/*
* Copyright 2013 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkPathOpsDebug.h"
#include "SkPath.h"
#include "SkString.h"
#include "SkThread.h"
#if DEBUG_VALIDATE
extern bool FLAGS_runFail;
#endif
#if DEBUG_SORT
int SkPathOpsDebug::gSortCountDefault = SK_MaxS32;
int SkPathOpsDebug::gSortCount;
#endif
#if DEBUG_ACTIVE_OP
const char* SkPathOpsDebug::kPathOpStr[] = {"diff", "sect", "union", "xor"};
#endif
#if defined SK_DEBUG || !FORCE_RELEASE
const char* SkPathOpsDebug::kLVerbStr[] = {"", "line", "quad", "cubic"};
#if defined(SK_DEBUG) || !FORCE_RELEASE
int SkPathOpsDebug::gContourID = 0;
int SkPathOpsDebug::gSegmentID = 0;
#endif
bool SkPathOpsDebug::ChaseContains(const SkTDArray<SkOpSpanBase* >& chaseArray,
const SkOpSpanBase* span) {
for (int index = 0; index < chaseArray.count(); ++index) {
const SkOpSpanBase* entry = chaseArray[index];
if (entry == span) {
return true;
}
}
return false;
}
void SkPathOpsDebug::MathematicaIze(char* str, size_t bufferLen) {
size_t len = strlen(str);
bool num = false;
for (size_t idx = 0; idx < len; ++idx) {
if (num && str[idx] == 'e') {
if (len + 2 >= bufferLen) {
return;
}
memmove(&str[idx + 2], &str[idx + 1], len - idx);
str[idx] = '*';
str[idx + 1] = '^';
++len;
}
num = str[idx] >= '0' && str[idx] <= '9';
}
}
bool SkPathOpsDebug::ValidWind(int wind) {
return wind > SK_MinS32 + 0xFFFF && wind < SK_MaxS32 - 0xFFFF;
}
void SkPathOpsDebug::WindingPrintf(int wind) {
if (wind == SK_MinS32) {
SkDebugf("?");
} else {
SkDebugf("%d", wind);
}
}
#endif // defined SK_DEBUG || !FORCE_RELEASE
#if DEBUG_SHOW_TEST_NAME
void* SkPathOpsDebug::CreateNameStr() {
return SkNEW_ARRAY(char, DEBUG_FILENAME_STRING_LENGTH);
}
void SkPathOpsDebug::DeleteNameStr(void* v) {
SkDELETE_ARRAY(reinterpret_cast<char* >(v));
}
void SkPathOpsDebug::BumpTestName(char* test) {
char* num = test + strlen(test);
while (num[-1] >= '0' && num[-1] <= '9') {
--num;
}
if (num[0] == '\0') {
return;
}
int dec = atoi(num);
if (dec == 0) {
return;
}
++dec;
SK_SNPRINTF(num, DEBUG_FILENAME_STRING_LENGTH - (num - test), "%d", dec);
}
#endif
static void show_function_header(const char* functionName) {
SkDebugf("\nstatic void %s(skiatest::Reporter* reporter, const char* filename) {\n", functionName);
if (strcmp("skphealth_com76", functionName) == 0) {
SkDebugf("found it\n");
}
}
static const char* gOpStrs[] = {
"kDifference_SkPathOp",
"kIntersect_SkPathOp",
"kUnion_SkPathOp",
"kXor_PathOp",
"kReverseDifference_SkPathOp",
};
const char* SkPathOpsDebug::OpStr(SkPathOp op) {
return gOpStrs[op];
}
static void show_op(SkPathOp op, const char* pathOne, const char* pathTwo) {
SkDebugf(" testPathOp(reporter, %s, %s, %s, filename);\n", pathOne, pathTwo, gOpStrs[op]);
SkDebugf("}\n");
}
SK_DECLARE_STATIC_MUTEX(gTestMutex);
void SkPathOpsDebug::ShowPath(const SkPath& a, const SkPath& b, SkPathOp shapeOp,
const char* testName) {
SkAutoMutexAcquire ac(gTestMutex);
show_function_header(testName);
ShowOnePath(a, "path", true);
ShowOnePath(b, "pathB", true);
show_op(shapeOp, "path", "pathB");
}
#include "SkPathOpsCubic.h"
#include "SkPathOpsQuad.h"
SkDCubic SkDQuad::debugToCubic() const {
SkDCubic cubic;
cubic[0] = fPts[0];
cubic[2] = fPts[1];
cubic[3] = fPts[2];
cubic[1].fX = (cubic[0].fX + cubic[2].fX * 2) / 3;
cubic[1].fY = (cubic[0].fY + cubic[2].fY * 2) / 3;
cubic[2].fX = (cubic[3].fX + cubic[2].fX * 2) / 3;
cubic[2].fY = (cubic[3].fY + cubic[2].fY * 2) / 3;
return cubic;
}
#include "SkOpAngle.h"
#include "SkOpCoincidence.h"
#include "SkOpSegment.h"
SkOpAngle* SkOpSegment::debugLastAngle() {
SkOpAngle* result = NULL;
SkOpSpan* span = this->head();
do {
if (span->toAngle()) {
SkASSERT(!result);
result = span->toAngle();
}
} while ((span = span->next()->upCastable()));
SkASSERT(result);
return result;
}
void SkOpSegment::debugReset() {
this->init(this->fPts, this->fWeight, this->contour(), this->verb());
}
#if DEBUG_ACTIVE_SPANS
void SkOpSegment::debugShowActiveSpans() const {
debugValidate();
if (done()) {
return;
}
int lastId = -1;
double lastT = -1;
const SkOpSpan* span = &fHead;
do {
if (span->done()) {
continue;
}
if (lastId == this->debugID() && lastT == span->t()) {
continue;
}
lastId = this->debugID();
lastT = span->t();
SkDebugf("%s id=%d", __FUNCTION__, this->debugID());
SkDebugf(" (%1.9g,%1.9g", fPts[0].fX, fPts[0].fY);
for (int vIndex = 1; vIndex <= SkPathOpsVerbToPoints(fVerb); ++vIndex) {
SkDebugf(" %1.9g,%1.9g", fPts[vIndex].fX, fPts[vIndex].fY);
}
if (SkPath::kConic_Verb == fVerb) {
SkDebugf(" %1.9gf", fWeight);
}
const SkOpPtT* ptT = span->ptT();
SkDebugf(") t=%1.9g (%1.9g,%1.9g)", ptT->fT, ptT->fPt.fX, ptT->fPt.fY);
SkDebugf(" tEnd=%1.9g", span->next()->t());
if (span->windSum() == SK_MinS32) {
SkDebugf(" windSum=?");
} else {
SkDebugf(" windSum=%d", span->windSum());
}
if (span->oppValue() && span->oppSum() == SK_MinS32) {
SkDebugf(" oppSum=?");
} else if (span->oppValue() || span->oppSum() != SK_MinS32) {
SkDebugf(" oppSum=%d", span->oppSum());
}
SkDebugf(" windValue=%d", span->windValue());
if (span->oppValue() || span->oppSum() != SK_MinS32) {
SkDebugf(" oppValue=%d", span->oppValue());
}
SkDebugf("\n");
} while ((span = span->next()->upCastable()));
}
#endif
#if DEBUG_MARK_DONE
void SkOpSegment::debugShowNewWinding(const char* fun, const SkOpSpan* span, int winding) {
const SkPoint& pt = span->ptT()->fPt;
SkDebugf("%s id=%d", fun, this->debugID());
SkDebugf(" (%1.9g,%1.9g", fPts[0].fX, fPts[0].fY);
for (int vIndex = 1; vIndex <= SkPathOpsVerbToPoints(fVerb); ++vIndex) {
SkDebugf(" %1.9g,%1.9g", fPts[vIndex].fX, fPts[vIndex].fY);
}
SkDebugf(") t=%1.9g [%d] (%1.9g,%1.9g) tEnd=%1.9g newWindSum=",
span->t(), span->debugID(), pt.fX, pt.fY, span->next()->t());
if (winding == SK_MinS32) {
SkDebugf("?");
} else {
SkDebugf("%d", winding);
}
SkDebugf(" windSum=");
if (span->windSum() == SK_MinS32) {
SkDebugf("?");
} else {
SkDebugf("%d", span->windSum());
}
SkDebugf(" windValue=%d\n", span->windValue());
}
void SkOpSegment::debugShowNewWinding(const char* fun, const SkOpSpan* span, int winding,
int oppWinding) {
const SkPoint& pt = span->ptT()->fPt;
SkDebugf("%s id=%d", fun, this->debugID());
SkDebugf(" (%1.9g,%1.9g", fPts[0].fX, fPts[0].fY);
for (int vIndex = 1; vIndex <= SkPathOpsVerbToPoints(fVerb); ++vIndex) {
SkDebugf(" %1.9g,%1.9g", fPts[vIndex].fX, fPts[vIndex].fY);
}
SkDebugf(") t=%1.9g [%d] (%1.9g,%1.9g) tEnd=%1.9g newWindSum=",
span->t(), span->debugID(), pt.fX, pt.fY, span->next()->t(), winding, oppWinding);
if (winding == SK_MinS32) {
SkDebugf("?");
} else {
SkDebugf("%d", winding);
}
SkDebugf(" newOppSum=");
if (oppWinding == SK_MinS32) {
SkDebugf("?");
} else {
SkDebugf("%d", oppWinding);
}
SkDebugf(" oppSum=");
if (span->oppSum() == SK_MinS32) {
SkDebugf("?");
} else {
SkDebugf("%d", span->oppSum());
}
SkDebugf(" windSum=");
if (span->windSum() == SK_MinS32) {
SkDebugf("?");
} else {
SkDebugf("%d", span->windSum());
}
SkDebugf(" windValue=%d oppValue=%d\n", span->windValue(), span->oppValue());
}
#endif
#if DEBUG_ANGLE
SkString SkOpAngle::debugPart() const {
SkString result;
switch (this->segment()->verb()) {
case SkPath::kLine_Verb:
result.printf(LINE_DEBUG_STR " id=%d", LINE_DEBUG_DATA(fCurvePart),
this->segment()->debugID());
break;
case SkPath::kQuad_Verb:
result.printf(QUAD_DEBUG_STR " id=%d", QUAD_DEBUG_DATA(fCurvePart),
this->segment()->debugID());
break;
case SkPath::kConic_Verb:
result.printf(CONIC_DEBUG_STR " id=%d",
CONIC_DEBUG_DATA(fCurvePart, fCurvePart.fConic.fWeight),
this->segment()->debugID());
break;
case SkPath::kCubic_Verb:
result.printf(CUBIC_DEBUG_STR " id=%d", CUBIC_DEBUG_DATA(fCurvePart),
this->segment()->debugID());
break;
default:
SkASSERT(0);
}
return result;
}
#endif
#if DEBUG_SORT
void SkOpAngle::debugLoop() const {
const SkOpAngle* first = this;
const SkOpAngle* next = this;
do {
next->dumpOne(true);
SkDebugf("\n");
next = next->fNext;
} while (next && next != first);
next = first;
do {
next->debugValidate();
next = next->fNext;
} while (next && next != first);
}
#endif
void SkOpAngle::debugValidate() const {
#if DEBUG_VALIDATE
const SkOpAngle* first = this;
const SkOpAngle* next = this;
int wind = 0;
int opp = 0;
int lastXor = -1;
int lastOppXor = -1;
do {
if (next->unorderable()) {
return;
}
const SkOpSpan* minSpan = next->start()->starter(next->end());
if (minSpan->windValue() == SK_MinS32) {
return;
}
bool op = next->segment()->operand();
bool isXor = next->segment()->isXor();
bool oppXor = next->segment()->oppXor();
SkASSERT(!DEBUG_LIMIT_WIND_SUM || between(0, minSpan->windValue(), DEBUG_LIMIT_WIND_SUM));
SkASSERT(!DEBUG_LIMIT_WIND_SUM
|| between(-DEBUG_LIMIT_WIND_SUM, minSpan->oppValue(), DEBUG_LIMIT_WIND_SUM));
bool useXor = op ? oppXor : isXor;
SkASSERT(lastXor == -1 || lastXor == (int) useXor);
lastXor = (int) useXor;
wind += next->debugSign() * (op ? minSpan->oppValue() : minSpan->windValue());
if (useXor) {
wind &= 1;
}
useXor = op ? isXor : oppXor;
SkASSERT(lastOppXor == -1 || lastOppXor == (int) useXor);
lastOppXor = (int) useXor;
opp += next->debugSign() * (op ? minSpan->windValue() : minSpan->oppValue());
if (useXor) {
opp &= 1;
}
next = next->fNext;
} while (next && next != first);
SkASSERT(wind == 0 || !FLAGS_runFail);
SkASSERT(opp == 0 || !FLAGS_runFail);
#endif
}
void SkOpAngle::debugValidateNext() const {
#if !FORCE_RELEASE
const SkOpAngle* first = this;
const SkOpAngle* next = first;
SkTDArray<const SkOpAngle*>(angles);
do {
// SK_ALWAYSBREAK(next->fSegment->debugContains(next));
angles.push(next);
next = next->next();
if (next == first) {
break;
}
SK_ALWAYSBREAK(!angles.contains(next));
if (!next) {
return;
}
} while (true);
#endif
}
void SkOpCoincidence::debugShowCoincidence() const {
SkCoincidentSpans* span = fHead;
while (span) {
SkDebugf("%s - id=%d t=%1.9g tEnd=%1.9g\n", __FUNCTION__,
span->fCoinPtTStart->segment()->debugID(),
span->fCoinPtTStart->fT, span->fCoinPtTEnd->fT);
SkDebugf("%s + id=%d t=%1.9g tEnd=%1.9g\n", __FUNCTION__,
span->fOppPtTStart->segment()->debugID(),
span->fOppPtTStart->fT, span->fOppPtTEnd->fT);
span = span->fNext;
}
}
void SkOpSegment::debugValidate() const {
#if DEBUG_VALIDATE
const SkOpSpanBase* span = &fHead;
double lastT = -1;
const SkOpSpanBase* prev = NULL;
int count = 0;
int done = 0;
do {
if (!span->final()) {
++count;
done += span->upCast()->done() ? 1 : 0;
}
SkASSERT(span->segment() == this);
SkASSERT(!prev || prev->upCast()->next() == span);
SkASSERT(!prev || prev == span->prev());
prev = span;
double t = span->ptT()->fT;
SkASSERT(lastT < t);
lastT = t;
span->debugValidate();
} while (!span->final() && (span = span->upCast()->next()));
SkASSERT(count == fCount);
SkASSERT(done == fDoneCount);
SkASSERT(count >= fDoneCount);
SkASSERT(span->final());
span->debugValidate();
#endif
}
bool SkOpSpanBase::debugCoinEndLoopCheck() const {
int loop = 0;
const SkOpSpanBase* next = this;
SkOpSpanBase* nextCoin;
do {
nextCoin = next->fCoinEnd;
SkASSERT(nextCoin == this || nextCoin->fCoinEnd != nextCoin);
for (int check = 1; check < loop - 1; ++check) {
const SkOpSpanBase* checkCoin = this->fCoinEnd;
const SkOpSpanBase* innerCoin = checkCoin;
for (int inner = check + 1; inner < loop; ++inner) {
innerCoin = innerCoin->fCoinEnd;
if (checkCoin == innerCoin) {
SkDebugf("*** bad coincident end loop ***\n");
return false;
}
}
}
++loop;
} while ((next = nextCoin) && next != this);
return true;
}
void SkOpSpanBase::debugValidate() const {
#if DEBUG_VALIDATE
const SkOpPtT* ptT = &fPtT;
SkASSERT(ptT->span() == this);
do {
// SkASSERT(SkDPoint::RoughlyEqual(fPtT.fPt, ptT->fPt));
ptT->debugValidate();
ptT = ptT->next();
} while (ptT != &fPtT);
SkASSERT(this->debugCoinEndLoopCheck());
if (!this->final()) {
SkASSERT(this->upCast()->debugCoinLoopCheck());
}
if (fFromAngle) {
fFromAngle->debugValidate();
}
if (!this->final() && this->upCast()->toAngle()) {
this->upCast()->toAngle()->debugValidate();
}
#endif
}
bool SkOpSpan::debugCoinLoopCheck() const {
int loop = 0;
const SkOpSpan* next = this;
SkOpSpan* nextCoin;
do {
nextCoin = next->fCoincident;
SkASSERT(nextCoin == this || nextCoin->fCoincident != nextCoin);
for (int check = 1; check < loop - 1; ++check) {
const SkOpSpan* checkCoin = this->fCoincident;
const SkOpSpan* innerCoin = checkCoin;
for (int inner = check + 1; inner < loop; ++inner) {
innerCoin = innerCoin->fCoincident;
if (checkCoin == innerCoin) {
SkDebugf("*** bad coincident loop ***\n");
return false;
}
}
}
++loop;
} while ((next = nextCoin) && next != this);
return true;
}
// called only by test code
int SkIntersections::debugCoincidentUsed() const {
if (!fIsCoincident[0]) {
SkASSERT(!fIsCoincident[1]);
return 0;
}
int count = 0;
SkDEBUGCODE(int count2 = 0;)
for (int index = 0; index < fUsed; ++index) {
if (fIsCoincident[0] & (1 << index)) {
++count;
}
#ifdef SK_DEBUG
if (fIsCoincident[1] & (1 << index)) {
++count2;
}
#endif
}
SkASSERT(count == count2);
return count;
}
#include "SkOpContour.h"
int SkOpPtT::debugLoopLimit(bool report) const {
int loop = 0;
const SkOpPtT* next = this;
do {
for (int check = 1; check < loop - 1; ++check) {
const SkOpPtT* checkPtT = this->fNext;
const SkOpPtT* innerPtT = checkPtT;
for (int inner = check + 1; inner < loop; ++inner) {
innerPtT = innerPtT->fNext;
if (checkPtT == innerPtT) {
if (report) {
SkDebugf("*** bad ptT loop ***\n");
}
return loop;
}
}
}
++loop;
} while ((next = next->fNext) && next != this);
return 0;
}
void SkOpPtT::debugValidate() const {
#if DEBUG_VALIDATE
if (contour()->globalState()->phase() == SkOpGlobalState::kIntersecting) {
return;
}
SkASSERT(fNext);
SkASSERT(fNext != this);
SkASSERT(fNext->fNext);
SkASSERT(debugLoopLimit(false) == 0);
#endif
}
static void output_scalar(SkScalar num) {
if (num == (int) num) {
SkDebugf("%d", (int) num);
} else {
SkString str;
str.printf("%1.9g", num);
int width = (int) str.size();
const char* cStr = str.c_str();
while (cStr[width - 1] == '0') {
--width;
}
str.resize(width);
SkDebugf("%sf", str.c_str());
}
}
static void output_points(const SkPoint* pts, int count) {
for (int index = 0; index < count; ++index) {
output_scalar(pts[index].fX);
SkDebugf(", ");
output_scalar(pts[index].fY);
if (index + 1 < count) {
SkDebugf(", ");
}
}
}
static void showPathContours(SkPath::RawIter& iter, const char* pathName) {
uint8_t verb;
SkPoint pts[4];
while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
switch (verb) {
case SkPath::kMove_Verb:
SkDebugf(" %s.moveTo(", pathName);
output_points(&pts[0], 1);
SkDebugf(");\n");
continue;
case SkPath::kLine_Verb:
SkDebugf(" %s.lineTo(", pathName);
output_points(&pts[1], 1);
SkDebugf(");\n");
break;
case SkPath::kQuad_Verb:
SkDebugf(" %s.quadTo(", pathName);
output_points(&pts[1], 2);
SkDebugf(");\n");
break;
case SkPath::kConic_Verb:
SkDebugf(" %s.conicTo(", pathName);
output_points(&pts[1], 2);
SkDebugf(", %1.9gf);\n", iter.conicWeight());
break;
case SkPath::kCubic_Verb:
SkDebugf(" %s.cubicTo(", pathName);
output_points(&pts[1], 3);
SkDebugf(");\n");
break;
case SkPath::kClose_Verb:
SkDebugf(" %s.close();\n", pathName);
break;
default:
SkDEBUGFAIL("bad verb");
return;
}
}
}
static const char* gFillTypeStr[] = {
"kWinding_FillType",
"kEvenOdd_FillType",
"kInverseWinding_FillType",
"kInverseEvenOdd_FillType"
};
void SkPathOpsDebug::ShowOnePath(const SkPath& path, const char* name, bool includeDeclaration) {
SkPath::RawIter iter(path);
#define SUPPORT_RECT_CONTOUR_DETECTION 0
#if SUPPORT_RECT_CONTOUR_DETECTION
int rectCount = path.isRectContours() ? path.rectContours(NULL, NULL) : 0;
if (rectCount > 0) {
SkTDArray<SkRect> rects;
SkTDArray<SkPath::Direction> directions;
rects.setCount(rectCount);
directions.setCount(rectCount);
path.rectContours(rects.begin(), directions.begin());
for (int contour = 0; contour < rectCount; ++contour) {
const SkRect& rect = rects[contour];
SkDebugf("path.addRect(%1.9g, %1.9g, %1.9g, %1.9g, %s);\n", rect.fLeft, rect.fTop,
rect.fRight, rect.fBottom, directions[contour] == SkPath::kCCW_Direction
? "SkPath::kCCW_Direction" : "SkPath::kCW_Direction");
}
return;
}
#endif
SkPath::FillType fillType = path.getFillType();
SkASSERT(fillType >= SkPath::kWinding_FillType && fillType <= SkPath::kInverseEvenOdd_FillType);
if (includeDeclaration) {
SkDebugf(" SkPath %s;\n", name);
}
SkDebugf(" %s.setFillType(SkPath::%s);\n", name, gFillTypeStr[fillType]);
iter.setPath(path);
showPathContours(iter, name);
}