/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkPathOpsCubic_DEFINED
#define SkPathOpsCubic_DEFINED
#include "SkPath.h"
#include "SkPathOpsPoint.h"
struct SkDCubicPair {
const SkDCubic& first() const { return (const SkDCubic&) pts[0]; }
const SkDCubic& second() const { return (const SkDCubic&) pts[3]; }
SkDPoint pts[7];
};
struct SkDCubic {
static const int kPointCount = 4;
static const int kPointLast = kPointCount - 1;
static const int kMaxIntersections = 9;
enum SearchAxis {
kXAxis,
kYAxis
};
enum CubicType {
kUnsplit_SkDCubicType,
kSplitAtLoop_SkDCubicType,
kSplitAtInflection_SkDCubicType,
kSplitAtMaxCurvature_SkDCubicType,
};
bool collapsed() const {
return fPts[0].approximatelyEqual(fPts[1]) && fPts[0].approximatelyEqual(fPts[2])
&& fPts[0].approximatelyEqual(fPts[3]);
}
bool controlsInside() const {
SkDVector v01 = fPts[0] - fPts[1];
SkDVector v02 = fPts[0] - fPts[2];
SkDVector v03 = fPts[0] - fPts[3];
SkDVector v13 = fPts[1] - fPts[3];
SkDVector v23 = fPts[2] - fPts[3];
return v03.dot(v01) > 0 && v03.dot(v02) > 0 && v03.dot(v13) > 0 && v03.dot(v23) > 0;
}
static bool IsCubic() { return true; }
const SkDPoint& operator[](int n) const { SkASSERT(n >= 0 && n < kPointCount); return fPts[n]; }
SkDPoint& operator[](int n) { SkASSERT(n >= 0 && n < kPointCount); return fPts[n]; }
void align(int endIndex, int ctrlIndex, SkDPoint* dstPt) const;
double binarySearch(double min, double max, double axisIntercept, SearchAxis xAxis) const;
double calcPrecision() const;
SkDCubicPair chopAt(double t) const;
static void Coefficients(const double* cubic, double* A, double* B, double* C, double* D);
static bool ComplexBreak(const SkPoint pts[4], SkScalar* t, CubicType* cubicType);
int convexHull(char order[kPointCount]) const;
void debugInit() {
sk_bzero(fPts, sizeof(fPts));
}
void dump() const; // callable from the debugger when the implementation code is linked in
void dumpID(int id) const;
void dumpInner() const;
SkDVector dxdyAtT(double t) const;
bool endsAreExtremaInXOrY() const;
static int FindExtrema(const double src[], double tValue[2]);
int findInflections(double tValues[2]) const;
static int FindInflections(const SkPoint a[kPointCount], double tValues[2]) {
SkDCubic cubic;
return cubic.set(a).findInflections(tValues);
}
int findMaxCurvature(double tValues[]) const;
bool hullIntersects(const SkDCubic& c2, bool* isLinear) const;
bool hullIntersects(const SkDConic& c, bool* isLinear) const;
bool hullIntersects(const SkDQuad& c2, bool* isLinear) const;
bool hullIntersects(const SkDPoint* pts, int ptCount, bool* isLinear) const;
bool isLinear(int startIndex, int endIndex) const;
bool monotonicInX() const;
bool monotonicInY() const;
void otherPts(int index, const SkDPoint* o1Pts[kPointCount - 1]) const;
SkDPoint ptAtT(double t) const;
static int RootsReal(double A, double B, double C, double D, double t[3]);
static int RootsValidT(const double A, const double B, const double C, double D, double s[3]);
int searchRoots(double extremes[6], int extrema, double axisIntercept,
SearchAxis xAxis, double* validRoots) const;
/**
* Return the number of valid roots (0 < root < 1) for this cubic intersecting the
* specified horizontal line.
*/
int horizontalIntersect(double yIntercept, double roots[3]) const;
/**
* Return the number of valid roots (0 < root < 1) for this cubic intersecting the
* specified vertical line.
*/
int verticalIntersect(double xIntercept, double roots[3]) const;
const SkDCubic& set(const SkPoint pts[kPointCount]) {
fPts[0] = pts[0];
fPts[1] = pts[1];
fPts[2] = pts[2];
fPts[3] = pts[3];
return *this;
}
SkDCubic subDivide(double t1, double t2) const;
static SkDCubic SubDivide(const SkPoint a[kPointCount], double t1, double t2) {
SkDCubic cubic;
return cubic.set(a).subDivide(t1, t2);
}
void subDivide(const SkDPoint& a, const SkDPoint& d, double t1, double t2, SkDPoint p[2]) const;
static void SubDivide(const SkPoint pts[kPointCount], const SkDPoint& a, const SkDPoint& d, double t1,
double t2, SkDPoint p[2]) {
SkDCubic cubic;
cubic.set(pts).subDivide(a, d, t1, t2, p);
}
double top(const SkDCubic& dCurve, double startT, double endT, SkDPoint*topPt) const;
SkDQuad toQuad() const;
static const int gPrecisionUnit;
SkDPoint fPts[kPointCount];
};
/* Given the set [0, 1, 2, 3], and two of the four members, compute an XOR mask
that computes the other two. Note that:
one ^ two == 3 for (0, 3), (1, 2)
one ^ two < 3 for (0, 1), (0, 2), (1, 3), (2, 3)
3 - (one ^ two) is either 0, 1, or 2
1 >> (3 - (one ^ two)) is either 0 or 1
thus:
returned == 2 for (0, 3), (1, 2)
returned == 3 for (0, 1), (0, 2), (1, 3), (2, 3)
given that:
(0, 3) ^ 2 -> (2, 1) (1, 2) ^ 2 -> (3, 0)
(0, 1) ^ 3 -> (3, 2) (0, 2) ^ 3 -> (3, 1) (1, 3) ^ 3 -> (2, 0) (2, 3) ^ 3 -> (1, 0)
*/
inline int other_two(int one, int two) {
return 1 >> (3 - (one ^ two)) ^ 3;
}
#endif