/**************************************************************************
*
* Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
/** @file intel_tris.c
*
* This file contains functions for managing the vertex buffer and emitting
* primitives into it.
*/
#include "main/glheader.h"
#include "main/context.h"
#include "main/macros.h"
#include "main/enums.h"
#include "main/texobj.h"
#include "main/state.h"
#include "main/dd.h"
#include "main/fbobject.h"
#include "swrast/swrast.h"
#include "swrast_setup/swrast_setup.h"
#include "tnl/t_context.h"
#include "tnl/t_pipeline.h"
#include "tnl/t_vertex.h"
#include "intel_screen.h"
#include "intel_context.h"
#include "intel_tris.h"
#include "intel_batchbuffer.h"
#include "intel_buffers.h"
#include "intel_reg.h"
#include "intel_span.h"
#include "i830_context.h"
#include "i830_reg.h"
#include "i915_context.h"
static void intelRenderPrimitive(struct gl_context * ctx, GLenum prim);
static void intelRasterPrimitive(struct gl_context * ctx, GLenum rprim,
GLuint hwprim);
static void
intel_flush_inline_primitive(struct intel_context *intel)
{
GLuint used = intel->batch.used - intel->prim.start_ptr;
assert(intel->prim.primitive != ~0);
/* printf("/\n"); */
if (used < 2)
goto do_discard;
intel->batch.map[intel->prim.start_ptr] =
_3DPRIMITIVE | intel->prim.primitive | (used - 2);
goto finished;
do_discard:
intel->batch.used = intel->prim.start_ptr;
finished:
intel->prim.primitive = ~0;
intel->prim.start_ptr = 0;
intel->prim.flush = 0;
}
static void intel_start_inline(struct intel_context *intel, uint32_t prim)
{
BATCH_LOCALS;
intel->vtbl.emit_state(intel);
intel->no_batch_wrap = true;
/*printf("%s *", __progname);*/
/* Emit a slot which will be filled with the inline primitive
* command later.
*/
BEGIN_BATCH(1);
intel->prim.start_ptr = intel->batch.used;
intel->prim.primitive = prim;
intel->prim.flush = intel_flush_inline_primitive;
OUT_BATCH(0);
ADVANCE_BATCH();
intel->no_batch_wrap = false;
/* printf(">"); */
}
static void intel_wrap_inline(struct intel_context *intel)
{
GLuint prim = intel->prim.primitive;
intel_flush_inline_primitive(intel);
intel_batchbuffer_flush(intel);
intel_start_inline(intel, prim); /* ??? */
}
static GLuint *intel_extend_inline(struct intel_context *intel, GLuint dwords)
{
GLuint *ptr;
assert(intel->prim.flush == intel_flush_inline_primitive);
if (intel_batchbuffer_space(intel) < dwords * sizeof(GLuint))
intel_wrap_inline(intel);
/* printf("."); */
intel->vtbl.assert_not_dirty(intel);
ptr = intel->batch.map + intel->batch.used;
intel->batch.used += dwords;
return ptr;
}
/** Sets the primitive type for a primitive sequence, flushing as needed. */
void intel_set_prim(struct intel_context *intel, uint32_t prim)
{
/* if we have no VBOs */
if (intel->intelScreen->no_vbo) {
intel_start_inline(intel, prim);
return;
}
if (prim != intel->prim.primitive) {
INTEL_FIREVERTICES(intel);
intel->prim.primitive = prim;
}
}
/** Returns mapped VB space for the given number of vertices */
uint32_t *intel_get_prim_space(struct intel_context *intel, unsigned int count)
{
uint32_t *addr;
if (intel->intelScreen->no_vbo) {
return intel_extend_inline(intel, count * intel->vertex_size);
}
/* Check for space in the existing VB */
if (intel->prim.vb_bo == NULL ||
(intel->prim.current_offset +
count * intel->vertex_size * 4) > INTEL_VB_SIZE ||
(intel->prim.count + count) >= (1 << 16)) {
/* Flush existing prim if any */
INTEL_FIREVERTICES(intel);
intel_finish_vb(intel);
/* Start a new VB */
if (intel->prim.vb == NULL)
intel->prim.vb = malloc(INTEL_VB_SIZE);
intel->prim.vb_bo = drm_intel_bo_alloc(intel->bufmgr, "vb",
INTEL_VB_SIZE, 4);
intel->prim.start_offset = 0;
intel->prim.current_offset = 0;
}
intel->prim.flush = intel_flush_prim;
addr = (uint32_t *)(intel->prim.vb + intel->prim.current_offset);
intel->prim.current_offset += intel->vertex_size * 4 * count;
intel->prim.count += count;
return addr;
}
/** Dispatches the accumulated primitive to the batchbuffer. */
void intel_flush_prim(struct intel_context *intel)
{
drm_intel_bo *aper_array[2];
drm_intel_bo *vb_bo;
unsigned int offset, count;
BATCH_LOCALS;
/* Must be called after an intel_start_prim. */
assert(intel->prim.primitive != ~0);
if (intel->prim.count == 0)
return;
/* Clear the current prims out of the context state so that a batch flush
* flush triggered by emit_state doesn't loop back to flush_prim again.
*/
vb_bo = intel->prim.vb_bo;
drm_intel_bo_reference(vb_bo);
count = intel->prim.count;
intel->prim.count = 0;
offset = intel->prim.start_offset;
intel->prim.start_offset = intel->prim.current_offset;
if (intel->gen < 3)
intel->prim.current_offset = intel->prim.start_offset = ALIGN(intel->prim.start_offset, 128);
intel->prim.flush = NULL;
intel->vtbl.emit_state(intel);
aper_array[0] = intel->batch.bo;
aper_array[1] = vb_bo;
if (dri_bufmgr_check_aperture_space(aper_array, 2)) {
intel_batchbuffer_flush(intel);
intel->vtbl.emit_state(intel);
}
/* Ensure that we don't start a new batch for the following emit, which
* depends on the state just emitted. emit_state should be making sure we
* have the space for this.
*/
intel->no_batch_wrap = true;
if (intel->always_flush_cache) {
intel_batchbuffer_emit_mi_flush(intel);
}
#if 0
printf("emitting %d..%d=%d vertices size %d\n", offset,
intel->prim.current_offset, count,
intel->vertex_size * 4);
#endif
if (intel->gen >= 3) {
struct i915_context *i915 = i915_context(&intel->ctx);
unsigned int cmd = 0, len = 0;
if (vb_bo != i915->current_vb_bo) {
cmd |= I1_LOAD_S(0);
len++;
}
if (intel->vertex_size != i915->current_vertex_size) {
cmd |= I1_LOAD_S(1);
len++;
}
if (len)
len++;
BEGIN_BATCH(2+len);
if (cmd)
OUT_BATCH(_3DSTATE_LOAD_STATE_IMMEDIATE_1 | cmd | (len - 2));
if (vb_bo != i915->current_vb_bo) {
OUT_RELOC(vb_bo, I915_GEM_DOMAIN_VERTEX, 0, 0);
i915->current_vb_bo = vb_bo;
}
if (intel->vertex_size != i915->current_vertex_size) {
OUT_BATCH((intel->vertex_size << S1_VERTEX_WIDTH_SHIFT) |
(intel->vertex_size << S1_VERTEX_PITCH_SHIFT));
i915->current_vertex_size = intel->vertex_size;
}
OUT_BATCH(_3DPRIMITIVE |
PRIM_INDIRECT |
PRIM_INDIRECT_SEQUENTIAL |
intel->prim.primitive |
count);
OUT_BATCH(offset / (intel->vertex_size * 4));
ADVANCE_BATCH();
} else {
struct i830_context *i830 = i830_context(&intel->ctx);
BEGIN_BATCH(5);
OUT_BATCH(_3DSTATE_LOAD_STATE_IMMEDIATE_1 |
I1_LOAD_S(0) | I1_LOAD_S(2) | 1);
/* S0 */
assert((offset & ~S0_VB_OFFSET_MASK_830) == 0);
OUT_RELOC(vb_bo, I915_GEM_DOMAIN_VERTEX, 0,
offset | (intel->vertex_size << S0_VB_PITCH_SHIFT_830) |
S0_VB_ENABLE_830);
/* S2
* This is somewhat unfortunate -- VB width is tied up with
* vertex format data that we've already uploaded through
* _3DSTATE_VFT[01]_CMD. We may want to replace emits of VFT state with
* STATE_IMMEDIATE_1 like this to avoid duplication.
*/
OUT_BATCH((i830->state.Ctx[I830_CTXREG_VF] & VFT0_TEX_COUNT_MASK) >>
VFT0_TEX_COUNT_SHIFT << S2_TEX_COUNT_SHIFT_830 |
(i830->state.Ctx[I830_CTXREG_VF2] << 16) |
intel->vertex_size << S2_VERTEX_0_WIDTH_SHIFT_830);
OUT_BATCH(_3DPRIMITIVE |
PRIM_INDIRECT |
PRIM_INDIRECT_SEQUENTIAL |
intel->prim.primitive |
count);
OUT_BATCH(0); /* Beginning vertex index */
ADVANCE_BATCH();
}
if (intel->always_flush_cache) {
intel_batchbuffer_emit_mi_flush(intel);
}
intel->no_batch_wrap = false;
drm_intel_bo_unreference(vb_bo);
}
/**
* Uploads the locally-accumulated VB into the buffer object.
*
* This avoids us thrashing the cachelines in and out as the buffer gets
* filled, dispatched, then reused as the hardware completes rendering from it,
* and also lets us clflush less if we dispatch with a partially-filled VB.
*
* This is called normally from get_space when we're finishing a BO, but also
* at batch flush time so that we don't try accessing the contents of a
* just-dispatched buffer.
*/
void intel_finish_vb(struct intel_context *intel)
{
if (intel->prim.vb_bo == NULL)
return;
drm_intel_bo_subdata(intel->prim.vb_bo, 0, intel->prim.start_offset,
intel->prim.vb);
drm_intel_bo_unreference(intel->prim.vb_bo);
intel->prim.vb_bo = NULL;
}
/***********************************************************************
* Emit primitives as inline vertices *
***********************************************************************/
#ifdef __i386__
#define COPY_DWORDS( j, vb, vertsize, v ) \
do { \
int __tmp; \
__asm__ __volatile__( "rep ; movsl" \
: "=%c" (j), "=D" (vb), "=S" (__tmp) \
: "0" (vertsize), \
"D" ((long)vb), \
"S" ((long)v) ); \
} while (0)
#else
#define COPY_DWORDS( j, vb, vertsize, v ) \
do { \
for ( j = 0 ; j < vertsize ; j++ ) { \
vb[j] = ((GLuint *)v)[j]; \
} \
vb += vertsize; \
} while (0)
#endif
static void
intel_draw_quad(struct intel_context *intel,
intelVertexPtr v0,
intelVertexPtr v1, intelVertexPtr v2, intelVertexPtr v3)
{
GLuint vertsize = intel->vertex_size;
GLuint *vb = intel_get_prim_space(intel, 6);
int j;
COPY_DWORDS(j, vb, vertsize, v0);
COPY_DWORDS(j, vb, vertsize, v1);
/* If smooth shading, draw like a trifan which gives better
* rasterization. Otherwise draw as two triangles with provoking
* vertex in third position as required for flat shading.
*/
if (intel->ctx.Light.ShadeModel == GL_FLAT) {
COPY_DWORDS(j, vb, vertsize, v3);
COPY_DWORDS(j, vb, vertsize, v1);
}
else {
COPY_DWORDS(j, vb, vertsize, v2);
COPY_DWORDS(j, vb, vertsize, v0);
}
COPY_DWORDS(j, vb, vertsize, v2);
COPY_DWORDS(j, vb, vertsize, v3);
}
static void
intel_draw_triangle(struct intel_context *intel,
intelVertexPtr v0, intelVertexPtr v1, intelVertexPtr v2)
{
GLuint vertsize = intel->vertex_size;
GLuint *vb = intel_get_prim_space(intel, 3);
int j;
COPY_DWORDS(j, vb, vertsize, v0);
COPY_DWORDS(j, vb, vertsize, v1);
COPY_DWORDS(j, vb, vertsize, v2);
}
static void
intel_draw_line(struct intel_context *intel,
intelVertexPtr v0, intelVertexPtr v1)
{
GLuint vertsize = intel->vertex_size;
GLuint *vb = intel_get_prim_space(intel, 2);
int j;
COPY_DWORDS(j, vb, vertsize, v0);
COPY_DWORDS(j, vb, vertsize, v1);
}
static void
intel_draw_point(struct intel_context *intel, intelVertexPtr v0)
{
GLuint vertsize = intel->vertex_size;
GLuint *vb = intel_get_prim_space(intel, 1);
int j;
/* Adjust for sub pixel position -- still required for conform. */
*(float *) &vb[0] = v0->v.x;
*(float *) &vb[1] = v0->v.y;
for (j = 2; j < vertsize; j++)
vb[j] = v0->ui[j];
}
/***********************************************************************
* Fixup for ARB_point_parameters *
***********************************************************************/
/* Currently not working - VERT_ATTRIB_POINTSIZE isn't correctly
* represented in the fragment program InputsRead field.
*/
static void
intel_atten_point(struct intel_context *intel, intelVertexPtr v0)
{
struct gl_context *ctx = &intel->ctx;
GLfloat psz[4], col[4], restore_psz, restore_alpha;
_tnl_get_attr(ctx, v0, _TNL_ATTRIB_POINTSIZE, psz);
_tnl_get_attr(ctx, v0, _TNL_ATTRIB_COLOR0, col);
restore_psz = psz[0];
restore_alpha = col[3];
if (psz[0] >= ctx->Point.Threshold) {
psz[0] = MIN2(psz[0], ctx->Point.MaxSize);
}
else {
GLfloat dsize = psz[0] / ctx->Point.Threshold;
psz[0] = MAX2(ctx->Point.Threshold, ctx->Point.MinSize);
col[3] *= dsize * dsize;
}
if (psz[0] < 1.0)
psz[0] = 1.0;
if (restore_psz != psz[0] || restore_alpha != col[3]) {
_tnl_set_attr(ctx, v0, _TNL_ATTRIB_POINTSIZE, psz);
_tnl_set_attr(ctx, v0, _TNL_ATTRIB_COLOR0, col);
intel_draw_point(intel, v0);
psz[0] = restore_psz;
col[3] = restore_alpha;
_tnl_set_attr(ctx, v0, _TNL_ATTRIB_POINTSIZE, psz);
_tnl_set_attr(ctx, v0, _TNL_ATTRIB_COLOR0, col);
}
else
intel_draw_point(intel, v0);
}
/***********************************************************************
* Fixup for I915 WPOS texture coordinate *
***********************************************************************/
static void
intel_emit_fragcoord(struct intel_context *intel, intelVertexPtr v)
{
struct gl_context *ctx = &intel->ctx;
struct gl_framebuffer *fb = ctx->DrawBuffer;
GLuint offset = intel->wpos_offset;
float *vertex_position = (float *)v;
float *fragcoord = (float *)((char *)v + offset);
fragcoord[0] = vertex_position[0];
if (_mesa_is_user_fbo(fb))
fragcoord[1] = vertex_position[1];
else
fragcoord[1] = fb->Height - vertex_position[1];
fragcoord[2] = vertex_position[2];
fragcoord[3] = vertex_position[3];
}
static void
intel_wpos_triangle(struct intel_context *intel,
intelVertexPtr v0, intelVertexPtr v1, intelVertexPtr v2)
{
intel_emit_fragcoord(intel, v0);
intel_emit_fragcoord(intel, v1);
intel_emit_fragcoord(intel, v2);
intel_draw_triangle(intel, v0, v1, v2);
}
static void
intel_wpos_line(struct intel_context *intel,
intelVertexPtr v0, intelVertexPtr v1)
{
intel_emit_fragcoord(intel, v0);
intel_emit_fragcoord(intel, v1);
intel_draw_line(intel, v0, v1);
}
static void
intel_wpos_point(struct intel_context *intel, intelVertexPtr v0)
{
intel_emit_fragcoord(intel, v0);
intel_draw_point(intel, v0);
}
/***********************************************************************
* Macros for t_dd_tritmp.h to draw basic primitives *
***********************************************************************/
#define TRI( a, b, c ) \
do { \
if (DO_FALLBACK) \
intel->draw_tri( intel, a, b, c ); \
else \
intel_draw_triangle( intel, a, b, c ); \
} while (0)
#define QUAD( a, b, c, d ) \
do { \
if (DO_FALLBACK) { \
intel->draw_tri( intel, a, b, d ); \
intel->draw_tri( intel, b, c, d ); \
} else \
intel_draw_quad( intel, a, b, c, d ); \
} while (0)
#define LINE( v0, v1 ) \
do { \
if (DO_FALLBACK) \
intel->draw_line( intel, v0, v1 ); \
else \
intel_draw_line( intel, v0, v1 ); \
} while (0)
#define POINT( v0 ) \
do { \
if (DO_FALLBACK) \
intel->draw_point( intel, v0 ); \
else \
intel_draw_point( intel, v0 ); \
} while (0)
/***********************************************************************
* Build render functions from dd templates *
***********************************************************************/
#define INTEL_OFFSET_BIT 0x01
#define INTEL_TWOSIDE_BIT 0x02
#define INTEL_UNFILLED_BIT 0x04
#define INTEL_FALLBACK_BIT 0x08
#define INTEL_MAX_TRIFUNC 0x10
static struct
{
tnl_points_func points;
tnl_line_func line;
tnl_triangle_func triangle;
tnl_quad_func quad;
} rast_tab[INTEL_MAX_TRIFUNC];
#define DO_FALLBACK (IND & INTEL_FALLBACK_BIT)
#define DO_OFFSET (IND & INTEL_OFFSET_BIT)
#define DO_UNFILLED (IND & INTEL_UNFILLED_BIT)
#define DO_TWOSIDE (IND & INTEL_TWOSIDE_BIT)
#define DO_FLAT 0
#define DO_TRI 1
#define DO_QUAD 1
#define DO_LINE 1
#define DO_POINTS 1
#define DO_FULL_QUAD 1
#define HAVE_SPEC 1
#define HAVE_BACK_COLORS 0
#define HAVE_HW_FLATSHADE 1
#define VERTEX intelVertex
#define TAB rast_tab
/* Only used to pull back colors into vertices (ie, we know color is
* floating point).
*/
#define INTEL_COLOR( dst, src ) \
do { \
UNCLAMPED_FLOAT_TO_UBYTE((dst)[0], (src)[2]); \
UNCLAMPED_FLOAT_TO_UBYTE((dst)[1], (src)[1]); \
UNCLAMPED_FLOAT_TO_UBYTE((dst)[2], (src)[0]); \
UNCLAMPED_FLOAT_TO_UBYTE((dst)[3], (src)[3]); \
} while (0)
#define INTEL_SPEC( dst, src ) \
do { \
UNCLAMPED_FLOAT_TO_UBYTE((dst)[0], (src)[2]); \
UNCLAMPED_FLOAT_TO_UBYTE((dst)[1], (src)[1]); \
UNCLAMPED_FLOAT_TO_UBYTE((dst)[2], (src)[0]); \
} while (0)
#define DEPTH_SCALE intel->polygon_offset_scale
#define UNFILLED_TRI unfilled_tri
#define UNFILLED_QUAD unfilled_quad
#define VERT_X(_v) _v->v.x
#define VERT_Y(_v) _v->v.y
#define VERT_Z(_v) _v->v.z
#define AREA_IS_CCW( a ) (a > 0)
#define GET_VERTEX(e) (intel->verts + (e * intel->vertex_size * sizeof(GLuint)))
#define VERT_SET_RGBA( v, c ) if (coloroffset) INTEL_COLOR( v->ub4[coloroffset], c )
#define VERT_COPY_RGBA( v0, v1 ) if (coloroffset) v0->ui[coloroffset] = v1->ui[coloroffset]
#define VERT_SAVE_RGBA( idx ) if (coloroffset) color[idx] = v[idx]->ui[coloroffset]
#define VERT_RESTORE_RGBA( idx ) if (coloroffset) v[idx]->ui[coloroffset] = color[idx]
#define VERT_SET_SPEC( v, c ) if (specoffset) INTEL_SPEC( v->ub4[specoffset], c )
#define VERT_COPY_SPEC( v0, v1 ) if (specoffset) COPY_3V(v0->ub4[specoffset], v1->ub4[specoffset])
#define VERT_SAVE_SPEC( idx ) if (specoffset) spec[idx] = v[idx]->ui[specoffset]
#define VERT_RESTORE_SPEC( idx ) if (specoffset) v[idx]->ui[specoffset] = spec[idx]
#define LOCAL_VARS(n) \
struct intel_context *intel = intel_context(ctx); \
GLuint color[n] = { 0, }, spec[n] = { 0, }; \
GLuint coloroffset = intel->coloroffset; \
GLuint specoffset = intel->specoffset; \
(void) color; (void) spec; (void) coloroffset; (void) specoffset;
/***********************************************************************
* Helpers for rendering unfilled primitives *
***********************************************************************/
static const GLuint hw_prim[GL_POLYGON + 1] = {
PRIM3D_POINTLIST,
PRIM3D_LINELIST,
PRIM3D_LINELIST,
PRIM3D_LINELIST,
PRIM3D_TRILIST,
PRIM3D_TRILIST,
PRIM3D_TRILIST,
PRIM3D_TRILIST,
PRIM3D_TRILIST,
PRIM3D_TRILIST
};
#define RASTERIZE(x) intelRasterPrimitive( ctx, x, hw_prim[x] )
#define RENDER_PRIMITIVE intel->render_primitive
#define TAG(x) x
#define IND INTEL_FALLBACK_BIT
#include "tnl_dd/t_dd_unfilled.h"
#undef IND
/***********************************************************************
* Generate GL render functions *
***********************************************************************/
#define IND (0)
#define TAG(x) x
#include "tnl_dd/t_dd_tritmp.h"
#define IND (INTEL_OFFSET_BIT)
#define TAG(x) x##_offset
#include "tnl_dd/t_dd_tritmp.h"
#define IND (INTEL_TWOSIDE_BIT)
#define TAG(x) x##_twoside
#include "tnl_dd/t_dd_tritmp.h"
#define IND (INTEL_TWOSIDE_BIT|INTEL_OFFSET_BIT)
#define TAG(x) x##_twoside_offset
#include "tnl_dd/t_dd_tritmp.h"
#define IND (INTEL_UNFILLED_BIT)
#define TAG(x) x##_unfilled
#include "tnl_dd/t_dd_tritmp.h"
#define IND (INTEL_OFFSET_BIT|INTEL_UNFILLED_BIT)
#define TAG(x) x##_offset_unfilled
#include "tnl_dd/t_dd_tritmp.h"
#define IND (INTEL_TWOSIDE_BIT|INTEL_UNFILLED_BIT)
#define TAG(x) x##_twoside_unfilled
#include "tnl_dd/t_dd_tritmp.h"
#define IND (INTEL_TWOSIDE_BIT|INTEL_OFFSET_BIT|INTEL_UNFILLED_BIT)
#define TAG(x) x##_twoside_offset_unfilled
#include "tnl_dd/t_dd_tritmp.h"
#define IND (INTEL_FALLBACK_BIT)
#define TAG(x) x##_fallback
#include "tnl_dd/t_dd_tritmp.h"
#define IND (INTEL_OFFSET_BIT|INTEL_FALLBACK_BIT)
#define TAG(x) x##_offset_fallback
#include "tnl_dd/t_dd_tritmp.h"
#define IND (INTEL_TWOSIDE_BIT|INTEL_FALLBACK_BIT)
#define TAG(x) x##_twoside_fallback
#include "tnl_dd/t_dd_tritmp.h"
#define IND (INTEL_TWOSIDE_BIT|INTEL_OFFSET_BIT|INTEL_FALLBACK_BIT)
#define TAG(x) x##_twoside_offset_fallback
#include "tnl_dd/t_dd_tritmp.h"
#define IND (INTEL_UNFILLED_BIT|INTEL_FALLBACK_BIT)
#define TAG(x) x##_unfilled_fallback
#include "tnl_dd/t_dd_tritmp.h"
#define IND (INTEL_OFFSET_BIT|INTEL_UNFILLED_BIT|INTEL_FALLBACK_BIT)
#define TAG(x) x##_offset_unfilled_fallback
#include "tnl_dd/t_dd_tritmp.h"
#define IND (INTEL_TWOSIDE_BIT|INTEL_UNFILLED_BIT|INTEL_FALLBACK_BIT)
#define TAG(x) x##_twoside_unfilled_fallback
#include "tnl_dd/t_dd_tritmp.h"
#define IND (INTEL_TWOSIDE_BIT|INTEL_OFFSET_BIT|INTEL_UNFILLED_BIT| \
INTEL_FALLBACK_BIT)
#define TAG(x) x##_twoside_offset_unfilled_fallback
#include "tnl_dd/t_dd_tritmp.h"
static void
init_rast_tab(void)
{
init();
init_offset();
init_twoside();
init_twoside_offset();
init_unfilled();
init_offset_unfilled();
init_twoside_unfilled();
init_twoside_offset_unfilled();
init_fallback();
init_offset_fallback();
init_twoside_fallback();
init_twoside_offset_fallback();
init_unfilled_fallback();
init_offset_unfilled_fallback();
init_twoside_unfilled_fallback();
init_twoside_offset_unfilled_fallback();
}
/***********************************************************************
* Rasterization fallback helpers *
***********************************************************************/
/* This code is hit only when a mix of accelerated and unaccelerated
* primitives are being drawn, and only for the unaccelerated
* primitives.
*/
static void
intel_fallback_tri(struct intel_context *intel,
intelVertex * v0, intelVertex * v1, intelVertex * v2)
{
struct gl_context *ctx = &intel->ctx;
SWvertex v[3];
if (0)
fprintf(stderr, "\n%s\n", __FUNCTION__);
INTEL_FIREVERTICES(intel);
_swsetup_Translate(ctx, v0, &v[0]);
_swsetup_Translate(ctx, v1, &v[1]);
_swsetup_Translate(ctx, v2, &v[2]);
intelSpanRenderStart(ctx);
_swrast_Triangle(ctx, &v[0], &v[1], &v[2]);
intelSpanRenderFinish(ctx);
}
static void
intel_fallback_line(struct intel_context *intel,
intelVertex * v0, intelVertex * v1)
{
struct gl_context *ctx = &intel->ctx;
SWvertex v[2];
if (0)
fprintf(stderr, "\n%s\n", __FUNCTION__);
INTEL_FIREVERTICES(intel);
_swsetup_Translate(ctx, v0, &v[0]);
_swsetup_Translate(ctx, v1, &v[1]);
intelSpanRenderStart(ctx);
_swrast_Line(ctx, &v[0], &v[1]);
intelSpanRenderFinish(ctx);
}
static void
intel_fallback_point(struct intel_context *intel,
intelVertex * v0)
{
struct gl_context *ctx = &intel->ctx;
SWvertex v[1];
if (0)
fprintf(stderr, "\n%s\n", __FUNCTION__);
INTEL_FIREVERTICES(intel);
_swsetup_Translate(ctx, v0, &v[0]);
intelSpanRenderStart(ctx);
_swrast_Point(ctx, &v[0]);
intelSpanRenderFinish(ctx);
}
/**********************************************************************/
/* Render unclipped begin/end objects */
/**********************************************************************/
#define IND 0
#define V(x) (intelVertex *)(vertptr + ((x)*vertsize*sizeof(GLuint)))
#define RENDER_POINTS( start, count ) \
for ( ; start < count ; start++) POINT( V(ELT(start)) );
#define RENDER_LINE( v0, v1 ) LINE( V(v0), V(v1) )
#define RENDER_TRI( v0, v1, v2 ) TRI( V(v0), V(v1), V(v2) )
#define RENDER_QUAD( v0, v1, v2, v3 ) QUAD( V(v0), V(v1), V(v2), V(v3) )
#define INIT(x) intelRenderPrimitive( ctx, x )
#undef LOCAL_VARS
#define LOCAL_VARS \
struct intel_context *intel = intel_context(ctx); \
GLubyte *vertptr = (GLubyte *)intel->verts; \
const GLuint vertsize = intel->vertex_size; \
const GLuint * const elt = TNL_CONTEXT(ctx)->vb.Elts; \
(void) elt;
#define RESET_STIPPLE
#define RESET_OCCLUSION
#define PRESERVE_VB_DEFS
#define ELT(x) x
#define TAG(x) intel_##x##_verts
#include "tnl/t_vb_rendertmp.h"
#undef ELT
#undef TAG
#define TAG(x) intel_##x##_elts
#define ELT(x) elt[x]
#include "tnl/t_vb_rendertmp.h"
/**********************************************************************/
/* Render clipped primitives */
/**********************************************************************/
static void
intelRenderClippedPoly(struct gl_context * ctx, const GLuint * elts, GLuint n)
{
struct intel_context *intel = intel_context(ctx);
TNLcontext *tnl = TNL_CONTEXT(ctx);
struct vertex_buffer *VB = &TNL_CONTEXT(ctx)->vb;
GLuint prim = intel->render_primitive;
/* Render the new vertices as an unclipped polygon.
*/
{
GLuint *tmp = VB->Elts;
VB->Elts = (GLuint *) elts;
tnl->Driver.Render.PrimTabElts[GL_POLYGON] (ctx, 0, n,
PRIM_BEGIN | PRIM_END);
VB->Elts = tmp;
}
/* Restore the render primitive
*/
if (prim != GL_POLYGON)
tnl->Driver.Render.PrimitiveNotify(ctx, prim);
}
static void
intelRenderClippedLine(struct gl_context * ctx, GLuint ii, GLuint jj)
{
TNLcontext *tnl = TNL_CONTEXT(ctx);
tnl->Driver.Render.Line(ctx, ii, jj);
}
static void
intelFastRenderClippedPoly(struct gl_context * ctx, const GLuint * elts, GLuint n)
{
struct intel_context *intel = intel_context(ctx);
const GLuint vertsize = intel->vertex_size;
GLuint *vb = intel_get_prim_space(intel, (n - 2) * 3);
GLubyte *vertptr = (GLubyte *) intel->verts;
const GLuint *start = (const GLuint *) V(elts[0]);
int i, j;
for (i = 2; i < n; i++) {
COPY_DWORDS(j, vb, vertsize, V(elts[i - 1]));
COPY_DWORDS(j, vb, vertsize, V(elts[i]));
COPY_DWORDS(j, vb, vertsize, start);
}
}
/**********************************************************************/
/* Choose render functions */
/**********************************************************************/
#define ANY_FALLBACK_FLAGS (DD_LINE_STIPPLE | DD_TRI_STIPPLE | DD_POINT_ATTEN)
#define ANY_RASTER_FLAGS (DD_TRI_LIGHT_TWOSIDE | DD_TRI_OFFSET | DD_TRI_UNFILLED)
void
intelChooseRenderState(struct gl_context * ctx)
{
TNLcontext *tnl = TNL_CONTEXT(ctx);
struct intel_context *intel = intel_context(ctx);
GLuint flags = ctx->_TriangleCaps;
const struct gl_fragment_program *fprog = ctx->FragmentProgram._Current;
bool have_wpos = (fprog && (fprog->Base.InputsRead & FRAG_BIT_WPOS));
GLuint index = 0;
if (INTEL_DEBUG & DEBUG_STATE)
fprintf(stderr, "\n%s\n", __FUNCTION__);
if ((flags & (ANY_FALLBACK_FLAGS | ANY_RASTER_FLAGS)) || have_wpos) {
if (flags & ANY_RASTER_FLAGS) {
if (flags & DD_TRI_LIGHT_TWOSIDE)
index |= INTEL_TWOSIDE_BIT;
if (flags & DD_TRI_OFFSET)
index |= INTEL_OFFSET_BIT;
if (flags & DD_TRI_UNFILLED)
index |= INTEL_UNFILLED_BIT;
}
if (have_wpos) {
intel->draw_point = intel_wpos_point;
intel->draw_line = intel_wpos_line;
intel->draw_tri = intel_wpos_triangle;
/* Make sure these get called:
*/
index |= INTEL_FALLBACK_BIT;
}
else {
intel->draw_point = intel_draw_point;
intel->draw_line = intel_draw_line;
intel->draw_tri = intel_draw_triangle;
}
/* Hook in fallbacks for specific primitives.
*/
if (flags & ANY_FALLBACK_FLAGS) {
if (flags & DD_LINE_STIPPLE)
intel->draw_line = intel_fallback_line;
if ((flags & DD_TRI_STIPPLE) && !intel->hw_stipple)
intel->draw_tri = intel_fallback_tri;
if (flags & DD_POINT_ATTEN) {
if (0)
intel->draw_point = intel_atten_point;
else
intel->draw_point = intel_fallback_point;
}
index |= INTEL_FALLBACK_BIT;
}
}
if (intel->RenderIndex != index) {
intel->RenderIndex = index;
tnl->Driver.Render.Points = rast_tab[index].points;
tnl->Driver.Render.Line = rast_tab[index].line;
tnl->Driver.Render.Triangle = rast_tab[index].triangle;
tnl->Driver.Render.Quad = rast_tab[index].quad;
if (index == 0) {
tnl->Driver.Render.PrimTabVerts = intel_render_tab_verts;
tnl->Driver.Render.PrimTabElts = intel_render_tab_elts;
tnl->Driver.Render.ClippedLine = line; /* from tritmp.h */
tnl->Driver.Render.ClippedPolygon = intelFastRenderClippedPoly;
}
else {
tnl->Driver.Render.PrimTabVerts = _tnl_render_tab_verts;
tnl->Driver.Render.PrimTabElts = _tnl_render_tab_elts;
tnl->Driver.Render.ClippedLine = intelRenderClippedLine;
tnl->Driver.Render.ClippedPolygon = intelRenderClippedPoly;
}
}
}
static const GLenum reduced_prim[GL_POLYGON + 1] = {
GL_POINTS,
GL_LINES,
GL_LINES,
GL_LINES,
GL_TRIANGLES,
GL_TRIANGLES,
GL_TRIANGLES,
GL_TRIANGLES,
GL_TRIANGLES,
GL_TRIANGLES
};
/**********************************************************************/
/* High level hooks for t_vb_render.c */
/**********************************************************************/
static void
intelRunPipeline(struct gl_context * ctx)
{
struct intel_context *intel = intel_context(ctx);
_mesa_lock_context_textures(ctx);
if (ctx->NewState)
_mesa_update_state_locked(ctx);
/* We need to get this done before we start the pipeline, or a
* change in the INTEL_FALLBACK() of its intel_draw_buffers() call
* while the pipeline is running will result in mismatched swrast
* map/unmaps, and later assertion failures.
*/
intel_prepare_render(intel);
if (intel->NewGLState) {
if (intel->NewGLState & _NEW_TEXTURE) {
intel->vtbl.update_texture_state(intel);
}
if (!intel->Fallback) {
if (intel->NewGLState & _INTEL_NEW_RENDERSTATE)
intelChooseRenderState(ctx);
}
intel->NewGLState = 0;
}
intel_map_vertex_shader_textures(ctx);
intel->tnl_pipeline_running = true;
_tnl_run_pipeline(ctx);
intel->tnl_pipeline_running = false;
intel_unmap_vertex_shader_textures(ctx);
_mesa_unlock_context_textures(ctx);
}
static void
intelRenderStart(struct gl_context * ctx)
{
struct intel_context *intel = intel_context(ctx);
intel_check_front_buffer_rendering(intel);
intel->vtbl.render_start(intel_context(ctx));
intel->vtbl.emit_state(intel);
}
static void
intelRenderFinish(struct gl_context * ctx)
{
struct intel_context *intel = intel_context(ctx);
if (intel->RenderIndex & INTEL_FALLBACK_BIT)
_swrast_flush(ctx);
INTEL_FIREVERTICES(intel);
}
/* System to flush dma and emit state changes based on the rasterized
* primitive.
*/
static void
intelRasterPrimitive(struct gl_context * ctx, GLenum rprim, GLuint hwprim)
{
struct intel_context *intel = intel_context(ctx);
if (0)
fprintf(stderr, "%s %s %x\n", __FUNCTION__,
_mesa_lookup_enum_by_nr(rprim), hwprim);
intel->vtbl.reduced_primitive_state(intel, rprim);
/* Start a new primitive. Arrange to have it flushed later on.
*/
if (hwprim != intel->prim.primitive) {
INTEL_FIREVERTICES(intel);
intel_set_prim(intel, hwprim);
}
}
/*
*/
static void
intelRenderPrimitive(struct gl_context * ctx, GLenum prim)
{
struct intel_context *intel = intel_context(ctx);
if (0)
fprintf(stderr, "%s %s\n", __FUNCTION__, _mesa_lookup_enum_by_nr(prim));
/* Let some clipping routines know which primitive they're dealing
* with.
*/
intel->render_primitive = prim;
/* Shortcircuit this when called for unfilled triangles. The rasterized
* primitive will always be reset by lower level functions in that case,
* potentially pingponging the state:
*/
if (reduced_prim[prim] == GL_TRIANGLES &&
(ctx->_TriangleCaps & DD_TRI_UNFILLED))
return;
/* Set some primitive-dependent state and Start? a new primitive.
*/
intelRasterPrimitive(ctx, reduced_prim[prim], hw_prim[prim]);
}
/**********************************************************************/
/* Transition to/from hardware rasterization. */
/**********************************************************************/
static char *fallbackStrings[] = {
[0] = "Draw buffer",
[1] = "Read buffer",
[2] = "Depth buffer",
[3] = "Stencil buffer",
[4] = "User disable",
[5] = "Render mode",
[12] = "Texture",
[13] = "Color mask",
[14] = "Stencil",
[15] = "Stipple",
[16] = "Program",
[17] = "Logic op",
[18] = "Smooth polygon",
[19] = "Smooth point",
[20] = "point sprite coord origin",
[21] = "depth/color drawing offset",
[22] = "coord replace(SPRITE POINT ENABLE)",
};
static char *
getFallbackString(GLuint bit)
{
int i = 0;
while (bit > 1) {
i++;
bit >>= 1;
}
return fallbackStrings[i];
}
/**
* Enable/disable a fallback flag.
* \param bit one of INTEL_FALLBACK_x flags.
*/
void
intelFallback(struct intel_context *intel, GLbitfield bit, bool mode)
{
struct gl_context *ctx = &intel->ctx;
TNLcontext *tnl = TNL_CONTEXT(ctx);
const GLbitfield oldfallback = intel->Fallback;
if (mode) {
intel->Fallback |= bit;
if (oldfallback == 0) {
assert(!intel->tnl_pipeline_running);
intel_flush(ctx);
if (INTEL_DEBUG & DEBUG_PERF)
fprintf(stderr, "ENTER FALLBACK %x: %s\n",
bit, getFallbackString(bit));
_swsetup_Wakeup(ctx);
intel->RenderIndex = ~0;
}
}
else {
intel->Fallback &= ~bit;
if (oldfallback == bit) {
assert(!intel->tnl_pipeline_running);
_swrast_flush(ctx);
if (INTEL_DEBUG & DEBUG_PERF)
fprintf(stderr, "LEAVE FALLBACK %s\n", getFallbackString(bit));
tnl->Driver.Render.Start = intelRenderStart;
tnl->Driver.Render.PrimitiveNotify = intelRenderPrimitive;
tnl->Driver.Render.Finish = intelRenderFinish;
tnl->Driver.Render.BuildVertices = _tnl_build_vertices;
tnl->Driver.Render.CopyPV = _tnl_copy_pv;
tnl->Driver.Render.Interp = _tnl_interp;
_tnl_invalidate_vertex_state(ctx, ~0);
_tnl_invalidate_vertices(ctx, ~0);
_tnl_install_attrs(ctx,
intel->vertex_attrs,
intel->vertex_attr_count,
intel->ViewportMatrix.m, 0);
intel->NewGLState |= _INTEL_NEW_RENDERSTATE;
}
}
}
union fi
{
GLfloat f;
GLint i;
};
/**********************************************************************/
/* Initialization. */
/**********************************************************************/
void
intelInitTriFuncs(struct gl_context * ctx)
{
TNLcontext *tnl = TNL_CONTEXT(ctx);
static int firsttime = 1;
if (firsttime) {
init_rast_tab();
firsttime = 0;
}
tnl->Driver.RunPipeline = intelRunPipeline;
tnl->Driver.Render.Start = intelRenderStart;
tnl->Driver.Render.Finish = intelRenderFinish;
tnl->Driver.Render.PrimitiveNotify = intelRenderPrimitive;
tnl->Driver.Render.ResetLineStipple = _swrast_ResetLineStipple;
tnl->Driver.Render.BuildVertices = _tnl_build_vertices;
tnl->Driver.Render.CopyPV = _tnl_copy_pv;
tnl->Driver.Render.Interp = _tnl_interp;
}