/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "_cv.h"
IPCVAPI_IMPL( CvStatus, icvUpdateMotionHistory_8u32f_C1IR,
(const uchar * silIm, int silStep, float *mhiIm, int mhiStep,
CvSize size, float timestamp, float mhi_duration),
(silIm, silStep, mhiIm, mhiStep, size, timestamp, mhi_duration) )
{
int x, y;
/* function processes floating-point images using integer arithmetics */
Cv32suf v;
int ts, delbound;
int *mhi = (int *) mhiIm;
v.f = timestamp;
ts = v.i;
if( !silIm || !mhiIm )
return CV_NULLPTR_ERR;
if( size.height <= 0 || size.width <= 0 ||
silStep < size.width || mhiStep < size.width * CV_SIZEOF_FLOAT ||
(mhiStep & (CV_SIZEOF_FLOAT - 1)) != 0 )
return CV_BADSIZE_ERR;
if( mhi_duration < 0 )
return CV_BADFACTOR_ERR;
mhi_duration = timestamp - mhi_duration;
v.f = mhi_duration;
delbound = CV_TOGGLE_FLT( v.i );
mhiStep /= sizeof(mhi[0]);
if( mhiStep == size.width && silStep == size.width )
{
size.width *= size.height;
size.height = 1;
}
if( delbound > 0 )
for( y = 0; y < size.height; y++, silIm += silStep, mhi += mhiStep )
for( x = 0; x < size.width; x++ )
{
int val = mhi[x];
/* val = silIm[x] ? ts : val < delbound ? 0 : val; */
val &= (val < delbound) - 1;
val ^= (ts ^ val) & ((silIm[x] == 0) - 1);
mhi[x] = val;
}
else
for( y = 0; y < size.height; y++, silIm += silStep, mhi += mhiStep )
for( x = 0; x < size.width; x++ )
{
int val = mhi[x];
/* val = silIm[x] ? ts : val < delbound ? 0 : val; */
val &= (CV_TOGGLE_FLT( val ) < delbound) - 1;
val ^= (ts ^ val) & ((silIm[x] == 0) - 1);
mhi[x] = val;
}
return CV_OK;
}
/* motion templates */
CV_IMPL void
cvUpdateMotionHistory( const void* silhouette, void* mhimg,
double timestamp, double mhi_duration )
{
CvSize size;
CvMat silhstub, *silh = (CvMat*)silhouette;
CvMat mhistub, *mhi = (CvMat*)mhimg;
int mhi_step, silh_step;
CV_FUNCNAME( "cvUpdateMHIByTime" );
__BEGIN__;
CV_CALL( silh = cvGetMat( silh, &silhstub ));
CV_CALL( mhi = cvGetMat( mhi, &mhistub ));
if( !CV_IS_MASK_ARR( silh ))
CV_ERROR( CV_StsBadMask, "" );
if( CV_MAT_CN( mhi->type ) > 1 )
CV_ERROR( CV_BadNumChannels, "" );
if( CV_MAT_DEPTH( mhi->type ) != CV_32F )
CV_ERROR( CV_BadDepth, "" );
if( !CV_ARE_SIZES_EQ( mhi, silh ))
CV_ERROR( CV_StsUnmatchedSizes, "" );
size = cvGetMatSize( mhi );
mhi_step = mhi->step;
silh_step = silh->step;
if( CV_IS_MAT_CONT( mhi->type & silh->type ))
{
size.width *= size.height;
mhi_step = silh_step = CV_STUB_STEP;
size.height = 1;
}
IPPI_CALL( icvUpdateMotionHistory_8u32f_C1IR( (const uchar*)(silh->data.ptr), silh_step,
mhi->data.fl, mhi_step, size,
(float)timestamp, (float)mhi_duration ));
__END__;
}
CV_IMPL void
cvCalcMotionGradient( const CvArr* mhiimg, CvArr* maskimg,
CvArr* orientation,
double delta1, double delta2,
int aperture_size )
{
CvMat *dX_min = 0, *dY_max = 0;
IplConvKernel* el = 0;
CV_FUNCNAME( "cvCalcMotionGradient" );
__BEGIN__;
CvMat mhistub, *mhi = (CvMat*)mhiimg;
CvMat maskstub, *mask = (CvMat*)maskimg;
CvMat orientstub, *orient = (CvMat*)orientation;
CvMat dX_min_row, dY_max_row, orient_row, mask_row;
CvSize size;
int x, y;
float gradient_epsilon = 1e-4f * aperture_size * aperture_size;
float min_delta, max_delta;
CV_CALL( mhi = cvGetMat( mhi, &mhistub ));
CV_CALL( mask = cvGetMat( mask, &maskstub ));
CV_CALL( orient = cvGetMat( orient, &orientstub ));
if( !CV_IS_MASK_ARR( mask ))
CV_ERROR( CV_StsBadMask, "" );
if( aperture_size < 3 || aperture_size > 7 || (aperture_size & 1) == 0 )
CV_ERROR( CV_StsOutOfRange, "aperture_size must be 3, 5 or 7" );
if( delta1 <= 0 || delta2 <= 0 )
CV_ERROR( CV_StsOutOfRange, "both delta's must be positive" );
if( CV_MAT_TYPE( mhi->type ) != CV_32FC1 || CV_MAT_TYPE( orient->type ) != CV_32FC1 )
CV_ERROR( CV_StsUnsupportedFormat,
"MHI and orientation must be single-channel floating-point images" );
if( !CV_ARE_SIZES_EQ( mhi, mask ) || !CV_ARE_SIZES_EQ( orient, mhi ))
CV_ERROR( CV_StsUnmatchedSizes, "" );
if( orient->data.ptr == mhi->data.ptr )
CV_ERROR( CV_StsInplaceNotSupported, "orientation image must be different from MHI" );
if( delta1 > delta2 )
{
double t;
CV_SWAP( delta1, delta2, t );
}
size = cvGetMatSize( mhi );
min_delta = (float)delta1;
max_delta = (float)delta2;
CV_CALL( dX_min = cvCreateMat( mhi->rows, mhi->cols, CV_32F ));
CV_CALL( dY_max = cvCreateMat( mhi->rows, mhi->cols, CV_32F ));
/* calc Dx and Dy */
CV_CALL( cvSobel( mhi, dX_min, 1, 0, aperture_size ));
CV_CALL( cvSobel( mhi, dY_max, 0, 1, aperture_size ));
cvGetRow( dX_min, &dX_min_row, 0 );
cvGetRow( dY_max, &dY_max_row, 0 );
cvGetRow( orient, &orient_row, 0 );
cvGetRow( mask, &mask_row, 0 );
/* calc gradient */
for( y = 0; y < size.height; y++ )
{
dX_min_row.data.ptr = dX_min->data.ptr + y*dX_min->step;
dY_max_row.data.ptr = dY_max->data.ptr + y*dY_max->step;
orient_row.data.ptr = orient->data.ptr + y*orient->step;
mask_row.data.ptr = mask->data.ptr + y*mask->step;
cvCartToPolar( &dX_min_row, &dY_max_row, 0, &orient_row, 1 );
/* make orientation zero where the gradient is very small */
for( x = 0; x < size.width; x++ )
{
float dY = dY_max_row.data.fl[x];
float dX = dX_min_row.data.fl[x];
if( fabs(dX) < gradient_epsilon && fabs(dY) < gradient_epsilon )
{
mask_row.data.ptr[x] = 0;
orient_row.data.i[x] = 0;
}
else
mask_row.data.ptr[x] = 1;
}
}
CV_CALL( el = cvCreateStructuringElementEx( aperture_size, aperture_size,
aperture_size/2, aperture_size/2, CV_SHAPE_RECT ));
cvErode( mhi, dX_min, el );
cvDilate( mhi, dY_max, el );
/* mask off pixels which have little motion difference in their neighborhood */
for( y = 0; y < size.height; y++ )
{
dX_min_row.data.ptr = dX_min->data.ptr + y*dX_min->step;
dY_max_row.data.ptr = dY_max->data.ptr + y*dY_max->step;
mask_row.data.ptr = mask->data.ptr + y*mask->step;
orient_row.data.ptr = orient->data.ptr + y*orient->step;
for( x = 0; x < size.width; x++ )
{
float d0 = dY_max_row.data.fl[x] - dX_min_row.data.fl[x];
if( mask_row.data.ptr[x] == 0 || d0 < min_delta || max_delta < d0 )
{
mask_row.data.ptr[x] = 0;
orient_row.data.i[x] = 0;
}
}
}
__END__;
cvReleaseMat( &dX_min );
cvReleaseMat( &dY_max );
cvReleaseStructuringElement( &el );
}
CV_IMPL double
cvCalcGlobalOrientation( const void* orientation, const void* maskimg, const void* mhiimg,
double curr_mhi_timestamp, double mhi_duration )
{
double angle = 0;
int hist_size = 12;
CvHistogram* hist = 0;
CV_FUNCNAME( "cvCalcGlobalOrientation" );
__BEGIN__;
CvMat mhistub, *mhi = (CvMat*)mhiimg;
CvMat maskstub, *mask = (CvMat*)maskimg;
CvMat orientstub, *orient = (CvMat*)orientation;
void* _orient;
float _ranges[] = { 0, 360 };
float* ranges = _ranges;
int base_orient;
double shift_orient = 0, shift_weight = 0, fbase_orient;
double a, b;
float delbound;
CvMat mhi_row, mask_row, orient_row;
int x, y, mhi_rows, mhi_cols;
CV_CALL( mhi = cvGetMat( mhi, &mhistub ));
CV_CALL( mask = cvGetMat( mask, &maskstub ));
CV_CALL( orient = cvGetMat( orient, &orientstub ));
if( !CV_IS_MASK_ARR( mask ))
CV_ERROR( CV_StsBadMask, "" );
if( CV_MAT_TYPE( mhi->type ) != CV_32FC1 || CV_MAT_TYPE( orient->type ) != CV_32FC1 )
CV_ERROR( CV_StsUnsupportedFormat,
"MHI and orientation must be single-channel floating-point images" );
if( !CV_ARE_SIZES_EQ( mhi, mask ) || !CV_ARE_SIZES_EQ( orient, mhi ))
CV_ERROR( CV_StsUnmatchedSizes, "" );
if( mhi_duration <= 0 )
CV_ERROR( CV_StsOutOfRange, "MHI duration must be positive" );
if( orient->data.ptr == mhi->data.ptr )
CV_ERROR( CV_StsInplaceNotSupported, "orientation image must be different from MHI" );
// calculate histogram of different orientation values
CV_CALL( hist = cvCreateHist( 1, &hist_size, CV_HIST_ARRAY, &ranges ));
_orient = orient;
cvCalcArrHist( &_orient, hist, 0, mask );
// find the maximum index (the dominant orientation)
cvGetMinMaxHistValue( hist, 0, 0, 0, &base_orient );
base_orient *= 360/hist_size;
// override timestamp with the maximum value in MHI
cvMinMaxLoc( mhi, 0, &curr_mhi_timestamp, 0, 0, mask );
// find the shift relative to the dominant orientation as weighted sum of relative angles
a = 254. / 255. / mhi_duration;
b = 1. - curr_mhi_timestamp * a;
fbase_orient = base_orient;
delbound = (float)(curr_mhi_timestamp - mhi_duration);
mhi_rows = mhi->rows;
mhi_cols = mhi->cols;
if( CV_IS_MAT_CONT( mhi->type & mask->type & orient->type ))
{
mhi_cols *= mhi_rows;
mhi_rows = 1;
}
cvGetRow( mhi, &mhi_row, 0 );
cvGetRow( mask, &mask_row, 0 );
cvGetRow( orient, &orient_row, 0 );
/*
a = 254/(255*dt)
b = 1 - t*a = 1 - 254*t/(255*dur) =
(255*dt - 254*t)/(255*dt) =
(dt - (t - dt)*254)/(255*dt);
--------------------------------------------------------
ax + b = 254*x/(255*dt) + (dt - (t - dt)*254)/(255*dt) =
(254*x + dt - (t - dt)*254)/(255*dt) =
((x - (t - dt))*254 + dt)/(255*dt) =
(((x - (t - dt))/dt)*254 + 1)/255 = (((x - low_time)/dt)*254 + 1)/255
*/
for( y = 0; y < mhi_rows; y++ )
{
mhi_row.data.ptr = mhi->data.ptr + mhi->step*y;
mask_row.data.ptr = mask->data.ptr + mask->step*y;
orient_row.data.ptr = orient->data.ptr + orient->step*y;
for( x = 0; x < mhi_cols; x++ )
if( mask_row.data.ptr[x] != 0 && mhi_row.data.fl[x] > delbound )
{
/*
orient in 0..360, base_orient in 0..360
-> (rel_angle = orient - base_orient) in -360..360.
rel_angle is translated to -180..180
*/
double weight = mhi_row.data.fl[x] * a + b;
int rel_angle = cvRound( orient_row.data.fl[x] - fbase_orient );
rel_angle += (rel_angle < -180 ? 360 : 0);
rel_angle += (rel_angle > 180 ? -360 : 0);
if( abs(rel_angle) < 90 )
{
shift_orient += weight * rel_angle;
shift_weight += weight;
}
}
}
// add the dominant orientation and the relative shift
if( shift_weight == 0 )
shift_weight = 0.01;
base_orient = base_orient + cvRound( shift_orient / shift_weight );
base_orient -= (base_orient < 360 ? 0 : 360);
base_orient += (base_orient >= 0 ? 0 : 360);
angle = base_orient;
__END__;
cvReleaseHist( &hist );
return angle;
}
CV_IMPL CvSeq*
cvSegmentMotion( const CvArr* mhiimg, CvArr* segmask, CvMemStorage* storage,
double timestamp, double seg_thresh )
{
CvSeq* components = 0;
CvMat* mask8u = 0;
CV_FUNCNAME( "cvSegmentMotion" );
__BEGIN__;
CvMat mhistub, *mhi = (CvMat*)mhiimg;
CvMat maskstub, *mask = (CvMat*)segmask;
Cv32suf v, comp_idx;
int stub_val, ts;
int x, y;
if( !storage )
CV_ERROR( CV_StsNullPtr, "NULL memory storage" );
CV_CALL( mhi = cvGetMat( mhi, &mhistub ));
CV_CALL( mask = cvGetMat( mask, &maskstub ));
if( CV_MAT_TYPE( mhi->type ) != CV_32FC1 || CV_MAT_TYPE( mask->type ) != CV_32FC1 )
CV_ERROR( CV_BadDepth, "Both MHI and the destination mask" );
if( !CV_ARE_SIZES_EQ( mhi, mask ))
CV_ERROR( CV_StsUnmatchedSizes, "" );
CV_CALL( mask8u = cvCreateMat( mhi->rows + 2, mhi->cols + 2, CV_8UC1 ));
cvZero( mask8u );
cvZero( mask );
CV_CALL( components = cvCreateSeq( CV_SEQ_KIND_GENERIC, sizeof(CvSeq),
sizeof(CvConnectedComp), storage ));
v.f = (float)timestamp; ts = v.i;
v.f = FLT_MAX*0.1f; stub_val = v.i;
comp_idx.f = 1;
for( y = 0; y < mhi->rows; y++ )
{
int* mhi_row = (int*)(mhi->data.ptr + y*mhi->step);
for( x = 0; x < mhi->cols; x++ )
{
if( mhi_row[x] == 0 )
mhi_row[x] = stub_val;
}
}
for( y = 0; y < mhi->rows; y++ )
{
int* mhi_row = (int*)(mhi->data.ptr + y*mhi->step);
uchar* mask8u_row = mask8u->data.ptr + (y+1)*mask8u->step + 1;
for( x = 0; x < mhi->cols; x++ )
{
if( mhi_row[x] == ts && mask8u_row[x] == 0 )
{
CvConnectedComp comp;
int x1, y1;
CvScalar _seg_thresh = cvRealScalar(seg_thresh);
CvPoint seed = cvPoint(x,y);
CV_CALL( cvFloodFill( mhi, seed, cvRealScalar(0), _seg_thresh, _seg_thresh,
&comp, CV_FLOODFILL_MASK_ONLY + 2*256 + 4, mask8u ));
for( y1 = 0; y1 < comp.rect.height; y1++ )
{
int* mask_row1 = (int*)(mask->data.ptr +
(comp.rect.y + y1)*mask->step) + comp.rect.x;
uchar* mask8u_row1 = mask8u->data.ptr +
(comp.rect.y + y1+1)*mask8u->step + comp.rect.x+1;
for( x1 = 0; x1 < comp.rect.width; x1++ )
{
if( mask8u_row1[x1] > 1 )
{
mask8u_row1[x1] = 1;
mask_row1[x1] = comp_idx.i;
}
}
}
comp_idx.f++;
cvSeqPush( components, &comp );
}
}
}
for( y = 0; y < mhi->rows; y++ )
{
int* mhi_row = (int*)(mhi->data.ptr + y*mhi->step);
for( x = 0; x < mhi->cols; x++ )
{
if( mhi_row[x] == stub_val )
mhi_row[x] = 0;
}
}
__END__;
cvReleaseMat( &mask8u );
return components;
}
/* End of file. */