/*
* Copyright 2014 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkDistanceFieldGen.h"
#include "SkPoint.h"
struct DFData {
float fAlpha; // alpha value of source texel
float fDistSq; // distance squared to nearest (so far) edge texel
SkPoint fDistVector; // distance vector to nearest (so far) edge texel
};
enum NeighborFlags {
kLeft_NeighborFlag = 0x01,
kRight_NeighborFlag = 0x02,
kTopLeft_NeighborFlag = 0x04,
kTop_NeighborFlag = 0x08,
kTopRight_NeighborFlag = 0x10,
kBottomLeft_NeighborFlag = 0x20,
kBottom_NeighborFlag = 0x40,
kBottomRight_NeighborFlag = 0x80,
kAll_NeighborFlags = 0xff,
kNeighborFlagCount = 8
};
// We treat an "edge" as a place where we cross from >=128 to <128, or vice versa, or
// where we have two non-zero pixels that are <128.
// 'neighborFlags' is used to limit the directions in which we test to avoid indexing
// outside of the image
static bool found_edge(const unsigned char* imagePtr, int width, int neighborFlags) {
// the order of these should match the neighbor flags above
const int kNum8ConnectedNeighbors = 8;
const int offsets[8] = {-1, 1, -width-1, -width, -width+1, width-1, width, width+1 };
SkASSERT(kNum8ConnectedNeighbors == kNeighborFlagCount);
// search for an edge
unsigned char currVal = *imagePtr;
unsigned char currCheck = (currVal >> 7);
for (int i = 0; i < kNum8ConnectedNeighbors; ++i) {
unsigned char neighborVal;
if ((1 << i) & neighborFlags) {
const unsigned char* checkPtr = imagePtr + offsets[i];
neighborVal = *checkPtr;
} else {
neighborVal = 0;
}
unsigned char neighborCheck = (neighborVal >> 7);
SkASSERT(currCheck == 0 || currCheck == 1);
SkASSERT(neighborCheck == 0 || neighborCheck == 1);
// if sharp transition
if (currCheck != neighborCheck ||
// or both <128 and >0
(!currCheck && !neighborCheck && currVal && neighborVal)) {
return true;
}
}
return false;
}
static void init_glyph_data(DFData* data, unsigned char* edges, const unsigned char* image,
int dataWidth, int dataHeight,
int imageWidth, int imageHeight,
int pad) {
data += pad*dataWidth;
data += pad;
edges += (pad*dataWidth + pad);
for (int j = 0; j < imageHeight; ++j) {
for (int i = 0; i < imageWidth; ++i) {
if (255 == *image) {
data->fAlpha = 1.0f;
} else {
data->fAlpha = (*image)*0.00392156862f; // 1/255
}
int checkMask = kAll_NeighborFlags;
if (i == 0) {
checkMask &= ~(kLeft_NeighborFlag|kTopLeft_NeighborFlag|kBottomLeft_NeighborFlag);
}
if (i == imageWidth-1) {
checkMask &= ~(kRight_NeighborFlag|kTopRight_NeighborFlag|kBottomRight_NeighborFlag);
}
if (j == 0) {
checkMask &= ~(kTopLeft_NeighborFlag|kTop_NeighborFlag|kTopRight_NeighborFlag);
}
if (j == imageHeight-1) {
checkMask &= ~(kBottomLeft_NeighborFlag|kBottom_NeighborFlag|kBottomRight_NeighborFlag);
}
if (found_edge(image, imageWidth, checkMask)) {
*edges = 255; // using 255 makes for convenient debug rendering
}
++data;
++image;
++edges;
}
data += 2*pad;
edges += 2*pad;
}
}
// from Gustavson (2011)
// computes the distance to an edge given an edge normal vector and a pixel's alpha value
// assumes that direction has been pre-normalized
static float edge_distance(const SkPoint& direction, float alpha) {
float dx = direction.fX;
float dy = direction.fY;
float distance;
if (SkScalarNearlyZero(dx) || SkScalarNearlyZero(dy)) {
distance = 0.5f - alpha;
} else {
// this is easier if we treat the direction as being in the first octant
// (other octants are symmetrical)
dx = SkScalarAbs(dx);
dy = SkScalarAbs(dy);
if (dx < dy) {
SkTSwap(dx, dy);
}
// a1 = 0.5*dy/dx is the smaller fractional area chopped off by the edge
// to avoid the divide, we just consider the numerator
float a1num = 0.5f*dy;
// we now compute the approximate distance, depending where the alpha falls
// relative to the edge fractional area
// if 0 <= alpha < a1
if (alpha*dx < a1num) {
// TODO: find a way to do this without square roots?
distance = 0.5f*(dx + dy) - SkScalarSqrt(2.0f*dx*dy*alpha);
// if a1 <= alpha <= 1 - a1
} else if (alpha*dx < (dx - a1num)) {
distance = (0.5f - alpha)*dx;
// if 1 - a1 < alpha <= 1
} else {
// TODO: find a way to do this without square roots?
distance = -0.5f*(dx + dy) + SkScalarSqrt(2.0f*dx*dy*(1.0f - alpha));
}
}
return distance;
}
static void init_distances(DFData* data, unsigned char* edges, int width, int height) {
// skip one pixel border
DFData* currData = data;
DFData* prevData = data - width;
DFData* nextData = data + width;
for (int j = 0; j < height; ++j) {
for (int i = 0; i < width; ++i) {
if (*edges) {
// we should not be in the one-pixel outside band
SkASSERT(i > 0 && i < width-1 && j > 0 && j < height-1);
// gradient will point from low to high
// +y is down in this case
// i.e., if you're outside, gradient points towards edge
// if you're inside, gradient points away from edge
SkPoint currGrad;
currGrad.fX = (prevData+1)->fAlpha - (prevData-1)->fAlpha
+ SK_ScalarSqrt2*(currData+1)->fAlpha
- SK_ScalarSqrt2*(currData-1)->fAlpha
+ (nextData+1)->fAlpha - (nextData-1)->fAlpha;
currGrad.fY = (nextData-1)->fAlpha - (prevData-1)->fAlpha
+ SK_ScalarSqrt2*nextData->fAlpha
- SK_ScalarSqrt2*prevData->fAlpha
+ (nextData+1)->fAlpha - (prevData+1)->fAlpha;
currGrad.setLengthFast(1.0f);
// init squared distance to edge and distance vector
float dist = edge_distance(currGrad, currData->fAlpha);
currGrad.scale(dist, &currData->fDistVector);
currData->fDistSq = dist*dist;
} else {
// init distance to "far away"
currData->fDistSq = 2000000.f;
currData->fDistVector.fX = 1000.f;
currData->fDistVector.fY = 1000.f;
}
++currData;
++prevData;
++nextData;
++edges;
}
}
}
// Danielsson's 8SSEDT
// first stage forward pass
// (forward in Y, forward in X)
static void F1(DFData* curr, int width) {
// upper left
DFData* check = curr - width-1;
SkPoint distVec = check->fDistVector;
float distSq = check->fDistSq - 2.0f*(distVec.fX + distVec.fY - 1.0f);
if (distSq < curr->fDistSq) {
distVec.fX -= 1.0f;
distVec.fY -= 1.0f;
curr->fDistSq = distSq;
curr->fDistVector = distVec;
}
// up
check = curr - width;
distVec = check->fDistVector;
distSq = check->fDistSq - 2.0f*distVec.fY + 1.0f;
if (distSq < curr->fDistSq) {
distVec.fY -= 1.0f;
curr->fDistSq = distSq;
curr->fDistVector = distVec;
}
// upper right
check = curr - width+1;
distVec = check->fDistVector;
distSq = check->fDistSq + 2.0f*(distVec.fX - distVec.fY + 1.0f);
if (distSq < curr->fDistSq) {
distVec.fX += 1.0f;
distVec.fY -= 1.0f;
curr->fDistSq = distSq;
curr->fDistVector = distVec;
}
// left
check = curr - 1;
distVec = check->fDistVector;
distSq = check->fDistSq - 2.0f*distVec.fX + 1.0f;
if (distSq < curr->fDistSq) {
distVec.fX -= 1.0f;
curr->fDistSq = distSq;
curr->fDistVector = distVec;
}
}
// second stage forward pass
// (forward in Y, backward in X)
static void F2(DFData* curr, int width) {
// right
DFData* check = curr + 1;
float distSq = check->fDistSq;
SkPoint distVec = check->fDistVector;
distSq = check->fDistSq + 2.0f*distVec.fX + 1.0f;
if (distSq < curr->fDistSq) {
distVec.fX += 1.0f;
curr->fDistSq = distSq;
curr->fDistVector = distVec;
}
}
// first stage backward pass
// (backward in Y, forward in X)
static void B1(DFData* curr, int width) {
// left
DFData* check = curr - 1;
SkPoint distVec = check->fDistVector;
float distSq = check->fDistSq - 2.0f*distVec.fX + 1.0f;
if (distSq < curr->fDistSq) {
distVec.fX -= 1.0f;
curr->fDistSq = distSq;
curr->fDistVector = distVec;
}
}
// second stage backward pass
// (backward in Y, backwards in X)
static void B2(DFData* curr, int width) {
// right
DFData* check = curr + 1;
SkPoint distVec = check->fDistVector;
float distSq = check->fDistSq + 2.0f*distVec.fX + 1.0f;
if (distSq < curr->fDistSq) {
distVec.fX += 1.0f;
curr->fDistSq = distSq;
curr->fDistVector = distVec;
}
// bottom left
check = curr + width-1;
distVec = check->fDistVector;
distSq = check->fDistSq - 2.0f*(distVec.fX - distVec.fY - 1.0f);
if (distSq < curr->fDistSq) {
distVec.fX -= 1.0f;
distVec.fY += 1.0f;
curr->fDistSq = distSq;
curr->fDistVector = distVec;
}
// bottom
check = curr + width;
distVec = check->fDistVector;
distSq = check->fDistSq + 2.0f*distVec.fY + 1.0f;
if (distSq < curr->fDistSq) {
distVec.fY += 1.0f;
curr->fDistSq = distSq;
curr->fDistVector = distVec;
}
// bottom right
check = curr + width+1;
distVec = check->fDistVector;
distSq = check->fDistSq + 2.0f*(distVec.fX + distVec.fY + 1.0f);
if (distSq < curr->fDistSq) {
distVec.fX += 1.0f;
distVec.fY += 1.0f;
curr->fDistSq = distSq;
curr->fDistVector = distVec;
}
}
// enable this to output edge data rather than the distance field
#define DUMP_EDGE 0
#if !DUMP_EDGE
static unsigned char pack_distance_field_val(float dist, float distanceMagnitude) {
if (dist <= -distanceMagnitude) {
return 255;
} else if (dist > distanceMagnitude) {
return 0;
} else {
return (unsigned char)((distanceMagnitude-dist)*128.0f/distanceMagnitude);
}
}
#endif
// assumes a padded 8-bit image and distance field
// width and height are the original width and height of the image
static bool generate_distance_field_from_image(unsigned char* distanceField,
const unsigned char* copyPtr,
int width, int height) {
SkASSERT(distanceField);
SkASSERT(copyPtr);
// we expand our temp data by one more on each side to simplify
// the scanning code -- will always be treated as infinitely far away
int pad = SK_DistanceFieldPad + 1;
// set params for distance field data
int dataWidth = width + 2*pad;
int dataHeight = height + 2*pad;
// create temp data
size_t dataSize = dataWidth*dataHeight*sizeof(DFData);
SkAutoSMalloc<1024> dfStorage(dataSize);
DFData* dataPtr = (DFData*) dfStorage.get();
sk_bzero(dataPtr, dataSize);
SkAutoSMalloc<1024> edgeStorage(dataWidth*dataHeight*sizeof(char));
unsigned char* edgePtr = (unsigned char*) edgeStorage.get();
sk_bzero(edgePtr, dataWidth*dataHeight*sizeof(char));
// copy glyph into distance field storage
init_glyph_data(dataPtr, edgePtr, copyPtr,
dataWidth, dataHeight,
width+2, height+2, SK_DistanceFieldPad);
// create initial distance data, particularly at edges
init_distances(dataPtr, edgePtr, dataWidth, dataHeight);
// now perform Euclidean distance transform to propagate distances
// forwards in y
DFData* currData = dataPtr+dataWidth+1; // skip outer buffer
unsigned char* currEdge = edgePtr+dataWidth+1;
for (int j = 1; j < dataHeight-1; ++j) {
// forwards in x
for (int i = 1; i < dataWidth-1; ++i) {
// don't need to calculate distance for edge pixels
if (!*currEdge) {
F1(currData, dataWidth);
}
++currData;
++currEdge;
}
// backwards in x
--currData; // reset to end
--currEdge;
for (int i = 1; i < dataWidth-1; ++i) {
// don't need to calculate distance for edge pixels
if (!*currEdge) {
F2(currData, dataWidth);
}
--currData;
--currEdge;
}
currData += dataWidth+1;
currEdge += dataWidth+1;
}
// backwards in y
currData = dataPtr+dataWidth*(dataHeight-2) - 1; // skip outer buffer
currEdge = edgePtr+dataWidth*(dataHeight-2) - 1;
for (int j = 1; j < dataHeight-1; ++j) {
// forwards in x
for (int i = 1; i < dataWidth-1; ++i) {
// don't need to calculate distance for edge pixels
if (!*currEdge) {
B1(currData, dataWidth);
}
++currData;
++currEdge;
}
// backwards in x
--currData; // reset to end
--currEdge;
for (int i = 1; i < dataWidth-1; ++i) {
// don't need to calculate distance for edge pixels
if (!*currEdge) {
B2(currData, dataWidth);
}
--currData;
--currEdge;
}
currData -= dataWidth-1;
currEdge -= dataWidth-1;
}
// copy results to final distance field data
currData = dataPtr + dataWidth+1;
currEdge = edgePtr + dataWidth+1;
unsigned char *dfPtr = distanceField;
for (int j = 1; j < dataHeight-1; ++j) {
for (int i = 1; i < dataWidth-1; ++i) {
#if DUMP_EDGE
float alpha = currData->fAlpha;
float edge = 0.0f;
if (*currEdge) {
edge = 0.25f;
}
// blend with original image
float result = alpha + (1.0f-alpha)*edge;
unsigned char val = sk_float_round2int(255*result);
*dfPtr++ = val;
#else
float dist;
if (currData->fAlpha > 0.5f) {
dist = -SkScalarSqrt(currData->fDistSq);
} else {
dist = SkScalarSqrt(currData->fDistSq);
}
*dfPtr++ = pack_distance_field_val(dist, (float)SK_DistanceFieldMagnitude);
#endif
++currData;
++currEdge;
}
currData += 2;
currEdge += 2;
}
return true;
}
// assumes an 8-bit image and distance field
bool SkGenerateDistanceFieldFromA8Image(unsigned char* distanceField,
const unsigned char* image,
int width, int height, size_t rowBytes) {
SkASSERT(distanceField);
SkASSERT(image);
// create temp data
SkAutoSMalloc<1024> copyStorage((width+2)*(height+2)*sizeof(char));
unsigned char* copyPtr = (unsigned char*) copyStorage.get();
// we copy our source image into a padded copy to ensure we catch edge transitions
// around the outside
const unsigned char* currSrcScanLine = image;
sk_bzero(copyPtr, (width+2)*sizeof(char));
unsigned char* currDestPtr = copyPtr + width + 2;
for (int i = 0; i < height; ++i) {
*currDestPtr++ = 0;
memcpy(currDestPtr, currSrcScanLine, rowBytes);
currSrcScanLine += rowBytes;
currDestPtr += width;
*currDestPtr++ = 0;
}
sk_bzero(currDestPtr, (width+2)*sizeof(char));
return generate_distance_field_from_image(distanceField, copyPtr, width, height);
}
// assumes a 1-bit image and 8-bit distance field
bool SkGenerateDistanceFieldFromBWImage(unsigned char* distanceField,
const unsigned char* image,
int width, int height, size_t rowBytes) {
SkASSERT(distanceField);
SkASSERT(image);
// create temp data
SkAutoSMalloc<1024> copyStorage((width+2)*(height+2)*sizeof(char));
unsigned char* copyPtr = (unsigned char*) copyStorage.get();
// we copy our source image into a padded copy to ensure we catch edge transitions
// around the outside
const unsigned char* currSrcScanLine = image;
sk_bzero(copyPtr, (width+2)*sizeof(char));
unsigned char* currDestPtr = copyPtr + width + 2;
for (int i = 0; i < height; ++i) {
*currDestPtr++ = 0;
int rowWritesLeft = width;
const unsigned char *maskPtr = currSrcScanLine;
while (rowWritesLeft > 0) {
unsigned mask = *maskPtr++;
for (int i = 7; i >= 0 && rowWritesLeft; --i, --rowWritesLeft) {
*currDestPtr++ = (mask & (1 << i)) ? 0xff : 0;
}
}
currSrcScanLine += rowBytes;
*currDestPtr++ = 0;
}
sk_bzero(currDestPtr, (width+2)*sizeof(char));
return generate_distance_field_from_image(distanceField, copyPtr, width, height);
}