/*
* Copyright 2014 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include <ctype.h>
#include "nanobench.h"
#include "Benchmark.h"
#include "CodecBench.h"
#include "CrashHandler.h"
#include "DecodingBench.h"
#include "DecodingSubsetBench.h"
#include "GMBench.h"
#include "ProcStats.h"
#include "ResultsWriter.h"
#include "RecordingBench.h"
#include "SKPAnimationBench.h"
#include "SKPBench.h"
#include "Stats.h"
#include "Timer.h"
#include "SkBBoxHierarchy.h"
#include "SkCanvas.h"
#include "SkCodec.h"
#include "SkCommonFlags.h"
#include "SkData.h"
#include "SkForceLinking.h"
#include "SkGraphics.h"
#include "SkOSFile.h"
#include "SkPictureRecorder.h"
#include "SkPictureUtils.h"
#include "SkString.h"
#include "SkSurface.h"
#include "SkTaskGroup.h"
#ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK
#include "nanobenchAndroid.h"
#endif
#if SK_SUPPORT_GPU
#include "gl/GrGLDefines.h"
#include "GrContextFactory.h"
SkAutoTDelete<GrContextFactory> gGrFactory;
#endif
__SK_FORCE_IMAGE_DECODER_LINKING;
static const int kAutoTuneLoops = 0;
static const int kDefaultLoops =
#ifdef SK_DEBUG
1;
#else
kAutoTuneLoops;
#endif
static SkString loops_help_txt() {
SkString help;
help.printf("Number of times to run each bench. Set this to %d to auto-"
"tune for each bench. Timings are only reported when auto-tuning.",
kAutoTuneLoops);
return help;
}
DEFINE_int32(loops, kDefaultLoops, loops_help_txt().c_str());
DEFINE_int32(samples, 10, "Number of samples to measure for each bench.");
DEFINE_int32(overheadLoops, 100000, "Loops to estimate timer overhead.");
DEFINE_double(overheadGoal, 0.0001,
"Loop until timer overhead is at most this fraction of our measurments.");
DEFINE_double(gpuMs, 5, "Target bench time in millseconds for GPU.");
DEFINE_int32(gpuFrameLag, 5, "Overestimate of maximum number of frames GPU allows to lag.");
DEFINE_bool(gpuCompressAlphaMasks, false, "Compress masks generated from falling back to "
"software path rendering.");
DEFINE_string(outResultsFile, "", "If given, write results here as JSON.");
DEFINE_int32(maxCalibrationAttempts, 3,
"Try up to this many times to guess loops for a bench, or skip the bench.");
DEFINE_int32(maxLoops, 1000000, "Never run a bench more times than this.");
DEFINE_string(clip, "0,0,1000,1000", "Clip for SKPs.");
DEFINE_string(scales, "1.0", "Space-separated scales for SKPs.");
DEFINE_string(zoom, "1.0,1", "Comma-separated scale,step zoom factors for SKPs.");
DEFINE_bool(bbh, true, "Build a BBH for SKPs?");
DEFINE_bool(mpd, true, "Use MultiPictureDraw for the SKPs?");
DEFINE_int32(flushEvery, 10, "Flush --outResultsFile every Nth run.");
DEFINE_bool(resetGpuContext, true, "Reset the GrContext before running each test.");
DEFINE_bool(gpuStats, false, "Print GPU stats after each gpu benchmark?");
static SkString humanize(double ms) {
if (FLAGS_verbose) return SkStringPrintf("%llu", (uint64_t)(ms*1e6));
return HumanizeMs(ms);
}
#define HUMANIZE(ms) humanize(ms).c_str()
bool Target::init(SkImageInfo info, Benchmark* bench) {
if (Benchmark::kRaster_Backend == config.backend) {
this->surface.reset(SkSurface::NewRaster(info));
if (!this->surface.get()) {
return false;
}
}
return true;
}
bool Target::capturePixels(SkBitmap* bmp) {
SkCanvas* canvas = this->getCanvas();
if (!canvas) {
return false;
}
bmp->setInfo(canvas->imageInfo());
if (!canvas->readPixels(bmp, 0, 0)) {
SkDebugf("Can't read canvas pixels.\n");
return false;
}
return true;
}
#if SK_SUPPORT_GPU
struct GPUTarget : public Target {
explicit GPUTarget(const Config& c) : Target(c), gl(NULL) { }
SkGLContext* gl;
void setup() override {
this->gl->makeCurrent();
// Make sure we're done with whatever came before.
SK_GL(*this->gl, Finish());
}
void endTiming() override {
if (this->gl) {
SK_GL(*this->gl, Flush());
this->gl->swapBuffers();
}
}
void fence() override {
SK_GL(*this->gl, Finish());
}
bool needsFrameTiming() const override { return true; }
bool init(SkImageInfo info, Benchmark* bench) override {
uint32_t flags = this->config.useDFText ? SkSurfaceProps::kUseDistanceFieldFonts_Flag : 0;
SkSurfaceProps props(flags, SkSurfaceProps::kLegacyFontHost_InitType);
this->surface.reset(SkSurface::NewRenderTarget(gGrFactory->get(this->config.ctxType),
SkSurface::kNo_Budgeted, info,
this->config.samples, &props));
this->gl = gGrFactory->getGLContext(this->config.ctxType);
if (!this->surface.get()) {
return false;
}
return true;
}
void fillOptions(ResultsWriter* log) override {
const GrGLubyte* version;
SK_GL_RET(*this->gl, version, GetString(GR_GL_VERSION));
log->configOption("GL_VERSION", (const char*)(version));
SK_GL_RET(*this->gl, version, GetString(GR_GL_RENDERER));
log->configOption("GL_RENDERER", (const char*) version);
SK_GL_RET(*this->gl, version, GetString(GR_GL_VENDOR));
log->configOption("GL_VENDOR", (const char*) version);
SK_GL_RET(*this->gl, version, GetString(GR_GL_SHADING_LANGUAGE_VERSION));
log->configOption("GL_SHADING_LANGUAGE_VERSION", (const char*) version);
}
};
#endif
static double time(int loops, Benchmark* bench, Target* target) {
SkCanvas* canvas = target->getCanvas();
if (canvas) {
canvas->clear(SK_ColorWHITE);
}
WallTimer timer;
timer.start();
canvas = target->beginTiming(canvas);
bench->draw(loops, canvas);
if (canvas) {
canvas->flush();
}
target->endTiming();
timer.end();
return timer.fWall;
}
static double estimate_timer_overhead() {
double overhead = 0;
for (int i = 0; i < FLAGS_overheadLoops; i++) {
WallTimer timer;
timer.start();
timer.end();
overhead += timer.fWall;
}
return overhead / FLAGS_overheadLoops;
}
static int detect_forever_loops(int loops) {
// look for a magic run-forever value
if (loops < 0) {
loops = SK_MaxS32;
}
return loops;
}
static int clamp_loops(int loops) {
if (loops < 1) {
SkDebugf("ERROR: clamping loops from %d to 1. "
"There's probably something wrong with the bench.\n", loops);
return 1;
}
if (loops > FLAGS_maxLoops) {
SkDebugf("WARNING: clamping loops from %d to FLAGS_maxLoops, %d.\n", loops, FLAGS_maxLoops);
return FLAGS_maxLoops;
}
return loops;
}
static bool write_canvas_png(Target* target, const SkString& filename) {
if (filename.isEmpty()) {
return false;
}
if (target->getCanvas() &&
kUnknown_SkColorType == target->getCanvas()->imageInfo().colorType()) {
return false;
}
SkBitmap bmp;
if (!target->capturePixels(&bmp)) {
return false;
}
SkString dir = SkOSPath::Dirname(filename.c_str());
if (!sk_mkdir(dir.c_str())) {
SkDebugf("Can't make dir %s.\n", dir.c_str());
return false;
}
SkFILEWStream stream(filename.c_str());
if (!stream.isValid()) {
SkDebugf("Can't write %s.\n", filename.c_str());
return false;
}
if (!SkImageEncoder::EncodeStream(&stream, bmp, SkImageEncoder::kPNG_Type, 100)) {
SkDebugf("Can't encode a PNG.\n");
return false;
}
return true;
}
static int kFailedLoops = -2;
static int cpu_bench(const double overhead, Target* target, Benchmark* bench, double* samples) {
// First figure out approximately how many loops of bench it takes to make overhead negligible.
double bench_plus_overhead = 0.0;
int round = 0;
if (kAutoTuneLoops == FLAGS_loops) {
while (bench_plus_overhead < overhead) {
if (round++ == FLAGS_maxCalibrationAttempts) {
SkDebugf("WARNING: Can't estimate loops for %s (%s vs. %s); skipping.\n",
bench->getUniqueName(), HUMANIZE(bench_plus_overhead), HUMANIZE(overhead));
return kFailedLoops;
}
bench_plus_overhead = time(1, bench, target);
}
}
// Later we'll just start and stop the timer once but loop N times.
// We'll pick N to make timer overhead negligible:
//
// overhead
// ------------------------- < FLAGS_overheadGoal
// overhead + N * Bench Time
//
// where bench_plus_overhead ≈ overhead + Bench Time.
//
// Doing some math, we get:
//
// (overhead / FLAGS_overheadGoal) - overhead
// ------------------------------------------ < N
// bench_plus_overhead - overhead)
//
// Luckily, this also works well in practice. :)
int loops = FLAGS_loops;
if (kAutoTuneLoops == loops) {
const double numer = overhead / FLAGS_overheadGoal - overhead;
const double denom = bench_plus_overhead - overhead;
loops = (int)ceil(numer / denom);
loops = clamp_loops(loops);
} else {
loops = detect_forever_loops(loops);
}
for (int i = 0; i < FLAGS_samples; i++) {
samples[i] = time(loops, bench, target) / loops;
}
return loops;
}
static int gpu_bench(Target* target,
Benchmark* bench,
double* samples) {
// First, figure out how many loops it'll take to get a frame up to FLAGS_gpuMs.
int loops = FLAGS_loops;
if (kAutoTuneLoops == loops) {
loops = 1;
double elapsed = 0;
do {
if (1<<30 == loops) {
// We're about to wrap. Something's wrong with the bench.
loops = 0;
break;
}
loops *= 2;
// If the GPU lets frames lag at all, we need to make sure we're timing
// _this_ round, not still timing last round. We force this by looping
// more times than any reasonable GPU will allow frames to lag.
for (int i = 0; i < FLAGS_gpuFrameLag; i++) {
elapsed = time(loops, bench, target);
}
} while (elapsed < FLAGS_gpuMs);
// We've overshot at least a little. Scale back linearly.
loops = (int)ceil(loops * FLAGS_gpuMs / elapsed);
loops = clamp_loops(loops);
// Make sure we're not still timing our calibration.
target->fence();
} else {
loops = detect_forever_loops(loops);
}
// Pretty much the same deal as the calibration: do some warmup to make
// sure we're timing steady-state pipelined frames.
for (int i = 0; i < FLAGS_gpuFrameLag; i++) {
time(loops, bench, target);
}
// Now, actually do the timing!
for (int i = 0; i < FLAGS_samples; i++) {
samples[i] = time(loops, bench, target) / loops;
}
return loops;
}
static SkString to_lower(const char* str) {
SkString lower(str);
for (size_t i = 0; i < lower.size(); i++) {
lower[i] = tolower(lower[i]);
}
return lower;
}
static bool is_cpu_config_allowed(const char* name) {
for (int i = 0; i < FLAGS_config.count(); i++) {
if (to_lower(FLAGS_config[i]).equals(name)) {
return true;
}
}
return false;
}
#if SK_SUPPORT_GPU
static bool is_gpu_config_allowed(const char* name, GrContextFactory::GLContextType ctxType,
int sampleCnt) {
if (!is_cpu_config_allowed(name)) {
return false;
}
if (const GrContext* ctx = gGrFactory->get(ctxType)) {
return sampleCnt <= ctx->getMaxSampleCount();
}
return false;
}
#endif
#if SK_SUPPORT_GPU
#define kBogusGLContextType GrContextFactory::kNative_GLContextType
#else
#define kBogusGLContextType 0
#endif
// Append all configs that are enabled and supported.
static void create_configs(SkTDArray<Config>* configs) {
#define CPU_CONFIG(name, backend, color, alpha) \
if (is_cpu_config_allowed(#name)) { \
Config config = { #name, Benchmark::backend, color, alpha, 0, \
kBogusGLContextType, false }; \
configs->push(config); \
}
if (FLAGS_cpu) {
CPU_CONFIG(nonrendering, kNonRendering_Backend, kUnknown_SkColorType, kUnpremul_SkAlphaType)
CPU_CONFIG(8888, kRaster_Backend, kN32_SkColorType, kPremul_SkAlphaType)
CPU_CONFIG(565, kRaster_Backend, kRGB_565_SkColorType, kOpaque_SkAlphaType)
}
#if SK_SUPPORT_GPU
#define GPU_CONFIG(name, ctxType, samples, useDFText) \
if (is_gpu_config_allowed(#name, GrContextFactory::ctxType, samples)) { \
Config config = { \
#name, \
Benchmark::kGPU_Backend, \
kN32_SkColorType, \
kPremul_SkAlphaType, \
samples, \
GrContextFactory::ctxType, \
useDFText }; \
configs->push(config); \
}
if (FLAGS_gpu) {
GPU_CONFIG(gpu, kNative_GLContextType, 0, false)
GPU_CONFIG(msaa4, kNative_GLContextType, 4, false)
GPU_CONFIG(msaa16, kNative_GLContextType, 16, false)
GPU_CONFIG(nvprmsaa4, kNVPR_GLContextType, 4, false)
GPU_CONFIG(nvprmsaa16, kNVPR_GLContextType, 16, false)
GPU_CONFIG(gpudft, kNative_GLContextType, 0, true)
GPU_CONFIG(debug, kDebug_GLContextType, 0, false)
GPU_CONFIG(nullgpu, kNull_GLContextType, 0, false)
#ifdef SK_ANGLE
GPU_CONFIG(angle, kANGLE_GLContextType, 0, false)
#endif
}
#endif
#ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK
if (is_cpu_config_allowed("hwui")) {
Config config = { "hwui", Benchmark::kHWUI_Backend, kRGBA_8888_SkColorType,
kPremul_SkAlphaType, 0, kBogusGLContextType, false };
configs->push(config);
}
#endif
}
// If bench is enabled for config, returns a Target* for it, otherwise NULL.
static Target* is_enabled(Benchmark* bench, const Config& config) {
if (!bench->isSuitableFor(config.backend)) {
return NULL;
}
SkImageInfo info = SkImageInfo::Make(bench->getSize().fX, bench->getSize().fY,
config.color, config.alpha);
Target* target = NULL;
switch (config.backend) {
#if SK_SUPPORT_GPU
case Benchmark::kGPU_Backend:
target = new GPUTarget(config);
break;
#endif
#ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK
case Benchmark::kHWUI_Backend:
target = new HWUITarget(config, bench);
break;
#endif
default:
target = new Target(config);
break;
}
if (!target->init(info, bench)) {
delete target;
return NULL;
}
return target;
}
// Creates targets for a benchmark and a set of configs.
static void create_targets(SkTDArray<Target*>* targets, Benchmark* b,
const SkTDArray<Config>& configs) {
for (int i = 0; i < configs.count(); ++i) {
if (Target* t = is_enabled(b, configs[i])) {
targets->push(t);
}
}
}
class BenchmarkStream {
public:
BenchmarkStream() : fBenches(BenchRegistry::Head())
, fGMs(skiagm::GMRegistry::Head())
, fCurrentRecording(0)
, fCurrentScale(0)
, fCurrentSKP(0)
, fCurrentUseMPD(0)
, fCurrentCodec(0)
, fCurrentImage(0)
, fCurrentSubsetImage(0)
, fCurrentColorType(0)
, fCurrentAnimSKP(0)
, fDivisor(2) {
for (int i = 0; i < FLAGS_skps.count(); i++) {
if (SkStrEndsWith(FLAGS_skps[i], ".skp")) {
fSKPs.push_back() = FLAGS_skps[i];
} else {
SkOSFile::Iter it(FLAGS_skps[i], ".skp");
SkString path;
while (it.next(&path)) {
fSKPs.push_back() = SkOSPath::Join(FLAGS_skps[0], path.c_str());
}
}
}
if (4 != sscanf(FLAGS_clip[0], "%d,%d,%d,%d",
&fClip.fLeft, &fClip.fTop, &fClip.fRight, &fClip.fBottom)) {
SkDebugf("Can't parse %s from --clip as an SkIRect.\n", FLAGS_clip[0]);
exit(1);
}
for (int i = 0; i < FLAGS_scales.count(); i++) {
if (1 != sscanf(FLAGS_scales[i], "%f", &fScales.push_back())) {
SkDebugf("Can't parse %s from --scales as an SkScalar.\n", FLAGS_scales[i]);
exit(1);
}
}
if (2 != sscanf(FLAGS_zoom[0], "%f,%d", &fZoomScale, &fZoomSteps)) {
SkDebugf("Can't parse %s from --zoom as a scale,step.\n", FLAGS_zoom[0]);
exit(1);
}
fUseMPDs.push_back() = false;
if (FLAGS_mpd) {
fUseMPDs.push_back() = true;
}
// Prepare the images for decoding
for (int i = 0; i < FLAGS_images.count(); i++) {
const char* flag = FLAGS_images[i];
if (sk_isdir(flag)) {
// If the value passed in is a directory, add all the images
SkOSFile::Iter it(flag);
SkString file;
while (it.next(&file)) {
fImages.push_back() = SkOSPath::Join(flag, file.c_str());
}
} else if (sk_exists(flag)) {
// Also add the value if it is a single image
fImages.push_back() = flag;
}
}
// Choose the candidate color types for image decoding
const SkColorType colorTypes[] =
{ kN32_SkColorType, kRGB_565_SkColorType, kAlpha_8_SkColorType, kIndex_8_SkColorType };
fColorTypes.push_back_n(SK_ARRAY_COUNT(colorTypes), colorTypes);
}
static bool ReadPicture(const char* path, SkAutoTUnref<SkPicture>* pic) {
// Not strictly necessary, as it will be checked again later,
// but helps to avoid a lot of pointless work if we're going to skip it.
if (SkCommandLineFlags::ShouldSkip(FLAGS_match, path)) {
return false;
}
SkAutoTDelete<SkStream> stream(SkStream::NewFromFile(path));
if (stream.get() == NULL) {
SkDebugf("Could not read %s.\n", path);
return false;
}
pic->reset(SkPicture::CreateFromStream(stream.get()));
if (pic->get() == NULL) {
SkDebugf("Could not read %s as an SkPicture.\n", path);
return false;
}
return true;
}
Benchmark* next() {
if (fBenches) {
Benchmark* bench = fBenches->factory()(NULL);
fBenches = fBenches->next();
fSourceType = "bench";
fBenchType = "micro";
return bench;
}
while (fGMs) {
SkAutoTDelete<skiagm::GM> gm(fGMs->factory()(NULL));
fGMs = fGMs->next();
if (gm->runAsBench()) {
fSourceType = "gm";
fBenchType = "micro";
return SkNEW_ARGS(GMBench, (gm.detach()));
}
}
// First add all .skps as RecordingBenches.
while (fCurrentRecording < fSKPs.count()) {
const SkString& path = fSKPs[fCurrentRecording++];
SkAutoTUnref<SkPicture> pic;
if (!ReadPicture(path.c_str(), &pic)) {
continue;
}
SkString name = SkOSPath::Basename(path.c_str());
fSourceType = "skp";
fBenchType = "recording";
fSKPBytes = static_cast<double>(SkPictureUtils::ApproximateBytesUsed(pic));
fSKPOps = pic->approximateOpCount();
return SkNEW_ARGS(RecordingBench, (name.c_str(), pic.get(), FLAGS_bbh));
}
// Then once each for each scale as SKPBenches (playback).
while (fCurrentScale < fScales.count()) {
while (fCurrentSKP < fSKPs.count()) {
const SkString& path = fSKPs[fCurrentSKP];
SkAutoTUnref<SkPicture> pic;
if (!ReadPicture(path.c_str(), &pic)) {
fCurrentSKP++;
continue;
}
while (fCurrentUseMPD < fUseMPDs.count()) {
if (FLAGS_bbh) {
// The SKP we read off disk doesn't have a BBH. Re-record so it grows one.
SkRTreeFactory factory;
SkPictureRecorder recorder;
static const int kFlags = SkPictureRecorder::kComputeSaveLayerInfo_RecordFlag;
pic->playback(recorder.beginRecording(pic->cullRect().width(),
pic->cullRect().height(),
&factory,
fUseMPDs[fCurrentUseMPD] ? kFlags : 0));
pic.reset(recorder.endRecording());
}
SkString name = SkOSPath::Basename(path.c_str());
fSourceType = "skp";
fBenchType = "playback";
return SkNEW_ARGS(SKPBench,
(name.c_str(), pic.get(), fClip,
fScales[fCurrentScale], fUseMPDs[fCurrentUseMPD++]));
}
fCurrentUseMPD = 0;
fCurrentSKP++;
}
fCurrentSKP = 0;
fCurrentScale++;
}
// Now loop over each skp again if we have an animation
if (fZoomScale != 1.0f && fZoomSteps != 1) {
while (fCurrentAnimSKP < fSKPs.count()) {
const SkString& path = fSKPs[fCurrentAnimSKP];
SkAutoTUnref<SkPicture> pic;
if (!ReadPicture(path.c_str(), &pic)) {
fCurrentAnimSKP++;
continue;
}
fCurrentAnimSKP++;
SkString name = SkOSPath::Basename(path.c_str());
SkMatrix anim = SkMatrix::I();
anim.setScale(fZoomScale, fZoomScale);
return SkNEW_ARGS(SKPAnimationBench, (name.c_str(), pic.get(), fClip, anim,
fZoomSteps));
}
}
for (; fCurrentCodec < fImages.count(); fCurrentCodec++) {
const SkString& path = fImages[fCurrentCodec];
SkAutoTUnref<SkData> encoded(SkData::NewFromFileName(path.c_str()));
SkAutoTDelete<SkCodec> codec(SkCodec::NewFromData(encoded));
if (!codec) {
// Nothing to time.
SkDebugf("Cannot find codec for %s\n", path.c_str());
continue;
}
while (fCurrentColorType < fColorTypes.count()) {
const SkColorType colorType = fColorTypes[fCurrentColorType];
fCurrentColorType++;
// Make sure we can decode to this color type.
SkImageInfo info = codec->getInfo().makeColorType(colorType);
SkAlphaType alphaType;
if (!SkColorTypeValidateAlphaType(colorType, info.alphaType(),
&alphaType)) {
continue;
}
if (alphaType != info.alphaType()) {
info = info.makeAlphaType(alphaType);
}
const size_t rowBytes = info.minRowBytes();
SkAutoMalloc storage(info.getSafeSize(rowBytes));
// Used if fCurrentColorType is kIndex_8_SkColorType
int colorCount = 256;
SkPMColor colors[256];
const SkImageGenerator::Result result = codec->getPixels(
info, storage.get(), rowBytes, NULL, colors,
&colorCount);
switch (result) {
case SkImageGenerator::kSuccess:
case SkImageGenerator::kIncompleteInput:
return new CodecBench(SkOSPath::Basename(path.c_str()),
encoded, colorType);
case SkImageGenerator::kInvalidConversion:
// This is okay. Not all conversions are valid.
break;
default:
// This represents some sort of failure.
SkASSERT(false);
break;
}
}
fCurrentColorType = 0;
}
// Run the DecodingBenches
while (fCurrentImage < fImages.count()) {
while (fCurrentColorType < fColorTypes.count()) {
const SkString& path = fImages[fCurrentImage];
SkColorType colorType = fColorTypes[fCurrentColorType];
fCurrentColorType++;
// Check if the image decodes to the right color type
// before creating the benchmark
SkBitmap bitmap;
if (SkImageDecoder::DecodeFile(path.c_str(), &bitmap,
colorType, SkImageDecoder::kDecodePixels_Mode)
&& bitmap.colorType() == colorType) {
return new DecodingBench(path, colorType);
}
}
fCurrentColorType = 0;
fCurrentImage++;
}
// Run the DecodingSubsetBenches
while (fCurrentSubsetImage < fImages.count()) {
while (fCurrentColorType < fColorTypes.count()) {
const SkString& path = fImages[fCurrentSubsetImage];
SkColorType colorType = fColorTypes[fCurrentColorType];
fCurrentColorType++;
// Check if the image decodes before creating the benchmark
SkAutoTUnref<SkData> encoded(
SkData::NewFromFileName(path.c_str()));
SkAutoTDelete<SkMemoryStream> stream(
new SkMemoryStream(encoded));
SkAutoTDelete<SkImageDecoder>
decoder(SkImageDecoder::Factory(stream.get()));
if (!decoder) {
SkDebugf("Cannot find decoder for %s\n", path.c_str());
} else {
stream->rewind();
int w, h;
bool success;
if (!decoder->buildTileIndex(stream.detach(), &w, &h)
|| w*h == 1) {
// This is not an error, but in this case we still
// do not want to run the benchmark.
success = false;
} else if (fDivisor > w || fDivisor > h) {
SkDebugf("Divisor %d is too big for %s %dx%d\n",
fDivisor, path.c_str(), w, h);
success = false;
} else {
const int sW = w / fDivisor;
const int sH = h / fDivisor;
SkBitmap bitmap;
success = true;
for (int y = 0; y < h; y += sH) {
for (int x = 0; x < w; x += sW) {
SkIRect rect = SkIRect::MakeXYWH(x, y, sW, sH);
success &= decoder->decodeSubset(&bitmap, rect,
colorType);
}
}
}
// Create the benchmark if successful
if (success) {
return new DecodingSubsetBench(path, colorType,
fDivisor);
}
}
}
fCurrentColorType = 0;
fCurrentSubsetImage++;
}
return NULL;
}
void fillCurrentOptions(ResultsWriter* log) const {
log->configOption("source_type", fSourceType);
log->configOption("bench_type", fBenchType);
if (0 == strcmp(fSourceType, "skp")) {
log->configOption("clip",
SkStringPrintf("%d %d %d %d", fClip.fLeft, fClip.fTop,
fClip.fRight, fClip.fBottom).c_str());
log->configOption("scale", SkStringPrintf("%.2g", fScales[fCurrentScale]).c_str());
if (fCurrentUseMPD > 0) {
SkASSERT(1 == fCurrentUseMPD || 2 == fCurrentUseMPD);
log->configOption("multi_picture_draw", fUseMPDs[fCurrentUseMPD-1] ? "true" : "false");
}
}
if (0 == strcmp(fBenchType, "recording")) {
log->metric("bytes", fSKPBytes);
log->metric("ops", fSKPOps);
}
}
private:
const BenchRegistry* fBenches;
const skiagm::GMRegistry* fGMs;
SkIRect fClip;
SkTArray<SkScalar> fScales;
SkTArray<SkString> fSKPs;
SkTArray<bool> fUseMPDs;
SkTArray<SkString> fImages;
SkTArray<SkColorType> fColorTypes;
SkScalar fZoomScale;
int fZoomSteps;
double fSKPBytes, fSKPOps;
const char* fSourceType; // What we're benching: bench, GM, SKP, ...
const char* fBenchType; // How we bench it: micro, recording, playback, ...
int fCurrentRecording;
int fCurrentScale;
int fCurrentSKP;
int fCurrentUseMPD;
int fCurrentCodec;
int fCurrentImage;
int fCurrentSubsetImage;
int fCurrentColorType;
int fCurrentAnimSKP;
const int fDivisor;
};
int nanobench_main();
int nanobench_main() {
SetupCrashHandler();
SkAutoGraphics ag;
SkTaskGroup::Enabler enabled;
#if SK_SUPPORT_GPU
GrContext::Options grContextOpts;
grContextOpts.fDrawPathToCompressedTexture = FLAGS_gpuCompressAlphaMasks;
gGrFactory.reset(SkNEW_ARGS(GrContextFactory, (grContextOpts)));
#endif
if (FLAGS_veryVerbose) {
FLAGS_verbose = true;
}
if (kAutoTuneLoops != FLAGS_loops) {
FLAGS_samples = 1;
FLAGS_gpuFrameLag = 0;
}
if (!FLAGS_writePath.isEmpty()) {
SkDebugf("Writing files to %s.\n", FLAGS_writePath[0]);
if (!sk_mkdir(FLAGS_writePath[0])) {
SkDebugf("Could not create %s. Files won't be written.\n", FLAGS_writePath[0]);
FLAGS_writePath.set(0, NULL);
}
}
SkAutoTDelete<ResultsWriter> log(SkNEW(ResultsWriter));
if (!FLAGS_outResultsFile.isEmpty()) {
log.reset(SkNEW(NanoJSONResultsWriter(FLAGS_outResultsFile[0])));
}
if (1 == FLAGS_properties.count() % 2) {
SkDebugf("ERROR: --properties must be passed with an even number of arguments.\n");
return 1;
}
for (int i = 1; i < FLAGS_properties.count(); i += 2) {
log->property(FLAGS_properties[i-1], FLAGS_properties[i]);
}
if (1 == FLAGS_key.count() % 2) {
SkDebugf("ERROR: --key must be passed with an even number of arguments.\n");
return 1;
}
for (int i = 1; i < FLAGS_key.count(); i += 2) {
log->key(FLAGS_key[i-1], FLAGS_key[i]);
}
const double overhead = estimate_timer_overhead();
SkDebugf("Timer overhead: %s\n", HUMANIZE(overhead));
SkAutoTMalloc<double> samples(FLAGS_samples);
if (kAutoTuneLoops != FLAGS_loops) {
SkDebugf("Fixed number of loops; times would only be misleading so we won't print them.\n");
} else if (FLAGS_verbose) {
// No header.
} else if (FLAGS_quiet) {
SkDebugf("median\tbench\tconfig\n");
} else {
SkDebugf("curr/maxrss\tloops\tmin\tmedian\tmean\tmax\tstddev\t%-*s\tconfig\tbench\n",
FLAGS_samples, "samples");
}
SkTDArray<Config> configs;
create_configs(&configs);
int runs = 0;
BenchmarkStream benchStream;
while (Benchmark* b = benchStream.next()) {
SkAutoTDelete<Benchmark> bench(b);
if (SkCommandLineFlags::ShouldSkip(FLAGS_match, bench->getUniqueName())) {
continue;
}
SkTDArray<Target*> targets;
create_targets(&targets, bench.get(), configs);
if (!targets.isEmpty()) {
log->bench(bench->getUniqueName(), bench->getSize().fX, bench->getSize().fY);
bench->preDraw();
}
for (int j = 0; j < targets.count(); j++) {
// During HWUI output this canvas may be NULL.
SkCanvas* canvas = targets[j]->getCanvas();
const char* config = targets[j]->config.name;
targets[j]->setup();
bench->perCanvasPreDraw(canvas);
const int loops =
targets[j]->needsFrameTiming()
? gpu_bench(targets[j], bench.get(), samples.get())
: cpu_bench(overhead, targets[j], bench.get(), samples.get());
bench->perCanvasPostDraw(canvas);
if (Benchmark::kNonRendering_Backend != targets[j]->config.backend &&
!FLAGS_writePath.isEmpty() && FLAGS_writePath[0]) {
SkString pngFilename = SkOSPath::Join(FLAGS_writePath[0], config);
pngFilename = SkOSPath::Join(pngFilename.c_str(), bench->getUniqueName());
pngFilename.append(".png");
write_canvas_png(targets[j], pngFilename);
}
if (kFailedLoops == loops) {
// Can't be timed. A warning note has already been printed.
continue;
}
Stats stats(samples.get(), FLAGS_samples);
log->config(config);
log->configOption("name", bench->getName());
benchStream.fillCurrentOptions(log.get());
targets[j]->fillOptions(log.get());
log->metric("min_ms", stats.min);
if (runs++ % FLAGS_flushEvery == 0) {
log->flush();
}
if (kAutoTuneLoops != FLAGS_loops) {
if (targets.count() == 1) {
config = ""; // Only print the config if we run the same bench on more than one.
}
SkDebugf("%4d/%-4dMB\t%s\t%s\n"
, sk_tools::getCurrResidentSetSizeMB()
, sk_tools::getMaxResidentSetSizeMB()
, bench->getUniqueName()
, config);
} else if (FLAGS_verbose) {
for (int i = 0; i < FLAGS_samples; i++) {
SkDebugf("%s ", HUMANIZE(samples[i]));
}
SkDebugf("%s\n", bench->getUniqueName());
} else if (FLAGS_quiet) {
if (targets.count() == 1) {
config = ""; // Only print the config if we run the same bench on more than one.
}
SkDebugf("%s\t%s\t%s\n", HUMANIZE(stats.median), bench->getUniqueName(), config);
} else {
const double stddev_percent = 100 * sqrt(stats.var) / stats.mean;
SkDebugf("%4d/%-4dMB\t%d\t%s\t%s\t%s\t%s\t%.0f%%\t%s\t%s\t%s\n"
, sk_tools::getCurrResidentSetSizeMB()
, sk_tools::getMaxResidentSetSizeMB()
, loops
, HUMANIZE(stats.min)
, HUMANIZE(stats.median)
, HUMANIZE(stats.mean)
, HUMANIZE(stats.max)
, stddev_percent
, stats.plot.c_str()
, config
, bench->getUniqueName()
);
}
#if SK_SUPPORT_GPU
if (FLAGS_gpuStats &&
Benchmark::kGPU_Backend == targets[j]->config.backend) {
gGrFactory->get(targets[j]->config.ctxType)->printCacheStats();
gGrFactory->get(targets[j]->config.ctxType)->printGpuStats();
}
#endif
}
targets.deleteAll();
#if SK_SUPPORT_GPU
if (FLAGS_abandonGpuContext) {
gGrFactory->abandonContexts();
}
if (FLAGS_resetGpuContext || FLAGS_abandonGpuContext) {
gGrFactory->destroyContexts();
}
#endif
}
log->bench("memory_usage", 0,0);
log->config("meta");
log->metric("max_rss_mb", sk_tools::getMaxResidentSetSizeMB());
#if SK_SUPPORT_GPU
// Make sure we clean up the global GrContextFactory here, otherwise we might race with the
// SkEventTracer destructor
gGrFactory.reset(NULL);
#endif
return 0;
}
#if !defined SK_BUILD_FOR_IOS
int main(int argc, char** argv) {
SkCommandLineFlags::Parse(argc, argv);
return nanobench_main();
}
#endif