/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2008, Xavier Delacour, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
// 2008-05-13, Xavier Delacour <xavier.delacour@gmail.com>
#include "_cv.h"
#if !defined _MSC_VER || defined __ICL || _MSC_VER >= 1400
#include "_cvkdtree.hpp"
// * write up some docs
// * removing __valuetype parameter from CvKDTree and using virtuals instead
// * of void* data here could simplify things.
struct CvFeatureTree {
template <class __scalartype, int __cvtype>
struct deref {
typedef __scalartype scalar_type;
typedef double accum_type;
CvMat* mat;
deref(CvMat* _mat) : mat(_mat) {
assert(CV_ELEM_SIZE1(__cvtype) == sizeof(__scalartype));
}
scalar_type operator() (int i, int j) const {
return *((scalar_type*)(mat->data.ptr + i * mat->step) + j);
}
};
#define dispatch_cvtype(mat, c) \
switch (CV_MAT_DEPTH((mat)->type)) { \
case CV_32F: \
{ typedef CvKDTree<int, deref<float, CV_32F> > tree_type; c; break; } \
case CV_64F: \
{ typedef CvKDTree<int, deref<double, CV_64F> > tree_type; c; break; } \
default: assert(0); \
}
CvMat* mat;
void* data;
template <class __treetype>
void find_nn(CvMat* d, int k, int emax, CvMat* results, CvMat* dist) {
__treetype* tr = (__treetype*) data;
uchar* dptr = d->data.ptr;
uchar* resultsptr = results->data.ptr;
uchar* distptr = dist->data.ptr;
typename __treetype::bbf_nn_pqueue nn;
assert(d->cols == tr->dims());
assert(results->rows == d->rows);
assert(results->rows == dist->rows);
assert(results->cols == k);
assert(dist->cols == k);
for (int j = 0; j < d->rows; ++j) {
typename __treetype::scalar_type* dj = (typename __treetype::scalar_type*) dptr;
int* resultsj = (int*) resultsptr;
double* distj = (double*) distptr;
tr->find_nn_bbf(dj, k, emax, nn);
assert((int)nn.size() <= k);
for (unsigned int j = 0; j < nn.size(); ++j) {
*resultsj++ = *nn[j].p;
*distj++ = nn[j].dist;
}
std::fill(resultsj, resultsj + k - nn.size(), -1);
std::fill(distj, distj + k - nn.size(), 0);
dptr += d->step;
resultsptr += results->step;
distptr += dist->step;
}
}
template <class __treetype>
int find_ortho_range(CvMat* bounds_min, CvMat* bounds_max,
CvMat* results) {
int rn = results->rows * results->cols;
std::vector<int> inbounds;
dispatch_cvtype(mat, ((__treetype*)data)->
find_ortho_range((typename __treetype::scalar_type*)bounds_min->data.ptr,
(typename __treetype::scalar_type*)bounds_max->data.ptr,
inbounds));
std::copy(inbounds.begin(),
inbounds.begin() + std::min((int)inbounds.size(), rn),
(int*) results->data.ptr);
return inbounds.size();
}
CvFeatureTree(const CvFeatureTree& x);
CvFeatureTree& operator= (const CvFeatureTree& rhs);
public:
CvFeatureTree(CvMat* _mat) : mat(_mat) {
// * a flag parameter should tell us whether
// * (a) user ensures *mat outlives *this and is unchanged,
// * (b) we take reference and user ensures mat is unchanged,
// * (c) we copy data, (d) we own and release data.
std::vector<int> tmp(mat->rows);
for (unsigned int j = 0; j < tmp.size(); ++j)
tmp[j] = j;
dispatch_cvtype(mat, data = new tree_type
(&tmp[0], &tmp[0] + tmp.size(), mat->cols,
tree_type::deref_type(mat)));
}
~CvFeatureTree() {
dispatch_cvtype(mat, delete (tree_type*) data);
}
int dims() {
int d = 0;
dispatch_cvtype(mat, d = ((tree_type*) data)->dims());
return d;
}
int type() {
return mat->type;
}
void find_nn(CvMat* d, int k, int emax, CvMat* results, CvMat* dist) {
assert(CV_MAT_TYPE(d->type) == CV_MAT_TYPE(mat->type));
assert(CV_MAT_TYPE(dist->type) == CV_64FC1);
assert(CV_MAT_TYPE(results->type) == CV_32SC1);
dispatch_cvtype(mat, find_nn<tree_type>
(d, k, emax, results, dist));
}
int find_ortho_range(CvMat* bounds_min, CvMat* bounds_max,
CvMat* results) {
assert(CV_MAT_TYPE(bounds_min->type) == CV_MAT_TYPE(mat->type));
assert(CV_MAT_TYPE(bounds_min->type) == CV_MAT_TYPE(bounds_max->type));
assert(bounds_min->rows * bounds_min->cols == dims());
assert(bounds_max->rows * bounds_max->cols == dims());
int count = 0;
dispatch_cvtype(mat, count = find_ortho_range<tree_type>
(bounds_min, bounds_max,results));
return count;
}
};
CvFeatureTree* cvCreateFeatureTree(CvMat* desc) {
__BEGIN__;
CV_FUNCNAME("cvCreateFeatureTree");
if (CV_MAT_TYPE(desc->type) != CV_32FC1 &&
CV_MAT_TYPE(desc->type) != CV_64FC1)
CV_ERROR(CV_StsUnsupportedFormat, "descriptors must be either CV_32FC1 or CV_64FC1");
return new CvFeatureTree(desc);
__END__;
return 0;
}
void cvReleaseFeatureTree(CvFeatureTree* tr) {
delete tr;
}
// desc is m x d set of candidate points.
// results is m x k set of row indices of matching points.
// dist is m x k distance to matching points.
void cvFindFeatures(CvFeatureTree* tr, CvMat* desc,
CvMat* results, CvMat* dist, int k, int emax) {
bool free_desc = false;
int dims = tr->dims();
int type = tr->type();
__BEGIN__;
CV_FUNCNAME("cvFindFeatures");
if (desc->cols != dims)
CV_ERROR(CV_StsUnmatchedSizes, "desc columns be equal feature dimensions");
if (results->rows != desc->rows && results->cols != k)
CV_ERROR(CV_StsUnmatchedSizes, "results and desc must be same height");
if (dist->rows != desc->rows && dist->cols != k)
CV_ERROR(CV_StsUnmatchedSizes, "dist and desc must be same height");
if (CV_MAT_TYPE(results->type) != CV_32SC1)
CV_ERROR(CV_StsUnsupportedFormat, "results must be CV_32SC1");
if (CV_MAT_TYPE(dist->type) != CV_64FC1)
CV_ERROR(CV_StsUnsupportedFormat, "dist must be CV_64FC1");
if (CV_MAT_TYPE(type) != CV_MAT_TYPE(desc->type)) {
CvMat* old_desc = desc;
desc = cvCreateMat(desc->rows, desc->cols, type);
cvConvert(old_desc, desc);
free_desc = true;
}
tr->find_nn(desc, k, emax, results, dist);
__END__;
if (free_desc)
cvReleaseMat(&desc);
}
int cvFindFeaturesBoxed(CvFeatureTree* tr,
CvMat* bounds_min, CvMat* bounds_max,
CvMat* results) {
int nr = -1;
bool free_bounds = false;
int dims = tr->dims();
int type = tr->type();
__BEGIN__;
CV_FUNCNAME("cvFindFeaturesBoxed");
if (bounds_min->cols * bounds_min->rows != dims ||
bounds_max->cols * bounds_max->rows != dims)
CV_ERROR(CV_StsUnmatchedSizes, "bounds_{min,max} must 1 x dims or dims x 1");
if (CV_MAT_TYPE(bounds_min->type) != CV_MAT_TYPE(bounds_max->type))
CV_ERROR(CV_StsUnmatchedFormats, "bounds_{min,max} must have same type");
if (CV_MAT_TYPE(results->type) != CV_32SC1)
CV_ERROR(CV_StsUnsupportedFormat, "results must be CV_32SC1");
if (CV_MAT_TYPE(bounds_min->type) != CV_MAT_TYPE(type)) {
free_bounds = true;
CvMat* old_bounds_min = bounds_min;
bounds_min = cvCreateMat(bounds_min->rows, bounds_min->cols, type);
cvConvert(old_bounds_min, bounds_min);
CvMat* old_bounds_max = bounds_max;
bounds_max = cvCreateMat(bounds_max->rows, bounds_max->cols, type);
cvConvert(old_bounds_max, bounds_max);
}
nr = tr->find_ortho_range(bounds_min, bounds_max, results);
__END__;
if (free_bounds) {
cvReleaseMat(&bounds_min);
cvReleaseMat(&bounds_max);
}
return nr;
}
#endif