex(reporter, &p, SkPath::kCW_Direction);
    p.addRoundRect(r, radii[1].fX, radii[1].fY, SkPath::kCCW_Direction);
    test_rrect_is_convex(reporter, &p, SkPath::kCCW_Direction);
    for (size_t i = 0; i < SK_ARRAY_COUNT(radii); ++i) {
        SkVector save = radii[i];
        radii[i].set(0, 0);
        rr.setRectRadii(r, radii);
        p.addRRect(rr);
        test_rrect_is_convex(reporter, &p, SkPath::kCW_Direction);
        radii[i] = save;
    }
    p.addRoundRect(r, 0, 0);
    SkRect returnedRect;
    REPORTER_ASSERT(reporter, p.isRect(&returnedRect));
    REPORTER_ASSERT(reporter, returnedRect == r);
    test_rrect_is_convex(reporter, &p, SkPath::kCW_Direction);
    SkVector zeroRadii[] = {{0, 0}, {0, 0}, {0, 0}, {0, 0}};
    rr.setRectRadii(r, zeroRadii);
    p.addRRect(rr);
    bool closed;
    SkPath::Direction dir;
    REPORTER_ASSERT(reporter, p.isRect(NULL, &closed, &dir));
    REPORTER_ASSERT(reporter, closed);
    REPORTER_ASSERT(reporter, SkPath::kCW_Direction == dir);
    test_rrect_is_convex(reporter, &p, SkPath::kCW_Direction);
    p.addRRect(rr, SkPath::kCW_Direction);
    p.addRRect(rr, SkPath::kCW_Direction);
    REPORTER_ASSERT(reporter, !p.isConvex());
    p.reset();
    p.addRRect(rr, SkPath::kCCW_Direction);
    p.addRRect(rr, SkPath::kCCW_Direction);
    REPORTER_ASSERT(reporter, !p.isConvex());
    p.reset();
    SkRect emptyR = {10, 20, 10, 30};
    rr.setRectRadii(emptyR, radii);
    p.addRRect(rr);
    REPORTER_ASSERT(reporter, p.isEmpty());
    SkRect largeR = {0, 0, SK_ScalarMax, SK_ScalarMax};
    rr.setRectRadii(largeR, radii);
    p.addRRect(rr);
    test_rrect_convexity_is_unknown(reporter, &p, SkPath::kCW_Direction);

    // we check for non-finites
    SkRect infR = {0, 0, SK_ScalarMax, SK_ScalarInfinity};
    rr.setRectRadii(infR, radii);
    REPORTER_ASSERT(reporter, rr.isEmpty());

    SkRect tinyR = {0, 0, 1e-9f, 1e-9f};
    p.addRoundRect(tinyR, 5e-11f, 5e-11f);
    test_rrect_is_convex(reporter, &p, SkPath::kCW_Direction);
}

static void test_arc(skiatest::Reporter* reporter) {
    SkPath p;
    SkRect emptyOval = {10, 20, 30, 20};
    REPORTER_ASSERT(reporter, emptyOval.isEmpty());
    p.addArc(emptyOval, 1, 2);
    REPORTER_ASSERT(reporter, p.isEmpty());
    p.reset();
    SkRect oval = {10, 20, 30, 40};
    p.addArc(oval, 1, 0);
    REPORTER_ASSERT(reporter, p.isEmpty());
    p.reset();
    SkPath cwOval;
    cwOval.addOval(oval);
    p.addArc(oval, 1, 360);
    REPORTER_ASSERT(reporter, p == cwOval);
    p.reset();
    SkPath ccwOval;
    ccwOval.addOval(oval, SkPath::kCCW_Direction);
    p.addArc(oval, 1, -360);
    REPORTER_ASSERT(reporter, p == ccwOval);
    p.reset();
    p.addArc(oval, 1, 180);
    REPORTER_ASSERT(reporter, p.isConvex());
    REPORTER_ASSERT(reporter, p.cheapIsDirection(SkPath::kCW_Direction));
    p.setConvexity(SkPath::kUnknown_Convexity);
    REPORTER_ASSERT(reporter, p.isConvex());
}

static void check_move(skiatest::Reporter* reporter, SkPath::RawIter* iter,
                       SkScalar x0, SkScalar y0) {
    SkPoint pts[4];
    SkPath::Verb v = iter->next(pts);
    REPORTER_ASSERT(reporter, v == SkPath::kMove_Verb);
    REPORTER_ASSERT(reporter, pts[0].fX == x0);
    REPORTER_ASSERT(reporter, pts[0].fY == y0);
}

static void check_line(skiatest::Reporter* reporter, SkPath::RawIter* iter,
                       SkScalar x1, SkScalar y1) {
    SkPoint pts[4];
    SkPath::Verb v = iter->next(pts);
    REPORTER_ASSERT(reporter, v == SkPath::kLine_Verb);
    REPORTER_ASSERT(reporter, pts[1].fX == x1);
    REPORTER_ASSERT(reporter, pts[1].fY == y1);
}

static void check_quad(skiatest::Reporter* reporter, SkPath::RawIter* iter,
                       SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2) {
    SkPoint pts[4];
    SkPath::Verb v = iter->next(pts);
    REPORTER_ASSERT(reporter, v == SkPath::kQuad_Verb);
    REPORTER_ASSERT(reporter, pts[1].fX == x1);
    REPORTER_ASSERT(reporter, pts[1].fY == y1);
    REPORTER_ASSERT(reporter, pts[2].fX == x2);
    REPORTER_ASSERT(reporter, pts[2].fY == y2);
}

static void check_done(skiatest::Reporter* reporter, SkPath* p, SkPath::RawIter* iter) {
    SkPoint pts[4];
    SkPath::Verb v = iter->next(pts);
    REPORTER_ASSERT(reporter, v == SkPath::kDone_Verb);
}

static void check_done_and_reset(skiatest::Reporter* reporter, SkPath* p, SkPath::RawIter* iter) {
    check_done(reporter, p, iter);
    p->reset();
}

static void check_path_is_move_and_reset(skiatest::Reporter* reporter, SkPath* p,
                                         SkScalar x0, SkScalar y0) {
    SkPath::RawIter iter(*p);
    check_move(reporter, &iter, x0, y0);
    check_done_and_reset(reporter, p, &iter);
}

static void check_path_is_line_and_reset(skiatest::Reporter* reporter, SkPath* p,
                                         SkScalar x1, SkScalar y1) {
    SkPath::RawIter iter(*p);
    check_move(reporter, &iter, 0, 0);
    check_line(reporter, &iter, x1, y1);
    check_done_and_reset(reporter, p, &iter);
}

static void check_path_is_line(skiatest::Reporter* reporter, SkPath* p,
                                         SkScalar x1, SkScalar y1) {
    SkPath::RawIter iter(*p);
    check_move(reporter, &iter, 0, 0);
    check_line(reporter, &iter, x1, y1);
    check_done(reporter, p, &iter);
}

static void check_path_is_line_pair_and_reset(skiatest::Reporter* reporter, SkPath* p,
                                    SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2) {
    SkPath::RawIter iter(*p);
    check_move(reporter, &iter, 0, 0);
    check_line(reporter, &iter, x1, y1);
    check_line(reporter, &iter, x2, y2);
    check_done_and_reset(reporter, p, &iter);
}

static void check_path_is_quad_and_reset(skiatest::Reporter* reporter, SkPath* p,
                                    SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2) {
    SkPath::RawIter iter(*p);
    check_move(reporter, &iter, 0, 0);
    check_quad(reporter, &iter, x1, y1, x2, y2);
    check_done_and_reset(reporter, p, &iter);
}

static bool nearly_equal(const SkRect& a, const SkRect& b) {
    return  SkScalarNearlyEqual(a.fLeft, b.fLeft) &&
            SkScalarNearlyEqual(a.fTop, b.fTop) &&
            SkScalarNearlyEqual(a.fRight, b.fRight) &&
            SkScalarNearlyEqual(a.fBottom, b.fBottom);
}

static void test_arcTo(skiatest::Reporter* reporter) {
    SkPath p;
    p.arcTo(0, 0, 1, 2, 1);
    check_path_is_line_and_reset(reporter, &p, 0, 0);
    p.arcTo(1, 2, 1, 2, 1);
    check_path_is_line_and_reset(reporter, &p, 1, 2);
    p.arcTo(1, 2, 3, 4, 0);
    check_path_is_line_and_reset(reporter, &p, 1, 2);
    p.arcTo(1, 2, 0, 0, 1);
    check_path_is_line_and_reset(reporter, &p, 1, 2);
    p.arcTo(1, 0, 1, 1, 1);
    SkPoint pt;
    REPORTER_ASSERT(reporter, p.getLastPt(&pt) && pt.fX == 1 && pt.fY == 1);
    p.reset();
    p.arcTo(1, 0, 1, -1, 1);
    REPORTER_ASSERT(reporter, p.getLastPt(&pt) && pt.fX == 1 && pt.fY == -1);
    p.reset();
    SkRect oval = {1, 2, 3, 4};
    p.arcTo(oval, 0, 0, true);
    check_path_is_move_and_reset(reporter, &p, oval.fRight, oval.centerY());
    p.arcTo(oval, 0, 0, false);
    check_path_is_move_and_reset(reporter, &p, oval.fRight, oval.centerY());
    p.arcTo(oval, 360, 0, true);
    check_path_is_move_and_reset(reporter, &p, oval.fRight, oval.centerY());
    p.arcTo(oval, 360, 0, false);
    check_path_is_move_and_reset(reporter, &p, oval.fRight, oval.centerY());

    for (float sweep = 359, delta = 0.5f; sweep != (float) (sweep + delta); ) {
        p.arcTo(oval, 0, sweep, false);
        REPORTER_ASSERT(reporter, nearly_equal(p.getBounds(), oval));
        sweep += delta;
        delta /= 2;
    }
    for (float sweep = 361, delta = 0.5f; sweep != (float) (sweep - delta);) {
        p.arcTo(oval, 0, sweep, false);
        REPORTER_ASSERT(reporter, nearly_equal(p.getBounds(), oval));
        sweep -= delta;
        delta /= 2;
    }
    SkRect noOvalWidth = {1, 2, 0, 3};
    p.reset();
    p.arcTo(noOvalWidth, 0, 360, false);
    REPORTER_ASSERT(reporter, p.isEmpty());

    SkRect noOvalHeight = {1, 2, 3, 1};
    p.reset();
    p.arcTo(noOvalHeight, 0, 360, false);
    REPORTER_ASSERT(reporter, p.isEmpty());
}

static void test_addPath(skiatest::Reporter* reporter) {
    SkPath p, q;
    p.lineTo(1, 2);
    q.moveTo(4, 4);
    q.lineTo(7, 8);
    q.conicTo(8, 7, 6, 5, 0.5f);
    q.quadTo(6, 7, 8, 6);
    q.cubicTo(5, 6, 7, 8, 7, 5);
    q.close();
    p.addPath(q, -4, -4);
    SkRect expected = {0, 0, 4, 4};
    REPORTER_ASSERT(reporter, p.getBounds() == expected);
    p.reset();
    p.reverseAddPath(q);
    SkRect reverseExpected = {4, 4, 8, 8};
    REPORTER_ASSERT(reporter, p.getBounds() == reverseExpected);
}

static void test_addPathMode(skiatest::Reporter* reporter, bool explicitMoveTo, bool extend) {
    SkPath p, q;
    if (explicitMoveTo) {
        p.moveTo(1, 1);
    }
    p.lineTo(1, 2);
    if (explicitMoveTo) {
        q.moveTo(2, 1);
    }
    q.lineTo(2, 2);
    p.addPath(q, extend ? SkPath::kExtend_AddPathMode : SkPath::kAppend_AddPathMode);
    uint8_t verbs[4];
    int verbcount = p.getVerbs(verbs, 4);
    REPORTER_ASSERT(reporter, verbcount == 4);
    REPORTER_ASSERT(reporter, verbs[0] == SkPath::kMove_Verb);
    REPORTER_ASSERT(reporter, verbs[1] == SkPath::kLine_Verb);
    REPORTER_ASSERT(reporter, verbs[2] == (extend ? SkPath::kLine_Verb : SkPath::kMove_Verb));
    REPORTER_ASSERT(reporter, verbs[3] == SkPath::kLine_Verb);
}

static void test_extendClosedPath(skiatest::Reporter* reporter) {
    SkPath p, q;
    p.moveTo(1, 1);
    p.lineTo(1, 2);
    p.lineTo(2, 2);
    p.close();
    q.moveTo(2, 1);
    q.lineTo(2, 3);
    p.addPath(q, SkPath::kExtend_AddPathMode);
    uint8_t verbs[7];
    int verbcount = p.getVerbs(verbs, 7);
    REPORTER_ASSERT(reporter, verbcount == 7);
    REPORTER_ASSERT(reporter, verbs[0] == SkPath::kMove_Verb);
    REPORTER_ASSERT(reporter, verbs[1] == SkPath::kLine_Verb);
    REPORTER_ASSERT(reporter, verbs[2] == SkPath::kLine_Verb);
    REPORTER_ASSERT(reporter, verbs[3] == SkPath::kClose_Verb);
    REPORTER_ASSERT(reporter, verbs[4] == SkPath::kMove_Verb);
    REPORTER_ASSERT(reporter, verbs[5] == SkPath::kLine_Verb);
    REPORTER_ASSERT(reporter, verbs[6] == SkPath::kLine_Verb);

    SkPoint pt;
    REPORTER_ASSERT(reporter, p.getLastPt(&pt));
    REPORTER_ASSERT(reporter, pt == SkPoint::Make(2, 3));
    REPORTER_ASSERT(reporter, p.getPoint(3) == SkPoint::Make(1, 1));
}

static void test_addEmptyPath(skiatest::Reporter* reporter, SkPath::AddPathMode mode) {
    SkPath p, q, r;
    // case 1: dst is empty
    p.moveTo(2, 1);
    p.lineTo(2, 3);
    q.addPath(p, mode);
    REPORTER_ASSERT(reporter, q == p);
    // case 2: src is empty
    p.addPath(r, mode);
    REPORTER_ASSERT(reporter, q == p);
    // case 3: src and dst are empty
    q.reset();
    q.addPath(r, mode);
    REPORTER_ASSERT(reporter, q.isEmpty());
}

static void test_conicTo_special_case(skiatest::Reporter* reporter) {
    SkPath p;
    p.conicTo(1, 2, 3, 4, -1);
    check_path_is_line_and_reset(reporter, &p, 3, 4);
    p.conicTo(1, 2, 3, 4, SK_ScalarInfinity);
    check_path_is_line_pair_and_reset(reporter, &p, 1, 2, 3, 4);
    p.conicTo(1, 2, 3, 4, 1);
    check_path_is_quad_and_reset(reporter, &p, 1, 2, 3, 4);
}

static void test_get_point(skiatest::Reporter* reporter) {
    SkPath p;
    SkPoint pt = p.getPoint(0);
    REPORTER_ASSERT(reporter, pt == SkPoint::Make(0, 0));
    REPORTER_ASSERT(reporter, !p.getLastPt(NULL));
    REPORTER_ASSERT(reporter, !p.getLastPt(&pt) && pt == SkPoint::Make(0, 0));
    p.setLastPt(10, 10);
    pt = p.getPoint(0);
    REPORTER_ASSERT(reporter, pt == SkPoint::Make(10, 10));
    REPORTER_ASSERT(reporter, p.getLastPt(NULL));
    p.rMoveTo(10, 10);
    REPORTER_ASSERT(reporter, p.getLastPt(&pt) && pt == SkPoint::Make(20, 20));
}

static void test_contains(skiatest::Reporter* reporter) {
    SkPath p;
    p.setFillType(SkPath::kInverseWinding_FillType);
    REPORTER_ASSERT(reporter, p.contains(0, 0));
    p.setFillType(SkPath::kWinding_FillType);
    REPORTER_ASSERT(reporter, !p.contains(0, 0));
    p.moveTo(4, 4);
    p.lineTo(6, 8);
    p.lineTo(8, 4);
    // test quick reject
    REPORTER_ASSERT(reporter, !p.contains(4, 0));
    REPORTER_ASSERT(reporter, !p.contains(0, 4));
    REPORTER_ASSERT(reporter, !p.contains(4, 10));
    REPORTER_ASSERT(reporter, !p.contains(10, 4));
    // test various crossings in x
    REPORTER_ASSERT(reporter, !p.contains(5, 7));
    REPORTER_ASSERT(reporter, p.contains(6, 7));
    REPORTER_ASSERT(reporter, !p.contains(7, 7));
    p.reset();
    p.moveTo(4, 4);
    p.lineTo(8, 6);
    p.lineTo(4, 8);
    // test various crossings in y
    REPORTER_ASSERT(reporter, !p.contains(7, 5));
    REPORTER_ASSERT(reporter, p.contains(7, 6));
    REPORTER_ASSERT(reporter, !p.contains(7, 7));
    // test quads
    p.reset();
    p.moveTo(4, 4);
    p.quadTo(6, 6, 8, 8);
    p.quadTo(6, 8, 4, 8);
    p.quadTo(4, 6, 4, 4);
    REPORTER_ASSERT(reporter, p.contains(5, 6));
    REPORTER_ASSERT(reporter, !p.contains(6, 5));

    p.reset();
    p.moveTo(6, 6);
    p.quadTo(8, 8, 6, 8);
    p.quadTo(4, 8, 4, 6);
    p.quadTo(4, 4, 6, 6);
    REPORTER_ASSERT(reporter, p.contains(5, 6));
    REPORTER_ASSERT(reporter, !p.contains(6, 5));

#define CONIC_CONTAINS_BUG_FIXED 0
#if CONIC_CONTAINS_BUG_FIXED
    p.reset();
    p.moveTo(4, 4);
    p.conicTo(6, 6, 8, 8, 0.5f);
    p.conicTo(6, 8, 4, 8, 0.5f);
    p.conicTo(4, 6, 4, 4, 0.5f);
    REPORTER_ASSERT(reporter, p.contains(5, 6));
    REPORTER_ASSERT(reporter, !p.contains(6, 5));
#endif

    // test cubics
    SkPoint pts[] = {{5, 4}, {6, 5}, {7, 6}, {6, 6}, {4, 6}, {5, 7}, {5, 5}, {5, 4}, {6, 5}, {7, 6}};
    for (int i = 0; i < 3; ++i) {
        p.reset();
        p.setFillType(SkPath::kEvenOdd_FillType);
        p.moveTo(pts[i].fX, pts[i].fY);
        p.cubicTo(pts[i + 1].fX, pts[i + 1].fY, pts[i + 2].fX, pts[i + 2].fY, pts[i + 3].fX, pts[i + 3].fY);
        p.cubicTo(pts[i + 4].fX, pts[i + 4].fY, pts[i + 5].fX, pts[i + 5].fY, pts[i + 6].fX, pts[i + 6].fY);
        p.close();
        REPORTER_ASSERT(reporter, p.contains(5.5f, 5.5f));
        REPORTER_ASSERT(reporter, !p.contains(4.5f, 5.5f));
    }
}

class PathRefTest_Private {
public:
    static void TestPathRef(skiatest::Reporter* reporter) {
        static const int kRepeatCnt = 10;

        SkAutoTUnref<SkPathRef> pathRef(SkNEW(SkPathRef));

        SkPathRef::Editor ed(&pathRef);

        {
            ed.growForRepeatedVerb(SkPath::kMove_Verb, kRepeatCnt);
            REPORTER_ASSERT(reporter, kRepeatCnt == pathRef->countVerbs());
            REPORTER_ASSERT(reporter, kRepeatCnt == pathRef->countPoints());
            REPORTER_ASSERT(reporter, 0 == pathRef->getSegmentMasks());
            for (int i = 0; i < kRepeatCnt; ++i) {
                REPORTER_ASSERT(reporter, SkPath::kMove_Verb == pathRef->atVerb(i));
            }
            ed.resetToSize(0, 0, 0);
        }

        {
            ed.growForRepeatedVerb(SkPath::kLine_Verb, kRepeatCnt);
            REPORTER_ASSERT(reporter, kRepeatCnt == pathRef->countVerbs());
            REPORTER_ASSERT(reporter, kRepeatCnt == pathRef->countPoints());
            REPORTER_ASSERT(reporter, SkPath::kLine_SegmentMask == pathRef->getSegmentMasks());
            for (int i = 0; i < kRepeatCnt; ++i) {
                REPORTER_ASSERT(reporter, SkPath::kLine_Verb == pathRef->atVerb(i));
            }
            ed.resetToSize(0, 0, 0);
        }

        {
            ed.growForRepeatedVerb(SkPath::kQuad_Verb, kRepeatCnt);
            REPORTER_ASSERT(reporter, kRepeatCnt == pathRef->countVerbs());
            REPORTER_ASSERT(reporter, 2*kRepeatCnt == pathRef->countPoints());
            REPORTER_ASSERT(reporter, SkPath::kQuad_SegmentMask == pathRef->getSegmentMasks());
            for (int i = 0; i < kRepeatCnt; ++i) {
                REPORTER_ASSERT(reporter, SkPath::kQuad_Verb == pathRef->atVerb(i));
            }
            ed.resetToSize(0, 0, 0);
        }

        {
            SkScalar* weights = NULL;
            ed.growForRepeatedVerb(SkPath::kConic_Verb, kRepeatCnt, &weights);
            REPORTER_ASSERT(reporter, kRepeatCnt == pathRef->countVerbs());
            REPORTER_ASSERT(reporter, 2*kRepeatCnt == pathRef->countPoints());
            REPORTER_ASSERT(reporter, kRepeatCnt == pathRef->countWeights());
            REPORTER_ASSERT(reporter, SkPath::kConic_SegmentMask == pathRef->getSegmentMasks());
            REPORTER_ASSERT(reporter, weights);
            for (int i = 0; i < kRepeatCnt; ++i) {
                REPORTER_ASSERT(reporter, SkPath::kConic_Verb == pathRef->atVerb(i));
            }
            ed.resetToSize(0, 0, 0);
        }

        {
            ed.growForRepeatedVerb(SkPath::kCubic_Verb, kRepeatCnt);
            REPORTER_ASSERT(reporter, kRepeatCnt == pathRef->countVerbs());
            REPORTER_ASSERT(reporter, 3*kRepeatCnt == pathRef->countPoints());
            REPORTER_ASSERT(reporter, SkPath::kCubic_SegmentMask == pathRef->getSegmentMasks());
            for (int i = 0; i < kRepeatCnt; ++i) {
                REPORTER_ASSERT(reporter, SkPath::kCubic_Verb == pathRef->atVerb(i));
            }
            ed.resetToSize(0, 0, 0);
        }
    }
};

static void test_operatorEqual(skiatest::Reporter* reporter) {
    SkPath a;
    SkPath b;
    REPORTER_ASSERT(reporter, a == a);
    REPORTER_ASSERT(reporter, a == b);
    a.setFillType(SkPath::kInverseWinding_FillType);
    REPORTER_ASSERT(reporter, a != b);
    a.reset();
    REPORTER_ASSERT(reporter, a == b);
    a.lineTo(1, 1);
    REPORTER_ASSERT(reporter, a != b);
    a.reset();
    REPORTER_ASSERT(reporter, a == b);
    a.lineTo(1, 1);
    b.lineTo(1, 2);
    REPORTER_ASSERT(reporter, a != b);
    a.reset();
    a.lineTo(1, 2);
    REPORTER_ASSERT(reporter, a == b);
}

static void compare_dump(skiatest::Reporter* reporter, const SkPath& path, bool force,
        bool dumpAsHex, const char* str) {
    SkDynamicMemoryWStream wStream;
    path.dump(&wStream, force, dumpAsHex);
    SkAutoDataUnref data(wStream.copyToData());
    REPORTER_ASSERT(reporter, data->size() == strlen(str));
    if (strlen(str) > 0) {
        REPORTER_ASSERT(reporter, !memcmp(data->data(), str, strlen(str)));
    } else {
        REPORTER_ASSERT(reporter, data->data() == NULL || !memcmp(data->data(), str, strlen(str)));
    }
}

static void test_dump(skiatest::Reporter* reporter) {
    SkPath p;
    compare_dump(reporter, p, false, false, "");
    compare_dump(reporter, p, true, false, "");
    p.moveTo(1, 2);
    p.lineTo(3, 4);
    compare_dump(reporter, p, false, false, "path.moveTo(1, 2);\n"
                                            "path.lineTo(3, 4);\n");
    compare_dump(reporter, p, true, false,  "path.moveTo(1, 2);\n"
                                            "path.lineTo(3, 4);\n"
                                            "path.lineTo(1, 2);\n"
                                            "path.close();\n");
    p.reset();
    p.moveTo(1, 2);
    p.quadTo(3, 4, 5, 6);
    compare_dump(reporter, p, false, false, "path.moveTo(1, 2);\n"
                                            "path.quadTo(3, 4, 5, 6);\n");
    p.reset();
    p.moveTo(1, 2);
    p.conicTo(3, 4, 5, 6, 0.5f);
    compare_dump(reporter, p, false, false, "path.moveTo(1, 2);\n"
                                            "path.conicTo(3, 4, 5, 6, 0.5f);\n");
    p.reset();
    p.moveTo(1, 2);
    p.cubicTo(3, 4, 5, 6, 7, 8);
    compare_dump(reporter, p, false, false, "path.moveTo(1, 2);\n"
                                            "path.cubicTo(3, 4, 5, 6, 7, 8);\n");
    p.reset();
    p.moveTo(1, 2);
    p.lineTo(3, 4);
    compare_dump(reporter, p, false, true,
                 "path.moveTo(SkBits2Float(0x3f800000), SkBits2Float(0x40000000));  // 1, 2\n"
                 "path.lineTo(SkBits2Float(0x40400000), SkBits2Float(0x40800000));  // 3, 4\n");
    p.reset();
    p.moveTo(SkBits2Float(0x3f800000), SkBits2Float(0x40000000));
    p.lineTo(SkBits2Float(0x40400000), SkBits2Float(0x40800000));
    compare_dump(reporter, p, false, false, "path.moveTo(1, 2);\n"
                                            "path.lineTo(3, 4);\n");
}

class PathTest_Private {
public:
    static void TestPathTo(skiatest::Reporter* reporter) {
        SkPath p, q;
        p.lineTo(4, 4);
        p.reversePathTo(q);
        check_path_is_line(reporter, &p, 4, 4);
        q.moveTo(-4, -4);
        p.reversePathTo(q);
        check_path_is_line(reporter, &p, 4, 4);
        q.lineTo(7, 8);
        q.conicTo(8, 7, 6, 5, 0.5f);
        q.quadTo(6, 7, 8, 6);
        q.cubicTo(5, 6, 7, 8, 7, 5);
        q.close();
        p.reversePathTo(q);
        SkRect reverseExpected = {-4, -4, 8, 8};
        REPORTER_ASSERT(reporter, p.getBounds() == reverseExpected);
    }
};

DEF_TEST(Paths, reporter) {
    test_path_crbug364224();

    SkTSize<SkScalar>::Make(3,4);

    SkPath  p, empty;
    SkRect  bounds, bounds2;
    test_empty(reporter, p);

    REPORTER_ASSERT(reporter, p.getBounds().isEmpty());

    // this triggers a code path in SkPath::operator= which is otherwise unexercised
    SkPath& self = p;
    p = self;

    // this triggers a code path in SkPath::swap which is otherwise unexercised
    p.swap(self);

    bounds.set(0, 0, SK_Scalar1, SK_Scalar1);

    p.addRoundRect(bounds, SK_Scalar1, SK_Scalar1);
    check_convex_bounds(reporter, p, bounds);
    // we have quads or cubics
    REPORTER_ASSERT(reporter,
                    p.getSegmentMasks() & (kCurveSegmentMask | SkPath::kConic_SegmentMask));
    REPORTER_ASSERT(reporter, !p.isEmpty());

    p.reset();
    test_empty(reporter, p);

    p.addOval(bounds);
    check_convex_bounds(reporter, p, bounds);
    REPORTER_ASSERT(reporter, !p.isEmpty());

    p.rewind();
    test_empty(reporter, p);

    p.addRect(bounds);
    check_convex_bounds(reporter, p, bounds);
    // we have only lines
    REPORTER_ASSERT(reporter, SkPath::kLine_SegmentMask == p.getSegmentMasks());
    REPORTER_ASSERT(reporter, !p.isEmpty());

    REPORTER_ASSERT(reporter, p != empty);
    REPORTER_ASSERT(reporter, !(p == empty));

    // do getPoints and getVerbs return the right result
    REPORTER_ASSERT(reporter, p.getPoints(NULL, 0) == 4);
    REPORTER_ASSERT(reporter, p.getVerbs(NULL, 0) == 5);
    SkPoint pts[4];
    int count = p.getPoints(pts, 4);
    REPORTER_ASSERT(reporter, count == 4);
    uint8_t verbs[6];
    verbs[5] = 0xff;
    p.getVerbs(verbs, 5);
    REPORTER_ASSERT(reporter, SkPath::kMove_Verb == verbs[0]);
    REPORTER_ASSERT(reporter, SkPath::kLine_Verb == verbs[1]);
    REPORTER_ASSERT(reporter, SkPath::kLine_Verb == verbs[2]);
    REPORTER_ASSERT(reporter, SkPath::kLine_Verb == verbs[3]);
    REPORTER_ASSERT(reporter, SkPath::kClose_Verb == verbs[4]);
    REPORTER_ASSERT(reporter, 0xff == verbs[5]);
    bounds2.set(pts, 4);
    REPORTER_ASSERT(reporter, bounds == bounds2);

    bounds.offset(SK_Scalar1*3, SK_Scalar1*4);
    p.offset(SK_Scalar1*3, SK_Scalar1*4);
    REPORTER_ASSERT(reporter, bounds == p.getBounds());

    REPORTER_ASSERT(reporter, p.isRect(NULL));
    bounds2.setEmpty();
    REPORTER_ASSERT(reporter, p.isRect(&bounds2));
    REPORTER_ASSERT(reporter, bounds == bounds2);

    // now force p to not be a rect
    bounds.set(0, 0, SK_Scalar1/2, SK_Scalar1/2);
    p.addRect(bounds);
    REPORTER_ASSERT(reporter, !p.isRect(NULL));

    // Test an edge case w.r.t. the bound returned by isRect (i.e., the
    // path has a trailing moveTo. Please see crbug.com\445368)
    {
        SkRect r;
        p.reset();
        p.addRect(bounds);
        REPORTER_ASSERT(reporter, p.isRect(&r));
        REPORTER_ASSERT(reporter, r == bounds);
        // add a moveTo outside of our bounds
        p.moveTo(bounds.fLeft + 10, bounds.fBottom + 10);
        REPORTER_ASSERT(reporter, p.isRect(&r));
        REPORTER_ASSERT(reporter, r == bounds);
    }

    test_operatorEqual(reporter);
    test_isLine(reporter);
    test_isRect(reporter);
    test_isNestedFillRects(reporter);
    test_zero_length_paths(reporter);
    test_direction(reporter);
    test_convexity(reporter);
    test_convexity2(reporter);
    test_conservativelyContains(reporter);
    test_close(reporter);
    test_segment_masks(reporter);
    test_flattening(reporter);
    test_transform(reporter);
    test_bounds(reporter);
    test_iter(reporter);
    test_raw_iter(reporter);
    test_circle(reporter);
    test_oval(reporter);
    test_strokerec(reporter);
    test_addPoly(reporter);
    test_isfinite(reporter);
    test_isfinite_after_transform(reporter);
    test_arb_round_rect_is_convex(reporter);
    test_arb_zero_rad_round_rect_is_rect(reporter);
    test_addrect(reporter);
    test_addrect_isfinite(reporter);
    test_tricky_cubic();
    test_clipped_cubic();
    test_crbug_170666();
    test_bad_cubic_crbug229478();
    test_bad_cubic_crbug234190();
    test_gen_id(reporter);
    test_path_close_issue1474(reporter);
    test_path_to_region(reporter);
    test_rrect(reporter);
    test_arc(reporter);
    test_arcTo(reporter);
    test_addPath(reporter);
    test_addPathMode(reporter, false, false);
    test_addPathMode(reporter, true, false);
    test_addPathMode(reporter, false, true);
    test_addPathMode(reporter, true, true);
    test_extendClosedPath(reporter);
    test_addEmptyPath(reporter, SkPath::kExtend_AddPathMode);
    test_addEmptyPath(reporter, SkPath::kAppend_AddPathMode);
    test_conicTo_special_case(reporter);
    test_get_point(reporter);
    test_contains(reporter);
    PathTest_Private::TestPathTo(reporter);
    PathRefTest_Private::TestPathRef(reporter);
    test_dump(reporter);
    test_path_crbug389050(reporter);
    test_path_crbugskia2820(reporter);
    test_skbug_3469(reporter);
    test_skbug_3239(reporter);
}