/**************************************************************************
*
* Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
#undef NDEBUG
#include "main/glheader.h"
#include "main/bufferobj.h"
#include "main/context.h"
#include "main/enums.h"
#include "main/macros.h"
#include "brw_draw.h"
#include "brw_defines.h"
#include "brw_context.h"
#include "brw_state.h"
#include "intel_batchbuffer.h"
#include "intel_buffer_objects.h"
static GLuint double_types[5] = {
0,
BRW_SURFACEFORMAT_R64_FLOAT,
BRW_SURFACEFORMAT_R64G64_FLOAT,
BRW_SURFACEFORMAT_R64G64B64_FLOAT,
BRW_SURFACEFORMAT_R64G64B64A64_FLOAT
};
static GLuint float_types[5] = {
0,
BRW_SURFACEFORMAT_R32_FLOAT,
BRW_SURFACEFORMAT_R32G32_FLOAT,
BRW_SURFACEFORMAT_R32G32B32_FLOAT,
BRW_SURFACEFORMAT_R32G32B32A32_FLOAT
};
static GLuint half_float_types[5] = {
0,
BRW_SURFACEFORMAT_R16_FLOAT,
BRW_SURFACEFORMAT_R16G16_FLOAT,
BRW_SURFACEFORMAT_R16G16B16A16_FLOAT,
BRW_SURFACEFORMAT_R16G16B16A16_FLOAT
};
static GLuint uint_types_direct[5] = {
0,
BRW_SURFACEFORMAT_R32_UINT,
BRW_SURFACEFORMAT_R32G32_UINT,
BRW_SURFACEFORMAT_R32G32B32_UINT,
BRW_SURFACEFORMAT_R32G32B32A32_UINT
};
static GLuint uint_types_norm[5] = {
0,
BRW_SURFACEFORMAT_R32_UNORM,
BRW_SURFACEFORMAT_R32G32_UNORM,
BRW_SURFACEFORMAT_R32G32B32_UNORM,
BRW_SURFACEFORMAT_R32G32B32A32_UNORM
};
static GLuint uint_types_scale[5] = {
0,
BRW_SURFACEFORMAT_R32_USCALED,
BRW_SURFACEFORMAT_R32G32_USCALED,
BRW_SURFACEFORMAT_R32G32B32_USCALED,
BRW_SURFACEFORMAT_R32G32B32A32_USCALED
};
static GLuint int_types_direct[5] = {
0,
BRW_SURFACEFORMAT_R32_SINT,
BRW_SURFACEFORMAT_R32G32_SINT,
BRW_SURFACEFORMAT_R32G32B32_SINT,
BRW_SURFACEFORMAT_R32G32B32A32_SINT
};
static GLuint int_types_norm[5] = {
0,
BRW_SURFACEFORMAT_R32_SNORM,
BRW_SURFACEFORMAT_R32G32_SNORM,
BRW_SURFACEFORMAT_R32G32B32_SNORM,
BRW_SURFACEFORMAT_R32G32B32A32_SNORM
};
static GLuint int_types_scale[5] = {
0,
BRW_SURFACEFORMAT_R32_SSCALED,
BRW_SURFACEFORMAT_R32G32_SSCALED,
BRW_SURFACEFORMAT_R32G32B32_SSCALED,
BRW_SURFACEFORMAT_R32G32B32A32_SSCALED
};
static GLuint ushort_types_direct[5] = {
0,
BRW_SURFACEFORMAT_R16_UINT,
BRW_SURFACEFORMAT_R16G16_UINT,
BRW_SURFACEFORMAT_R16G16B16A16_UINT,
BRW_SURFACEFORMAT_R16G16B16A16_UINT
};
static GLuint ushort_types_norm[5] = {
0,
BRW_SURFACEFORMAT_R16_UNORM,
BRW_SURFACEFORMAT_R16G16_UNORM,
BRW_SURFACEFORMAT_R16G16B16_UNORM,
BRW_SURFACEFORMAT_R16G16B16A16_UNORM
};
static GLuint ushort_types_scale[5] = {
0,
BRW_SURFACEFORMAT_R16_USCALED,
BRW_SURFACEFORMAT_R16G16_USCALED,
BRW_SURFACEFORMAT_R16G16B16_USCALED,
BRW_SURFACEFORMAT_R16G16B16A16_USCALED
};
static GLuint short_types_direct[5] = {
0,
BRW_SURFACEFORMAT_R16_SINT,
BRW_SURFACEFORMAT_R16G16_SINT,
BRW_SURFACEFORMAT_R16G16B16A16_SINT,
BRW_SURFACEFORMAT_R16G16B16A16_SINT
};
static GLuint short_types_norm[5] = {
0,
BRW_SURFACEFORMAT_R16_SNORM,
BRW_SURFACEFORMAT_R16G16_SNORM,
BRW_SURFACEFORMAT_R16G16B16_SNORM,
BRW_SURFACEFORMAT_R16G16B16A16_SNORM
};
static GLuint short_types_scale[5] = {
0,
BRW_SURFACEFORMAT_R16_SSCALED,
BRW_SURFACEFORMAT_R16G16_SSCALED,
BRW_SURFACEFORMAT_R16G16B16_SSCALED,
BRW_SURFACEFORMAT_R16G16B16A16_SSCALED
};
static GLuint ubyte_types_direct[5] = {
0,
BRW_SURFACEFORMAT_R8_UINT,
BRW_SURFACEFORMAT_R8G8_UINT,
BRW_SURFACEFORMAT_R8G8B8A8_UINT,
BRW_SURFACEFORMAT_R8G8B8A8_UINT
};
static GLuint ubyte_types_norm[5] = {
0,
BRW_SURFACEFORMAT_R8_UNORM,
BRW_SURFACEFORMAT_R8G8_UNORM,
BRW_SURFACEFORMAT_R8G8B8_UNORM,
BRW_SURFACEFORMAT_R8G8B8A8_UNORM
};
static GLuint ubyte_types_scale[5] = {
0,
BRW_SURFACEFORMAT_R8_USCALED,
BRW_SURFACEFORMAT_R8G8_USCALED,
BRW_SURFACEFORMAT_R8G8B8_USCALED,
BRW_SURFACEFORMAT_R8G8B8A8_USCALED
};
static GLuint byte_types_direct[5] = {
0,
BRW_SURFACEFORMAT_R8_SINT,
BRW_SURFACEFORMAT_R8G8_SINT,
BRW_SURFACEFORMAT_R8G8B8A8_SINT,
BRW_SURFACEFORMAT_R8G8B8A8_SINT
};
static GLuint byte_types_norm[5] = {
0,
BRW_SURFACEFORMAT_R8_SNORM,
BRW_SURFACEFORMAT_R8G8_SNORM,
BRW_SURFACEFORMAT_R8G8B8_SNORM,
BRW_SURFACEFORMAT_R8G8B8A8_SNORM
};
static GLuint byte_types_scale[5] = {
0,
BRW_SURFACEFORMAT_R8_SSCALED,
BRW_SURFACEFORMAT_R8G8_SSCALED,
BRW_SURFACEFORMAT_R8G8B8_SSCALED,
BRW_SURFACEFORMAT_R8G8B8A8_SSCALED
};
/**
* Given vertex array type/size/format/normalized info, return
* the appopriate hardware surface type.
* Format will be GL_RGBA or possibly GL_BGRA for GLubyte[4] color arrays.
*/
static GLuint get_surface_type( GLenum type, GLuint size,
GLenum format, bool normalized, bool integer )
{
if (unlikely(INTEL_DEBUG & DEBUG_VERTS))
printf("type %s size %d normalized %d\n",
_mesa_lookup_enum_by_nr(type), size, normalized);
if (integer) {
assert(format == GL_RGBA); /* sanity check */
switch (type) {
case GL_INT: return int_types_direct[size];
case GL_SHORT: return short_types_direct[size];
case GL_BYTE: return byte_types_direct[size];
case GL_UNSIGNED_INT: return uint_types_direct[size];
case GL_UNSIGNED_SHORT: return ushort_types_direct[size];
case GL_UNSIGNED_BYTE: return ubyte_types_direct[size];
default: assert(0); return 0;
}
} else if (normalized) {
switch (type) {
case GL_DOUBLE: return double_types[size];
case GL_FLOAT: return float_types[size];
case GL_HALF_FLOAT: return half_float_types[size];
case GL_INT: return int_types_norm[size];
case GL_SHORT: return short_types_norm[size];
case GL_BYTE: return byte_types_norm[size];
case GL_UNSIGNED_INT: return uint_types_norm[size];
case GL_UNSIGNED_SHORT: return ushort_types_norm[size];
case GL_UNSIGNED_BYTE:
if (format == GL_BGRA) {
/* See GL_EXT_vertex_array_bgra */
assert(size == 4);
return BRW_SURFACEFORMAT_B8G8R8A8_UNORM;
}
else {
return ubyte_types_norm[size];
}
default: assert(0); return 0;
}
}
else {
assert(format == GL_RGBA); /* sanity check */
switch (type) {
case GL_DOUBLE: return double_types[size];
case GL_FLOAT: return float_types[size];
case GL_HALF_FLOAT: return half_float_types[size];
case GL_INT: return int_types_scale[size];
case GL_SHORT: return short_types_scale[size];
case GL_BYTE: return byte_types_scale[size];
case GL_UNSIGNED_INT: return uint_types_scale[size];
case GL_UNSIGNED_SHORT: return ushort_types_scale[size];
case GL_UNSIGNED_BYTE: return ubyte_types_scale[size];
/* This produces GL_FIXED inputs as values between INT32_MIN and
* INT32_MAX, which will be scaled down by 1/65536 by the VS.
*/
case GL_FIXED: return int_types_scale[size];
default: assert(0); return 0;
}
}
}
static GLuint get_size( GLenum type )
{
switch (type) {
case GL_DOUBLE: return sizeof(GLdouble);
case GL_FLOAT: return sizeof(GLfloat);
case GL_HALF_FLOAT: return sizeof(GLhalfARB);
case GL_INT: return sizeof(GLint);
case GL_SHORT: return sizeof(GLshort);
case GL_BYTE: return sizeof(GLbyte);
case GL_UNSIGNED_INT: return sizeof(GLuint);
case GL_UNSIGNED_SHORT: return sizeof(GLushort);
case GL_UNSIGNED_BYTE: return sizeof(GLubyte);
case GL_FIXED: return sizeof(GLuint);
default: assert(0); return 0;
}
}
static GLuint get_index_type(GLenum type)
{
switch (type) {
case GL_UNSIGNED_BYTE: return BRW_INDEX_BYTE;
case GL_UNSIGNED_SHORT: return BRW_INDEX_WORD;
case GL_UNSIGNED_INT: return BRW_INDEX_DWORD;
default: assert(0); return 0;
}
}
static void
copy_array_to_vbo_array(struct brw_context *brw,
struct brw_vertex_element *element,
int min, int max,
struct brw_vertex_buffer *buffer,
GLuint dst_stride)
{
if (min == -1) {
/* If we don't have computed min/max bounds, then this must be a use of
* the current attribute, which has a 0 stride. Otherwise, we wouldn't
* know what data to upload.
*/
assert(element->glarray->StrideB == 0);
intel_upload_data(&brw->intel, element->glarray->Ptr,
element->element_size,
element->element_size,
&buffer->bo, &buffer->offset);
buffer->stride = 0;
return;
}
int src_stride = element->glarray->StrideB;
const unsigned char *src = element->glarray->Ptr + min * src_stride;
int count = max - min + 1;
GLuint size = count * dst_stride;
if (dst_stride == src_stride) {
intel_upload_data(&brw->intel, src, size, dst_stride,
&buffer->bo, &buffer->offset);
} else {
char * const map = intel_upload_map(&brw->intel, size, dst_stride);
char *dst = map;
while (count--) {
memcpy(dst, src, dst_stride);
src += src_stride;
dst += dst_stride;
}
intel_upload_unmap(&brw->intel, map, size, dst_stride,
&buffer->bo, &buffer->offset);
}
buffer->stride = dst_stride;
}
static void brw_prepare_vertices(struct brw_context *brw)
{
struct gl_context *ctx = &brw->intel.ctx;
struct intel_context *intel = intel_context(ctx);
/* CACHE_NEW_VS_PROG */
GLbitfield64 vs_inputs = brw->vs.prog_data->inputs_read;
const unsigned char *ptr = NULL;
GLuint interleaved = 0;
unsigned int min_index = brw->vb.min_index;
unsigned int max_index = brw->vb.max_index;
int delta, i, j;
struct brw_vertex_element *upload[VERT_ATTRIB_MAX];
GLuint nr_uploads = 0;
/* _NEW_POLYGON
*
* On gen6+, edge flags don't end up in the VUE (either in or out of the
* VS). Instead, they're uploaded as the last vertex element, and the data
* is passed sideband through the fixed function units. So, we need to
* prepare the vertex buffer for it, but it's not present in inputs_read.
*/
if (intel->gen >= 6 && (ctx->Polygon.FrontMode != GL_FILL ||
ctx->Polygon.BackMode != GL_FILL)) {
vs_inputs |= VERT_BIT_EDGEFLAG;
}
/* First build an array of pointers to ve's in vb.inputs_read
*/
if (0)
printf("%s %d..%d\n", __FUNCTION__, min_index, max_index);
/* Accumulate the list of enabled arrays. */
brw->vb.nr_enabled = 0;
while (vs_inputs) {
GLuint i = ffsll(vs_inputs) - 1;
struct brw_vertex_element *input = &brw->vb.inputs[i];
vs_inputs &= ~BITFIELD64_BIT(i);
if (input->glarray->Size && get_size(input->glarray->Type))
brw->vb.enabled[brw->vb.nr_enabled++] = input;
}
if (brw->vb.nr_enabled == 0)
return;
if (brw->vb.nr_buffers)
goto prepare;
for (i = j = 0; i < brw->vb.nr_enabled; i++) {
struct brw_vertex_element *input = brw->vb.enabled[i];
const struct gl_client_array *glarray = input->glarray;
int type_size = get_size(glarray->Type);
input->element_size = type_size * glarray->Size;
if (_mesa_is_bufferobj(glarray->BufferObj)) {
struct intel_buffer_object *intel_buffer =
intel_buffer_object(glarray->BufferObj);
int k;
for (k = 0; k < i; k++) {
const struct gl_client_array *other = brw->vb.enabled[k]->glarray;
if (glarray->BufferObj == other->BufferObj &&
glarray->StrideB == other->StrideB &&
glarray->InstanceDivisor == other->InstanceDivisor &&
(uintptr_t)(glarray->Ptr - other->Ptr) < glarray->StrideB)
{
input->buffer = brw->vb.enabled[k]->buffer;
input->offset = glarray->Ptr - other->Ptr;
break;
}
}
if (k == i) {
struct brw_vertex_buffer *buffer = &brw->vb.buffers[j];
/* Named buffer object: Just reference its contents directly. */
buffer->bo = intel_bufferobj_source(intel,
intel_buffer, type_size,
&buffer->offset);
drm_intel_bo_reference(buffer->bo);
buffer->offset += (uintptr_t)glarray->Ptr;
buffer->stride = glarray->StrideB;
buffer->step_rate = glarray->InstanceDivisor;
input->buffer = j++;
input->offset = 0;
}
/* This is a common place to reach if the user mistakenly supplies
* a pointer in place of a VBO offset. If we just let it go through,
* we may end up dereferencing a pointer beyond the bounds of the
* GTT. We would hope that the VBO's max_index would save us, but
* Mesa appears to hand us min/max values not clipped to the
* array object's _MaxElement, and _MaxElement frequently appears
* to be wrong anyway.
*
* The VBO spec allows application termination in this case, and it's
* probably a service to the poor programmer to do so rather than
* trying to just not render.
*/
assert(input->offset < brw->vb.buffers[input->buffer].bo->size);
} else {
/* Queue the buffer object up to be uploaded in the next pass,
* when we've decided if we're doing interleaved or not.
*/
if (nr_uploads == 0) {
interleaved = glarray->StrideB;
ptr = glarray->Ptr;
}
else if (interleaved != glarray->StrideB ||
(uintptr_t)(glarray->Ptr - ptr) > interleaved)
{
interleaved = 0;
}
else if ((uintptr_t)(glarray->Ptr - ptr) & (type_size -1))
{
/* enforce natural alignment (for doubles) */
interleaved = 0;
}
upload[nr_uploads++] = input;
}
}
/* If we need to upload all the arrays, then we can trim those arrays to
* only the used elements [min_index, max_index] so long as we adjust all
* the values used in the 3DPRIMITIVE i.e. by setting the vertex bias.
*/
brw->vb.start_vertex_bias = 0;
delta = min_index;
if (nr_uploads == brw->vb.nr_enabled) {
brw->vb.start_vertex_bias = -delta;
delta = 0;
}
if (delta && !brw->intel.intelScreen->relaxed_relocations)
min_index = delta = 0;
/* Handle any arrays to be uploaded. */
if (nr_uploads > 1) {
if (interleaved) {
struct brw_vertex_buffer *buffer = &brw->vb.buffers[j];
/* All uploads are interleaved, so upload the arrays together as
* interleaved. First, upload the contents and set up upload[0].
*/
copy_array_to_vbo_array(brw, upload[0], min_index, max_index,
buffer, interleaved);
buffer->offset -= delta * interleaved;
for (i = 0; i < nr_uploads; i++) {
/* Then, just point upload[i] at upload[0]'s buffer. */
upload[i]->offset =
((const unsigned char *)upload[i]->glarray->Ptr - ptr);
upload[i]->buffer = j;
}
j++;
nr_uploads = 0;
}
}
/* Upload non-interleaved arrays */
for (i = 0; i < nr_uploads; i++) {
struct brw_vertex_buffer *buffer = &brw->vb.buffers[j];
if (upload[i]->glarray->InstanceDivisor == 0) {
copy_array_to_vbo_array(brw, upload[i], min_index, max_index,
buffer, upload[i]->element_size);
} else {
/* This is an instanced attribute, since its InstanceDivisor
* is not zero. Therefore, its data will be stepped after the
* instanced draw has been run InstanceDivisor times.
*/
uint32_t instanced_attr_max_index =
(brw->num_instances - 1) / upload[i]->glarray->InstanceDivisor;
copy_array_to_vbo_array(brw, upload[i], 0, instanced_attr_max_index,
buffer, upload[i]->element_size);
}
buffer->offset -= delta * buffer->stride;
buffer->step_rate = upload[i]->glarray->InstanceDivisor;
upload[i]->buffer = j++;
upload[i]->offset = 0;
}
/* can we simply extend the current vb? */
if (j == brw->vb.nr_current_buffers) {
int delta = 0;
for (i = 0; i < j; i++) {
int d;
if (brw->vb.current_buffers[i].handle != brw->vb.buffers[i].bo->handle ||
brw->vb.current_buffers[i].stride != brw->vb.buffers[i].stride ||
brw->vb.current_buffers[i].step_rate != brw->vb.buffers[i].step_rate)
break;
d = brw->vb.buffers[i].offset - brw->vb.current_buffers[i].offset;
if (d < 0)
break;
if (i == 0)
delta = d / brw->vb.current_buffers[i].stride;
if (delta * brw->vb.current_buffers[i].stride != d)
break;
}
if (i == j) {
brw->vb.start_vertex_bias += delta;
while (--j >= 0)
drm_intel_bo_unreference(brw->vb.buffers[j].bo);
j = 0;
}
}
brw->vb.nr_buffers = j;
prepare:
brw_prepare_query_begin(brw);
}
static void brw_emit_vertices(struct brw_context *brw)
{
struct gl_context *ctx = &brw->intel.ctx;
struct intel_context *intel = intel_context(ctx);
GLuint i, nr_elements;
brw_prepare_vertices(brw);
brw_emit_query_begin(brw);
/* If the VS doesn't read any inputs (calculating vertex position from
* a state variable for some reason, for example), emit a single pad
* VERTEX_ELEMENT struct and bail.
*
* The stale VB state stays in place, but they don't do anything unless
* a VE loads from them.
*/
if (brw->vb.nr_enabled == 0) {
BEGIN_BATCH(3);
OUT_BATCH((_3DSTATE_VERTEX_ELEMENTS << 16) | 1);
if (intel->gen >= 6) {
OUT_BATCH((0 << GEN6_VE0_INDEX_SHIFT) |
GEN6_VE0_VALID |
(BRW_SURFACEFORMAT_R32G32B32A32_FLOAT << BRW_VE0_FORMAT_SHIFT) |
(0 << BRW_VE0_SRC_OFFSET_SHIFT));
} else {
OUT_BATCH((0 << BRW_VE0_INDEX_SHIFT) |
BRW_VE0_VALID |
(BRW_SURFACEFORMAT_R32G32B32A32_FLOAT << BRW_VE0_FORMAT_SHIFT) |
(0 << BRW_VE0_SRC_OFFSET_SHIFT));
}
OUT_BATCH((BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_0_SHIFT) |
(BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_1_SHIFT) |
(BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_2_SHIFT) |
(BRW_VE1_COMPONENT_STORE_1_FLT << BRW_VE1_COMPONENT_3_SHIFT));
CACHED_BATCH();
return;
}
/* Now emit VB and VEP state packets.
*/
if (brw->vb.nr_buffers) {
if (intel->gen >= 6) {
assert(brw->vb.nr_buffers <= 33);
} else {
assert(brw->vb.nr_buffers <= 17);
}
BEGIN_BATCH(1 + 4*brw->vb.nr_buffers);
OUT_BATCH((_3DSTATE_VERTEX_BUFFERS << 16) | (4*brw->vb.nr_buffers - 1));
for (i = 0; i < brw->vb.nr_buffers; i++) {
struct brw_vertex_buffer *buffer = &brw->vb.buffers[i];
uint32_t dw0;
if (intel->gen >= 6) {
dw0 = buffer->step_rate
? GEN6_VB0_ACCESS_INSTANCEDATA
: GEN6_VB0_ACCESS_VERTEXDATA;
dw0 |= i << GEN6_VB0_INDEX_SHIFT;
} else {
dw0 = buffer->step_rate
? BRW_VB0_ACCESS_INSTANCEDATA
: BRW_VB0_ACCESS_VERTEXDATA;
dw0 |= i << BRW_VB0_INDEX_SHIFT;
}
if (intel->gen >= 7)
dw0 |= GEN7_VB0_ADDRESS_MODIFYENABLE;
OUT_BATCH(dw0 | (buffer->stride << BRW_VB0_PITCH_SHIFT));
OUT_RELOC(buffer->bo, I915_GEM_DOMAIN_VERTEX, 0, buffer->offset);
if (intel->gen >= 5) {
OUT_RELOC(buffer->bo, I915_GEM_DOMAIN_VERTEX, 0, buffer->bo->size - 1);
} else
OUT_BATCH(0);
OUT_BATCH(buffer->step_rate);
brw->vb.current_buffers[i].handle = buffer->bo->handle;
brw->vb.current_buffers[i].offset = buffer->offset;
brw->vb.current_buffers[i].stride = buffer->stride;
brw->vb.current_buffers[i].step_rate = buffer->step_rate;
}
brw->vb.nr_current_buffers = i;
ADVANCE_BATCH();
}
nr_elements = brw->vb.nr_enabled + brw->vs.prog_data->uses_vertexid;
/* The hardware allows one more VERTEX_ELEMENTS than VERTEX_BUFFERS, presumably
* for VertexID/InstanceID.
*/
if (intel->gen >= 6) {
assert(nr_elements <= 34);
} else {
assert(nr_elements <= 18);
}
struct brw_vertex_element *gen6_edgeflag_input = NULL;
BEGIN_BATCH(1 + nr_elements * 2);
OUT_BATCH((_3DSTATE_VERTEX_ELEMENTS << 16) | (2 * nr_elements - 1));
for (i = 0; i < brw->vb.nr_enabled; i++) {
struct brw_vertex_element *input = brw->vb.enabled[i];
uint32_t format = get_surface_type(input->glarray->Type,
input->glarray->Size,
input->glarray->Format,
input->glarray->Normalized,
input->glarray->Integer);
uint32_t comp0 = BRW_VE1_COMPONENT_STORE_SRC;
uint32_t comp1 = BRW_VE1_COMPONENT_STORE_SRC;
uint32_t comp2 = BRW_VE1_COMPONENT_STORE_SRC;
uint32_t comp3 = BRW_VE1_COMPONENT_STORE_SRC;
/* The gen4 driver expects edgeflag to come in as a float, and passes
* that float on to the tests in the clipper. Mesa's current vertex
* attribute value for EdgeFlag is stored as a float, which works out.
* glEdgeFlagPointer, on the other hand, gives us an unnormalized
* integer ubyte. Just rewrite that to convert to a float.
*/
if (input->attrib == VERT_ATTRIB_EDGEFLAG) {
/* Gen6+ passes edgeflag as sideband along with the vertex, instead
* of in the VUE. We have to upload it sideband as the last vertex
* element according to the B-Spec.
*/
if (intel->gen >= 6) {
gen6_edgeflag_input = input;
continue;
}
if (format == BRW_SURFACEFORMAT_R8_UINT)
format = BRW_SURFACEFORMAT_R8_SSCALED;
}
switch (input->glarray->Size) {
case 0: comp0 = BRW_VE1_COMPONENT_STORE_0;
case 1: comp1 = BRW_VE1_COMPONENT_STORE_0;
case 2: comp2 = BRW_VE1_COMPONENT_STORE_0;
case 3: comp3 = input->glarray->Integer ? BRW_VE1_COMPONENT_STORE_1_INT
: BRW_VE1_COMPONENT_STORE_1_FLT;
break;
}
if (intel->gen >= 6) {
OUT_BATCH((input->buffer << GEN6_VE0_INDEX_SHIFT) |
GEN6_VE0_VALID |
(format << BRW_VE0_FORMAT_SHIFT) |
(input->offset << BRW_VE0_SRC_OFFSET_SHIFT));
} else {
OUT_BATCH((input->buffer << BRW_VE0_INDEX_SHIFT) |
BRW_VE0_VALID |
(format << BRW_VE0_FORMAT_SHIFT) |
(input->offset << BRW_VE0_SRC_OFFSET_SHIFT));
}
if (intel->gen >= 5)
OUT_BATCH((comp0 << BRW_VE1_COMPONENT_0_SHIFT) |
(comp1 << BRW_VE1_COMPONENT_1_SHIFT) |
(comp2 << BRW_VE1_COMPONENT_2_SHIFT) |
(comp3 << BRW_VE1_COMPONENT_3_SHIFT));
else
OUT_BATCH((comp0 << BRW_VE1_COMPONENT_0_SHIFT) |
(comp1 << BRW_VE1_COMPONENT_1_SHIFT) |
(comp2 << BRW_VE1_COMPONENT_2_SHIFT) |
(comp3 << BRW_VE1_COMPONENT_3_SHIFT) |
((i * 4) << BRW_VE1_DST_OFFSET_SHIFT));
}
if (intel->gen >= 6 && gen6_edgeflag_input) {
uint32_t format = get_surface_type(gen6_edgeflag_input->glarray->Type,
gen6_edgeflag_input->glarray->Size,
gen6_edgeflag_input->glarray->Format,
gen6_edgeflag_input->glarray->Normalized,
gen6_edgeflag_input->glarray->Integer);
OUT_BATCH((gen6_edgeflag_input->buffer << GEN6_VE0_INDEX_SHIFT) |
GEN6_VE0_VALID |
GEN6_VE0_EDGE_FLAG_ENABLE |
(format << BRW_VE0_FORMAT_SHIFT) |
(gen6_edgeflag_input->offset << BRW_VE0_SRC_OFFSET_SHIFT));
OUT_BATCH((BRW_VE1_COMPONENT_STORE_SRC << BRW_VE1_COMPONENT_0_SHIFT) |
(BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_1_SHIFT) |
(BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_2_SHIFT) |
(BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_3_SHIFT));
}
if (brw->vs.prog_data->uses_vertexid) {
uint32_t dw0 = 0, dw1 = 0;
dw1 = ((BRW_VE1_COMPONENT_STORE_VID << BRW_VE1_COMPONENT_0_SHIFT) |
(BRW_VE1_COMPONENT_STORE_IID << BRW_VE1_COMPONENT_1_SHIFT) |
(BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_2_SHIFT) |
(BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_3_SHIFT));
if (intel->gen >= 6) {
dw0 |= GEN6_VE0_VALID;
} else {
dw0 |= BRW_VE0_VALID;
dw1 |= (i * 4) << BRW_VE1_DST_OFFSET_SHIFT;
}
/* Note that for gl_VertexID, gl_InstanceID, and gl_PrimitiveID values,
* the format is ignored and the value is always int.
*/
OUT_BATCH(dw0);
OUT_BATCH(dw1);
}
CACHED_BATCH();
}
const struct brw_tracked_state brw_vertices = {
.dirty = {
.mesa = _NEW_POLYGON,
.brw = BRW_NEW_BATCH | BRW_NEW_VERTICES,
.cache = CACHE_NEW_VS_PROG,
},
.emit = brw_emit_vertices,
};
static void brw_upload_indices(struct brw_context *brw)
{
struct gl_context *ctx = &brw->intel.ctx;
struct intel_context *intel = &brw->intel;
const struct _mesa_index_buffer *index_buffer = brw->ib.ib;
GLuint ib_size;
drm_intel_bo *bo = NULL;
struct gl_buffer_object *bufferobj;
GLuint offset;
GLuint ib_type_size;
if (index_buffer == NULL)
return;
ib_type_size = get_size(index_buffer->type);
ib_size = ib_type_size * index_buffer->count;
bufferobj = index_buffer->obj;
/* Turn into a proper VBO:
*/
if (!_mesa_is_bufferobj(bufferobj)) {
/* Get new bufferobj, offset:
*/
intel_upload_data(&brw->intel, index_buffer->ptr, ib_size, ib_type_size,
&bo, &offset);
brw->ib.start_vertex_offset = offset / ib_type_size;
} else {
offset = (GLuint) (unsigned long) index_buffer->ptr;
/* If the index buffer isn't aligned to its element size, we have to
* rebase it into a temporary.
*/
if ((get_size(index_buffer->type) - 1) & offset) {
GLubyte *map = ctx->Driver.MapBufferRange(ctx,
offset,
ib_size,
GL_MAP_WRITE_BIT,
bufferobj);
intel_upload_data(&brw->intel, map, ib_size, ib_type_size,
&bo, &offset);
brw->ib.start_vertex_offset = offset / ib_type_size;
ctx->Driver.UnmapBuffer(ctx, bufferobj);
} else {
/* Use CMD_3D_PRIM's start_vertex_offset to avoid re-uploading
* the index buffer state when we're just moving the start index
* of our drawing.
*/
brw->ib.start_vertex_offset = offset / ib_type_size;
bo = intel_bufferobj_source(intel,
intel_buffer_object(bufferobj),
ib_type_size,
&offset);
drm_intel_bo_reference(bo);
brw->ib.start_vertex_offset += offset / ib_type_size;
}
}
if (brw->ib.bo != bo) {
drm_intel_bo_unreference(brw->ib.bo);
brw->ib.bo = bo;
brw->state.dirty.brw |= BRW_NEW_INDEX_BUFFER;
} else {
drm_intel_bo_unreference(bo);
}
if (index_buffer->type != brw->ib.type) {
brw->ib.type = index_buffer->type;
brw->state.dirty.brw |= BRW_NEW_INDEX_BUFFER;
}
}
const struct brw_tracked_state brw_indices = {
.dirty = {
.mesa = 0,
.brw = BRW_NEW_INDICES,
.cache = 0,
},
.emit = brw_upload_indices,
};
static void brw_emit_index_buffer(struct brw_context *brw)
{
struct intel_context *intel = &brw->intel;
const struct _mesa_index_buffer *index_buffer = brw->ib.ib;
GLuint cut_index_setting;
if (index_buffer == NULL)
return;
if (brw->prim_restart.enable_cut_index && !intel->is_haswell) {
cut_index_setting = BRW_CUT_INDEX_ENABLE;
} else {
cut_index_setting = 0;
}
BEGIN_BATCH(3);
OUT_BATCH(CMD_INDEX_BUFFER << 16 |
cut_index_setting |
get_index_type(index_buffer->type) << 8 |
1);
OUT_RELOC(brw->ib.bo,
I915_GEM_DOMAIN_VERTEX, 0,
0);
OUT_RELOC(brw->ib.bo,
I915_GEM_DOMAIN_VERTEX, 0,
brw->ib.bo->size - 1);
ADVANCE_BATCH();
}
const struct brw_tracked_state brw_index_buffer = {
.dirty = {
.mesa = 0,
.brw = BRW_NEW_BATCH | BRW_NEW_INDEX_BUFFER,
.cache = 0,
},
.emit = brw_emit_index_buffer,
};